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A PURE-TAIL ORDERING BASED ON THE RATIO OF THE
QUANTILE FUNCTIONS!

By JAVIER RoJo

University of Texas, El Paso

In the intuitive approach, a distribution function F is said to be not
more heavily tailed than G if limsup, _,., F/G < . An alternative is to
consider the behavior of the ratio F~'(z)/G~Xu), in a neighborhood of
one. The present paper examines the relationship between these two
criteria and concludes that the intuitive approach gives a more thorough
comparison of distribution functions than the ratio of the quantile func-
tions approach in the case F or G have tails that decrease faster than, or
at, an exponential rate. If F' or G have slowly varying tails, the intuitive
approach gives a less thorough comparison of distributions. When F or G
have polynomial tails, the approaches agree.

1. Introduction. The concept of tail-heaviness of a distribution function
F permeates both the theory and practice of statistics. Among others, the
following examples illustrate the importance of the concept. In the problem of
estimating the location parameter of a symmetric distribution, tail behavior
of the underlying probability distribution has a direct effect on the efficiency of
the estimators. In extreme value theory, the tail behavior of F determines the
limiting distributions of the extreme value statistics. In nonparametric density
estimation, certain methods of selecting the smoothing parameter work well
for short-tailed distributions [Schuster and Gregory (1981)], but the presence
of a moderate outlier causes the methods to choose too large a smoothing
parameter.

Until recently, the literature on tail ordering [e.g., van Zwet (1964), Barlow
and Proschan (1975), Loh (1984), Capéraa (1988)] has been concerned with
orderings of the whole distribution, with the resulting ordering strongly
affected by the behavior of the distributions in the center.

The most common approach to a pure tail ordering defines tail weight in
terms of the rate at which the density tends to 0 at infinity. More precisely, a
density f is said to have a lighter tail than g if

(1.1) f(x)/g(x) >0 asx — .

With this intuitive definition, a normal density has a lighter tail than a
logistic or double exponential density, which in turn are lighter tailed than a ¢
distribution. An alternative approach is suggested in Parzen (1979) and
Lehmann (1988) in terms of density quantile functions. The latter author
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defines the distribution F to be lighter tailed than the distribution G if
(1.2) (F~Y(u) - F(v))/(G"(u) - G"X(v)) < M

for 0 <v <u <1 and some M > 0. When both F~! and G~! are differen-
tiable, (1.2) reduces to gG~'/fF~! being bounded on (0,1). Then, as an
alternative to (1.1), the following criterion which compares the densities at the
same quantile, rather than at the same x, could replace (1.1),

(1.3) &G Y (w)/fF Y (u) >0 asu—1.

When f or g do not exist, the ratios given in (1.1) and (1.3) may be replaced
by their integrated versions,

(1.4) F(x)/G(x)
and
(1.5) FY(u)/G X(u),

where F = 1 — F and similarly for G. The definitions to be adopted in Section
2 will be in terms of (1.4) and (1.5), and it will turn out that, in some cases, the
tail orderings defined in terms of (1.4) and (1.5) agree. In other cases, one
ordering provides a more detailed comparison than the other. The purpose of
the present paper is to give an account of this relationship. Section 2 pro-
vides the definitions and considers some of their possible drawbacks. In
Section 3, the classes of distributions with swiftly varying tails, polynomial
tails and scale-invariant tails are introduced and it is concluded that the
definition in terms of (1.4) gives a more thorough comparison of distribution
functions than that in terms of (1.5) in the case F or G have tails which
decrease faster than, or at, an exponential rate. When F or G have slowly
varying tails, the approach based on (1.5) gives a more thorough comparison of
distributions than the one based on (1.4). For polynomial tails, the two
approaches agree.

2. The definitions. The statement of the definitions to be adopted are
now given.

DEerFINITION 1. Let F and G be probability distribution functions. Then
F <, G if limsup F(x)/G(x) < o,

X — 00

F<,G ifF<,GbutG ¢, F,
F~DG ifFSDGandGSDF.

When the limit in (1.1) exists, the limit of (1.4) as x — = exists and they are
equal. However, the limit of (1.4) may exist, for example, when F and G are
the Poisson and geometric distributions, without the ratio in (1.1) even being
defined.

