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A SEQUENTIAL PROCEDURE WITH ASYMPTOTICALLY
NEGATIVE REGRET FOR ESTIMATING A
NORMAL MEAN

By YosHikazu TAKADA

Kumamoto University

A sequential procedure for estimating the mean of a normal distribu-
tion is proposed. The procedure is shown to have a negative regret at the
origin and the same regret as the usual procedure at the other point
asymptotically.

1. Introduction. Let X, X,, ... be independent and identically dis-
tributed normal random variables with unknown mean u and unknown
variance o2 > 0. Given a sample of size n, estimate u by the sample mean X,.
Suppose that if one stops with n observations, then the loss incurred is

L,=AX, -p)+n, A>o0.

If the sample size n is fixed beforehand, then
R,=E(L,) =Ac?’/n+n
is minimized by taking n = n* = (Ao 2)!/2, and the corresponding minimum
fixed sample size risk is
R n* = 2n*
Since o2 is unknown, Robbins (1959) proposed the following type of sequential
procedure: Let
(1.1) T =inf{n > m; n > (AV,/n)"?},
where m is the initial sample size and V, = L7_(X; — X,)? and estimate u
by X;. Woodroofe (1977) showed that if m > 4, the regret of the procedure
R, —R,=1/2+0(1)

as A - o,

The purpose of this article is to show that there does exist a sequential
procedure for which the regret is negative at x =0 and 1/2 at u #0
asymptotically.

Instead of V, /n as an estimator of o2, consider an estimator ¢, of the form

¢, =n"1 min{Vn, Yy Xiz/cn},
i=1
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where ¢, > 1 is some constant [cf. Stein (1964)]. We propose the following
sequential procedure: Let

(1.2) N =inf{n > m;n > (As,)"?}
and estimate u by X. In the sedu:al we suppose that ¢, is nonincreasing and
c,=1+c/n +o(1l/n)

as n — «, where ¢ is some nonnegative constant. Then it is shown that the
procedure N has the above-stated property. The intuitive explanation of the
phenomenon is given in the last section.

For other distributions with negative regret, see Martinsek (1983, 1988).

2. Main result. In this section, an asymptotic expansion is obtained for
the regret of the procedure N. In the sequel, without loss of generality, take
o=1.

Writing the stopping time N given by (1.2) in the form

N =inf{n > m; Z, > A'/?)
with Z, = n¢, '/ one may show that Z, is of the form
Z,=W, +¢,
where
W,=n-27"Y(q, —n)
with ¢, = L7 (X; — n)? and
£, =271y, + (3/8)A, 7 n(g, - 1)’
with |\, — 1| < |¢, — 1| and
— 2 1~
- L6 )
ni=1
Since W,, n > 1, is a random walk, the nonlinear renewal theory can be used
to obtain the asymptotic expansion of E(N). It is easy to check the conditions

of Theorem 4.5 of Woodroofe (1982) except his condition (4.16), which follows
from the next lemma.

LEMMA 1. For 0 <e <1,
P(N <eAY?) =0(A™ ™ D/2) asA - .

Proor. Let
n 1/2
N = inf{n >m;n> (Az Xf/(ncn)) }
i=1
Then it follows from (1.1) and (1.2) that
P(N <eAY?) < P(T < £AY?) + P(N < gAY?).
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Note that P(N < £A'2?) < Py(N < £A/?), where P, denotes the probability
under u = 0. Then the lemma follows from Lemma 2.3 of Woodroofe (1977).
O

Theorem 4.5 of Woodroofe (1982) yields that if m > 3,

1 3
AV2 4 p — Efmax(z2,c)dc1>(z) -4 to), w=0,
(2.1) E(N) = 5
A1/2+p—z+0(1), w#0,

as A - », where p is the asymptotic mean of U, = No¢5*/2 — A2 and @
denotes the standard normal distribution function [see also Theorem A of Aras
(1988)]. .

The main result is given next.

THEOREM. Ifm > 13,

_ | [(z* = Dmax(z%,¢) dD(2) - 8/2 + (1),  n =0,
1/2 + o(1), w#0,

RN_R

n

as A - .
Proor. By Wald’s lemma,
Ry - R, = AE|(Xy - p)’| + E(N) — 2412
- E[s3{(a?/N)" - 1}] + E(S}) + E(N) - 242
(2.2) = B[S3{(aV*/N)" - 1)] + 2{E(N) - aV%)
- E[s3{(4*/N)" - on'}| + E[SE (o5 - 1)]

+ 2{E(N) — AV?),

where Sy = N (X, — w). In the next section, it is proved that

(2.3) E[S3{(A7/N)’ - ¢5}| = —20 + 0(1)

and

fz2 max(z2,¢) d®(z) + o(1), p=0,
3 +0(1), w#0,

as A — ». Then substituting (2.1), (2.3) and (2.4) into (2.2), the theorem
follows. O

(2.4) E[S3(ox*-1)] =
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Let
f(e) = [(2* - Dmax(2?, ¢) dD(2).

Then it is easy to show that f(e)— 0 as ¢ —» ». Hence from the theorem the
stopping rule N with sufficiently large ¢ has asymptotically a negative regret
at u = 0 and the same regret as T' at u # 0.

REMARK. Asymptotically negative regret for any fixed value u, of the
mean, not necessarily 0, can be achieved by simply replacing the sum of
squares in the stopping rule with the sum of squares about wu,.

3. Proof of (2.3) and (2.4). In order to prove (2.3) and (2.4), several
lemmas are necessary. Using Lemma 1 and the fact that N < T, the following
two lemmas easily follow from Lemmas 1 and 2 of Chow and Yu (1981).

LEmMMa 2. Ifm >t + 1,t> 0, {|]AY2/N|'; A > 1} is uniformly integrable.
LEmMMA 3. Fort > 0, {IN/AY?|"; A > 1} is uniformly integrable.
LEmMMa 4. Ifm >t + 1,t> 1, {lyyl; A = 1} is uniformly integrable.

Proor. Let A, ={V, <X’ ,X2/c,}. Then

_ 2 N
(3.1) 7N=N(XN_M) I, + (QN_ Y X2/cy Iz,

i=1

where I, denotes the indicator function of the set A. Since
N(X-N _ /_l’)2 — (AI/Z/N)(A_1/4SN)2,

by Hélder’s inequality, Lemma 5 of Chow and Yu (1981) and Lemmas 2 and 3,
{IN(X,y — w)?" A > 1} is uniformly integrable if m > ¢ + 1. Hence from (3.1)
it is enough to prove that {lgy — LN, X2 /cNItIZN; A > 1} is uniformly inte-
grable.

When u =0,

N t

an — 2 X7 /cn
i=1

=|{N(cy — 1) /en}an/N| < Bsuplg,/nl’

n=m

for some constant B > 0. Hence the uniform integrability follows.
When p # 0,

N

(:3.2) anN — iglxiz/cN = {N(CN - 1)/CN}QN/N

- 2/,LN()_(N - ,u)/cN + Nu?/cy-
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Since A, = {(c, — 1)V, — nX2 > 0},
P(4,) < E{exp(h(c, — 1)V,)}E{exp(~hnX2))

for h > 0, from which it can be shown that P(A,) = O(p") as n — = for some
constant 0 < p < 1. Hence '

E(N*Iz} < ¥ n*P(4,) <,
n=m
so that the uniform integrability follows from (3.2). O
LEMMA 5. Ifm >t + 1,t> 1, then {Uj; A > 1} is uniformly integrable.

Proor. Note that on {N > m},
(3.3) dy=(N-1)N"1py_,>2"%y > 2" (N -1)°/A,
from which it follows that
Uy <N$py'/? = (N - 1)¢57
< (Ngy) *(N?>? - (N - 1)*%)
< (Ney) *{(3/2)(N - 1)'* + 3/8)
< ((N - D)oy_y) *{(8/2)(N - 1)/ + 3/8)
<AYY(N -1)"*?{(3/2)(N - 1)"/* + 3/8}
= (3/2)AV?/(N — 1) + (3/8) A'?/(N - 1)*/*
[see Martinsek (1983), page 830]. Hence the lemma follows from Lemma 2. O

LEMMA 6. If m > 2,

fmax(zz,c) dd(z) +o(1), w=0,
1+ o0(1), w#0,

E(N) - E(N¢y) =

as A > x,

Proor. Since Ny = qn — vy, by Wald’s lemma
(3.4) E(N) - E(Néy) = E(yy)-

It is easy to see that v, converges in distribution to max(Z?, ¢) for p = 0 and
to Z2 for u # 0 as n — «, where Z denotes the standard normal random
variable and that {y,; n > m} is uniformly continuous in probability. Since
N/AY2? - 1 as. as A > », by Anscombe’s theorem y, converges in distribu-
tion to max(Z2, ¢) for u = 0 and to Z2 for u # 0 as A - ». Hence the lemma
follows from (3.4) and Lemma 4. O
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LEmMa 7. If m > 3,
A7V?E[(S} — Néy)(N — Ney)]