Although Definition 1 is satisfactory for some purposes, we mention two
possible drawbacks: (i) If F and G have finite support, the ratios in (1.1) and
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(1.4) are undefined for large x, and the definitions therefore do not apply, (ii)
the definition is not location nor scale invariant; this is illustrated by the
following example.

Exampie 1. Let f and g represent normal densities with means (u, §) and
variances (o2, 72), respectively. Then, the behavior of f/g is as follows:

0, ifeither 72> o2 o0r72=0¢2and 6 > u,
J}I_I)Ic}oIc(?‘:)/eg’("c) = (», ifeither 7> <o%or72=02and @ <p,
1, otherwise.

Although for some applications, for example, efficiency of point estimators, a
normal distribution N(6, o2) has lighter tails than N(6, 202), for other appli-
cations, for example, selection of the smoothing parameters in nonparametric
density estimation, a definition under which all normal distributions are
considered to have equally heavy tails, might be preferred. One possibility for
an alternative definition is suggested by the work of Parzen (1979) and
Lehmann (1988). The latter author defined F to have a lighter tail than G if
(1.2) holds for 0 < v < u < 1, and some M > 0. When both F~! and G~} are
differentiable, (1.2) reduces to :

(2.1) &G Y (uw)/fF Y (u) <M, O=<ucx<l.

Parzen calls the function fF~! the density-quantile function and classifies
probability distributions according to the limiting behavior of fF~(u) as
u — 1 or 0 [see also Schuster (1984)]. When M = 1, the ordering defined by
(2.1) has been named dispersive ordering in the literature and was originally
proposed, under a different name, by Doksum (1969).

Hereinafter, F~! will denote the left-continuous version of the inverse of
the distribution function F. That is,

F~'(u) = inf{x: F(x) > u}.
Thus, in particular, the inequalities F~F(x) < x and FF~u) > u are valid.

DerFINITION 2. Let F and G be distribution functions with inverses F~!
and G, respectively. Then
F<,G iflimsup F"'(u)/G '(u) < o,

u—1
F<,G if F<,GbutG ¢, F,
F~ G istanndqu F.

When G™Y(u) - © as u - 1, and lim, _,, gG~'(u)/fF~'(u) exists, then, by
L’Hopital’s rule, lim, ; F~%«)/G () = lim, _,, gG~Yu)/fF~'(u), but the
ratio of the quantile functions may be bounded in a neighborhood of one
without the density quantile functions even being defined [e.g., F(x) = 1 — g7
and G(x) =1—-¢q5 with0<q,<q,<1,x=1,2,3,...]
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It is easy to see that g-ordering is capable of comparing distribution
functions with finite support. Also, it follows easily that under very mild
conditions, g-ordering is location and scale invariant. A more detailed compari-
son of the two definitions is given in Sections 5 and 6 of Rojo (1988). For
example, it can be shown that g-ordering remains invariant under general
monotone transformations.

This section ends with two examples that suggest a property of the g-order-
ing which will be studied in more detail in Section 3. Namely, for distributions
with tails which decrease at a faster rate than, or at, an exponential rate, the
g-ordering may be thought of as a smoothed out version of the D-ordering in
the sense that it ignores the low order terms in the tail of the distribution
function.

ExaMPLE 2 [Parzen (1979)]. Let Fi(x) = e *mesnx x> 0 el <1,i=1,2.
Then F(x)/Fy(x)= e "% and F[Yu)/F;u) =1+ (cysin F; '(u) -
¢, sin F{ Y(u))/Fy Y(«). Thus, while F,/F, oscillates between e~ and e®~,
F['/F; ' converges to 1.

ExampLE 3. Let f(x) be the standard normal density function and let
g(x) = xle=@/P** /2 —w < x <. Then F(x)/G(x)<(2/m)"/?/x >0 as
x = . Thus, F <;, G. On the other hand, F '(z)/G '(u) — 1. It follows
that F ~, G and the g-ordering ignored the low order term x present in the
density g.

3. Relationships between g and D orderings. Example 3 suggests
that D-ordering provides a more precise comparison of tail-heaviness of distri-
bution functions than g-ordering. However, as illustrated by the following
example, g-ordering may order F and G strongly while D-ordering cannot
distinguish between F and G.

ExampLE 4. Define F(x) = 1/In(x) for x > e and G(x) = 1/2In(x) for
x > e'/2. Then F(x)/G(x)=1/2 and since F~'(u) = exp(1/(1 — u)) and
G~ w) = exp(1/2(0 — ), G Hp)/F~(n) = 0 as u — 1. Therefore, while
Fr~pG,G<,F.

It is clear from Examples 3 and 4 that general statements regarding
relationships between g-ordering and D-ordering are not possible without
restricting attention to suitable classes of distribution functions. One obvious
difference between the distributions considered in Example 3 and Example 4 is
that in the former example, the distributions have tails which decrease rapidly,
while the latter example considers distributions whose tails decrease slowly.
Somewhat more precisely, since g-ordering is scale-invariant while D-ordering
is riot, g-ordering will distinguish between distributions F and G only when
the tail of the long-tailed distribution cannot be made shorter than that of the
short-tailed distribution by a scale transform, while the D-ordering only
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distinguishes between F and G if the largest of F and G cannot be made
smaller than the smallest of F and G by multiplication with a small positive
constant. These considerations lead, then, into focusing our attention in the
following classes of distributions.

DEerINITION 3. A distribution function F is said to have a swiftly varying
right tail, (F € SVT), if there is a ¢ > 1 such that
F(x
lim inf _( )
x—o  F(tx)

>1

DEFINITION 4. A distribution function F is said to have a scale-invariant
right tail (F € SIT), if .

F(x)
lim sup F(2x) <o
xX— X

Examples of distributions with swiftly varying right tails include distribu-
tions with regularly varying tails at infinity. Thus, the ¢, F and Pareto
distributions have swiftly varying tails. Other examples include the exponen-
tial, normal and extreme value distributions. On the other hand, examples of
distributions with tails which are not swiftly varying are given by F(x) = I(x),
where [ is a nonincreasing slowly varying function. In fact, it can be shown,
Rojo (1988), that F € SVT if and only if F is not asymptotically equivalent to
a slowly varying function. By contrast, if F(x) = I(x) for some slowly varying
function /, then F € SIT. Other examples of distributions with scale-invariant
right tails are given by distributions with regularly varying tails, while distri-
butions that do not have scale-invariant tails include the normal, exponential
and extreme value distributions.

The following theorem establishes the main relationships between the ¢
and D orderings.

THEOREM 1. Let F and G be distribution functions. (i) If either F € SIT or
G € SIT, then F <, G implies F <j, G. (ii) If either F € SVT or G € SVT,
then F <p, G implies F <, G.

Proor. (i) Suppose that F <, G and F € SIT or G € SIT. Note that
F € SIT implies F(x) < 1 for all x so that lim w—1 F~(u) = o, and therefore
F <, G yields lim, ,; G™'(u) = o, or equlvalently, Gx) <1 for all x. On the
other hand, G € SIT implies d1rectly that G(x) < 1 for all x. Therefore, the
assumptions of (i) imply that G(x) < 1 for all x. Define ¢(x) = F~'G(x). Then

, . o(x) F'G(x) l(u)
(3:1) llI:l_)S:;lp . Sln;l_,so?pm_ o Gl(,u) %,

where the first inequality above follows from the fact that G~ 'G(x) < x and
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the last inequality follows from our assumptions. Next note that, since
FF~ Y ) = u,

(3.2) F(#(x)) < G(x) forall x,
so that (3.1) then implies that there exist £ > 0 and x, > 0 such that
(3.3) F(kx) < G(x) forx > x,.