[(22 = D)max(z%,¢) d®(2) +o(1),  n =0,
2+ o(1), pw#0,

as A — o,

ProoF. Write
E[(S% - Nén)(N — Néy)]
(3.5) = E[(S% ~ an)(an = Néy)]| + E[(SR = an)(N = qn)]
+ E[(ay — Now)(N — ax)] + E[(an — Non)7].
It follows from (2.21) of Martinsek (1983) that
(3.6) E[(S% — aw)(N = qn)] = o(A?)
as A — ». By Wald’s lemma,
|E[(an — Nén)(N = aw)]| =|E[yn(N = qw)]|
< EV2(y%)EV*[(N - qy)?]
= B'2(y%) B2 (2* - 1’| EVA(N)
and
E[(‘IN - N¢N)2] = E(Yz%)

Then from Lemmas 3 and 4,

(3.7) E[(qy — Noy)(N — qy)] = o(AV?)
and -
(3.8) E[(qy - Néy)?| = 0(4?)

as A — «. Substituting (3.6), (3.7) and (3.8) into (3.5),
ATVE[(8% - Néy)(N — Now)]
(3.9) =A—1/2E[(SI%_QN)(QN_N¢N)] +0(1)
= AV2E[(S% — an)vw] +0(D)

as A - o, It is easy to see that n~'(S?2 — q,)y, converges in distribution to
(Z? - 1)max(Z?,¢) for u = 0 and to (Z% — 1)Z2 for u +# 0 as n — o, and that
{#"%(S2 - q,)y,; n=m} is uniformly continuous in probability. Then
Anscombe’s theorem implies that A~'/%(S% — q,)yy converges in distribu-
tion to (Z2 — 1)max(Z2,¢) for u = 0 and to (Z2 — 1)Z2 for u + 0 as A — .
Hence from (3.9) to prove the lemma, it is enough to show that {A~1/%(S? —
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qn)Yn; A = 1} is uniformly integrable, which follows from Lemma 5 of Chow
and Yu (1981), Lemmas 2, 3 and 4 and Hélder’s inequality. O

The proof of the following lemma is similar to that of (2.26) of Martinsek
(1983) and is therefore omitted. - ~

LemMma 8. Ifm > 13,
AT2E((S§ — Noy )(N - Ney)(AY? = Noy)(Noy) '] = o(1)

as A - w«,

ProoF OF (2.3). Since
(AV2/N)" = ¢5" = [(AV2/N) = 65'2][(AV2/N) + $17]
= —N"'U,[(AY2/N) + ¢5'/?],
it follows that
(310) E[S3{(4V2/N)’ - ¢5%}] = ~E[N-ISEU{(A2/N) + 65'/%)].

Note that A~'/2(N — A'/?) > 0 a.s. as A - . Then by the same argument
as the lemma of Martinsek (1983), it turns out that N~S% and U, are
asymptotically independent as A — ». Using (3.3), it follows from Lemma 5 of
Chow and Yu (1981), Lemmas 2, 3 and 5 and Hélder’s inequality that
{N"ISFUL(AY?/N) + ¢5*/?];, A = 1} is uniformly integrable. Hence the
proof follows from (3.10). O

PRrOOF OF (2.4). Write
E[S}(sn" - 1)
= E[(8% - Néx)(Néy) (N = Noy)| + E(N) — E(Ney)
= ATV2E[(SE - Now)(N — Noby)(AY2 — Ny )(Noy) ™|
+ATY?E[(S% — Néy)(N — Noy)| + E(N) — E(Néy).

Then the proof follows from Lemmas 6, 7 and 8. O

4. Intuitive explanation. The stopping rule N consists of stopping
when either (a) the usual rule T would stop or (b) the sum of squares of the
observations is sufficiently small. The latter criterion makes sense if the mean
is in fact 0, since then it provides an alternative (and better) estimate of the
variance.

Note that when the mean is nonzero and A is large, N will be essentially
the same as T, because criterion (b) above will rarely be fulfilled before
criterion (a) is. That is why the asymptotic answer is the same as for the usual
T. If the mean is 0, however, with nonnegligible probability criterion (b) will
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happen first. Criterion (b) means that the Euclidean distance between the
observations and the origin is relatively small. Hence the sample mean is
relatively close to 0 (the true mean). In effect, the stopping rule N introduces
some ‘‘automatic shrinkage’” when the mean is 0. The estimator is still the
sample mean, but it has (at least with certain probability) been made close to 0
by the action of the stopping rule.
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