Now choose N so that k < 2N Then, when F € SIT, there exists A and x;
such that F(x) < AF(2x) for x > x{,. Therefore, (3.3) yields

(3.4) F(x) < ANG(x) for x > max(x,, %)

and, therefore, F <, G.
When G € SIT, a similar argument leads to

= [ )
F(x)sG(;) for x > xj and some k& > 0, some xg > 0

and
_(x _
G(E) < ANG(x) for x > max(x,, x3) and some A > 0,

and, therefore, F <, G follows.
(ii) If F <, G, then G(x) < 1 for all x and hence lim,, _, G~ Y(u) = . Also,
there exist x, and A > 0 such that

F(x) < AG(x) forx > x,.
For F € SVT, there exist ¢t > 1, « > 1 and x{, such that
F(x) = aF(tx) forx > xj.
Now, choose an integer N with o™ > A. Then
F(x) = aVF(tVx) = AF(t"x) for x > xj,
so that
(3.5) F(t¥x) < G(x) for x > x; = max(x, X;)-

Now, since GG Xu) > pu and F(x) > p is equivalent to x > F~(u), (3.5)
implies F(¢YG~Y(w)) = u for all p with G~'(p) = x,, or equivalently,

(3.6) FY(p) <tVG () forp > uo,

where p, € (0,1). Therefore, F <, G.
If instead G € SVT, then

G(t Vx) = a¥G(x) = AG(x) forx = x;
for some ¢, @ > 1, and an argument similar to the one for the case F' € SVT
yields
‘ F(x) < G(¢™Nx) for x > x, = max(xg, X7)-

As N is fixed, (3.6) follows for large u and therefore F <, G. O
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The following corollary is immediate from Theorem 1.

CoroLLarY 1. () If F or G € SVT, then F ~;, G implies F ~, G. More-
over, if F <, G, then either F <p, G or F and G cannot be D-ordered.

(i) If F or G € SIT, then F ~, G implies F ~;, G. Moreover, if F <j, G,
then either F <, G or F and G cannot be q-ordered.

Proor. (i) That F ~;, G implies F ~, G when F or G € SVT, follows
immediately from Theorem 1, part (ii) by interchanging the roles of F and G.
Now, if F and G are D-ordered and F <, G, then it follows that F <, G
since F' <, G is inconsistent with F ~, G and G <p, F.

(ii) The proof is similar to that of (i). O

It is not at all obvious that F <, G does not imply that F' and G are
D-ordered when F or G € SVT. When F or G € SIT, it is also possible to
have F <; G but F and G not g-ordered. These remarks are illustrated by
the following examples.

ExaMPLE 5. Let G(x) = e In*x— ) *h@N gng F(x) = e(~Wn®’+Inx) g4
x > e, where h(x) = (1 + sin(Inln x)) so that F € SVT. Then, for x, such
that Inlnx, = B7/2) + 2nm, n=0,1,2,..., G(x,) =e ™= go that
G(x,)/F(x,) - 0 as n > . On the other hand, for y, such that Inlny, =
(m/2) + 2nm, n=0,1,2,..., G(y,) = e @200 4 that

G(y,)/F(y,) = e*®w** =50y s o agn — o,

and therefore F and G are not D-ordered. However, note that F~(u)
satisfies the equation

~In(1 - «) = (In F~(u))” - In(F~'(u))

_ _ _ 1/2
and therefore F~1(u) = ¢/2+@/H-In(L-u)"? Ajgq

1/2

(-In(1 - u))"* =G Y(v) - (InG ()" "hy(G (1))
Therefore, for all u, G~ (u) > e"1~4)"% Tt follows that

limsupF Y (u)/G *(u) < .
u—1
On the other hand, for u such that A(G Yu)) =2, (—ln(ll—luz)z)l/ 2=
In G Yu) — 2(n G~ Xu))*/? so that G Yu) = e1*I+(IA-w)I/%% 5pg
hence, liminf, ; F~'(u)/G~'(x) = 0 so that F <, G.

u—1

ExaMmPLE 6. Define

— C
F(x)=in_:; -——lnlnx+h2(x) , x >e°,
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where ¢ = e/2 and h,(x) = 1 + sin(Inlnln x) and let G(x) = ¢/In x, x > e¢/2.
Clearly, G € SIT. Now, F/G ~ 1/Inln x when hy(x) = 0 so that
liminf, ,, F/G = 0. On the other hand, F/G < (1/Inlnx) + 2 so that
lim sup, . F/G < » and therefore, F <, G. Now note that G~ () = e*/1~®
while F~!(u) satisfies the equation.-

C
" InF ) \Inln Fi(u)

Thus, if hAy(F Yu)) =2, 2c¢/In F-Y(u)) <1 - u and therefore F~%u) >
e2/A-w) 1t follows that lim sup,_; F Yu)/G Y(u) = ». Now, if
ho(F~Yu)) =0, then In F-Y(w)nln F~Yu) = ¢/(1 — u) so that for
Inln F~Yu) > 2,In F~X(u) < (¢/2(1 — u)). It follows that F~1(u) < e¢/21~®)
and hence liminf, ,; F~%(«)/G~%(u) = 0. Thus, F and G are not g-ordered.

1-u + hy(F~Y(u))|.

It is easy to see that the existence of the limit of F~1/G™! as u - 1 is
sufficient for F' <, G to imply F <, G when F or G € SVT. Similarly, if F or
G € SIT and F/G converges as x — «, then F <;, G implies F <, G. Theo-
rem 1 and Corollary 1, together with the previous remarks, show that g-order-
ing and D-ordering agree in many cases. However, the nongenerality of this
agreement has been illustrated by Examples 3, 4, 5 and 6. Nonetheless, there
is a large class of distributions for which g-ordering and D-ordering are in
agreement. The class is defined as follows:

DEFINITION 5. A distribution function F is said to have a polynomial tail
(Fe )if FeSVT and F € SIT.

It is easy to see that any distribution function F with F = h(x)x ™%, where
a > 0 and A(tx)/h(x) is bounded away from 0 and «, has a polynomial tail.
The following corollary relating g-ordering and D-ordering when F € & or
G € & follows immediately from Theorem 1 and Corollary 1.

COROLLARY 2. If either F € & or G € &, then q-ordering and D-ordering
agree.

Examples of distributions which do not have polynomial tails include the
normal and exponential distributions, and more generally, distributions of the
form

(3.7) F(x) = h(x)e ™", p>0,
where
(3.8) h(x)e*** >0 and h(x)e** > » foralle > 0,all k > 0.

Distributions satisfying (3.7) and (3.8) above may be classified as having
exponential tails. We now define the class of exponentially-tailed distributions
more generally as follows:
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DEFINITION 6. A distribution function F is said to have an exponential tail
(F € &) if, for some ¢t > 1,

.. —log F(tx) —log F(tx)
(3.9) liminf ————>1 and limsup —————
x-o —log F(x) - xow —log F(x)

Clearly, if F satisfies (3.7) and (3.8) above, then F € &. It is easy to see that
&€ SVT. On the other hand, that & ¢ SIT follows easily by taking, for
example, F(x) = e~ *. It follows from Theorem 1 and Corollary 1 that if F or
G € &, then F <;, G implies F <, G, F <, G implies that F <;, G or F and
G are not D-ordered at all and F ~;, G implies F ~, G. On the other hand,
Example 3 shows that while F <, G, F ~, G and hence the ¢ and D
orderings do not agree on the family of the exponentially-tailed distributions.

For distributions satisfying (3.7) and (3.8) above, a somewhat more precise
statement may be made.

THEOREM 2. Let G(x) = h(x)e *" and F(x) = hy(x)e™*" where h, h,
satisfy (3.8) with a;, ay > 0. Then (i) a; < a, impliesthat F <, Gand F <, G;
(i) if hy, hy are continuous, a; = a, implies F ~, G but F ~;, G may not hold.

Proor. (i) Since a, > @; and h,, h, satisfy (3.8) for sufficiently large x
and a; < af < aj < ay,
F(x)>e™*" and G(x) <e ™
so that, for u > uy, no € (0, 1),
F~Y(p) 2 (—log(1 - p))"* and G~'(n) < (~log(1 - )"

Therefore, F >, G and F >, G.
(ii) In the case a; = a, = @ with &, and Ak, continuous, we have

(F~'(w))" = —log(1 — ) + log hy(F~Y(u)),
and since h; satisfies (3.8), for every ¢ > 0,
(F Y ()" = —log(1 — u) + O((F~}(n))") asp— 1.

Therefore

FY(u) ~ (—log(1—p))"/* asp - 1.
Since a; = a,,

GY(u) ~ (—log(1 —p))"/* asp -1,
and therefore F ~, G. That F ~, G may not hold follows from Example 3. O
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