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MINIMAX BAYES ESTIMATION IN NONPARAMETRIC
REGRESSION

By Nancy E. HECKMAN! AND MicHAEL WOODROOFE 2

University of British Columbia and University of Michigan

One observes n data points, (t;, Y;), with the mean of Y;, conditional
on the regression function f, equal to f(t;). The prior distribution of the
vector f = (f(t,),..., f(t,))* is unknown, but lies in a known class Q. An
estimator, f of f is found which minimizes the maximum E||f — £ II%. The
maximum is taken over all priors in Q and the minimum is taken over
linear estimators of f. Asymptotic properties of the estimator are studied in
the case that t; is one-dimensional and Q is the set of priors for which f is
smooth.

1. Introduction. Suppose that one observes n data points (t,,Y;) in
order to estimate f = (f(t,),..., f(t,))’, with f the regression function E(Ylf ).
In standard estimation procedures, one assumes a specific form of the function
f, typically depending upon a few (much less than n) parameters. A Bayesian
analysis involves the choice of a loss function and a prior distribution on the
parameters. However, the assumption of a particular form of f may be
arbitrary, and thus the specification of a particular prior will be suspect.

The approach to the estimation problem developed here is to treat the
components of the vector f as the unknown parameters and to choose an
estimator that performs well over a large class of priors on f. Specifically, one
assumes that

(1) Y= f(t) + e

with t; nonrandom and in %™, the ¢,’s uncorrelated, mean zero, variance o2
and the f(t;)’s and ¢;’s uncorrelated. The estimator f CY derived below is a
minimax hnea.r estlmate that is, f minimizes (over linear estimators) the
maximum of E[|f — f||%>. The expectation is taken with respect to both the
conditional distribution of Y given f and the prior distribution of f. The
maximum is taken over (), a class of priors that suitably reflects one’s beliefs
about f. Since the criterion is mean squared error, one may define Q by
placing restrictions on the mean and covariance of f.

For ) satisfying certain conditions, we find an explicit form for f and study
its frequentist and Bayesian asymptotic properties. Computation of f involves
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calculating eigenvalues and eigenvectors of a matrix, and is thus easily accom-
plished with existing computer programs.

Although the conditions that we place on () are general, they are motivated
by a particular case: t; = ¢, in &% and priors which force the function to be
smooth. Typically, the smoothness of a function is characterised by its 2th
derivative. For instance, in spline fitting, the smoothness of f is quantified by
the integral of the square of its kth derivative; see, for instance, Silverman
(1985). Here, the smoothness of f is characterised by divided differences. Let
A®)(f) be the n — & vector of kth divided differences of f, based upon the
f(¢;)’s. Assuming that A®)(f) has mean zero and small covariance matrix,
reflects a belief that the kth derivative of f is small. Thus, a reasonable
consists of all n-variate distributions under which the mean of A®(f) is zero
and the expected value of |A®(f)||? is bounded by p. The user chooses & and
p. These numbers have their analogues in the usual methods of smoothing
regression: k is analogous to the order of kernel or spline and 1/p is analogous
to the smoothing parameter (in spline smoothing) or the bandwidth (in kernel
smoothing); see Eubank (1988) for a discussion of these smoothing regression
techniques.

For a particular choice of (), the minimax Bayes estimate of f is the same as
the frequentist minimax estimate given by Speckman (1985) and Nussbaum
(1985). This fact is discussed in Section 4.

The assumptions and general form of the minimax estimator are given in
Section 2. In Section 3, these results are applied to )’s which are based on kth
divided differences. The Bayesian and frequentist asymptotic minimax mean
squared errors of these estimators are given, along with the asymptotic
normality of linear functions of f.

2. Minimax estimates for a general class of priors. Assume that (1)
holds. Let A be an L X n matrix of rank n — k, some %k, 0 < k < n. Define
Q = Q(A, p) to be the class of all priors on f such that the covariance of f is
defined, E(Af) =0 and E|Af|* < p. Thus, other than the finite second
moment assumption, the only restrictions placed upon the prior of f involve
the mean and covariance of Af.

Let the principal value decomposition of A be PDQ‘, where P is L X
(n—%k), @ is nX(n—k), D is diagonal with 0+ D? <DZ, < -+ <
D? ., ,and PP =1, , = Q'Q. The columns of @ span the row space of A
and are equal to the eigenvectors of A’A which correspond to the nonzero

eigenvalues D7, j=1,...,n — k.

THEOREM 1.

min max E|CY - f|?

C priorsin Q
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where
§;; =8 n(p) (a/anl_G )

x, is the maximum of 0 and x, and «a is chosen so that ¥ D2s;; = p. Let P,
denote the n X n projection matrix onto the k-dimensional null space of A.
Then the minimizing C is given by

¢ =P, +QC*q",
where C* is diagonal with
éi"; = éi"f(P) = (1 _|Dii|0'2/a)+

Let £* = Q'f and Y* = Q'Y = £* + ¢*. Then C*Y* is the Bayes estimate
of £* for the problem in which £* and €* are independent normal random
vectors, E(f*) = 0 and the covariance of £* is 3* = diag(s,,,..., Sp_kin—i)

Thus, the minimax Bayes estimate of £ may be thought of as the Bayes
estimate with the above prior on £* and a diffuse prior on P.f.

Proor. Let P, = QQ’, the projection matrix onto the row space of A, so
that P, + P, = I,. We first show that the minimizing C must satisfy CP, =
and P,CP, = 0.

EICY - £I? 2|(C - L,YE®)|* =[(C - L,)P,E(H) |

which is unbounded unless (C — I,,)P, = 0. So CP, = P, for the minimizing
C. For such C, C = P, + P,CP, + P,CP, and therefore

EICY - f|? = E|PY — P,f + P,CP,Y + P,CP,Y — P,f|’
1 2 2 2 2
= o2k + E| P,CP,Y|? + E| P,CP,Y — P,f|?,

since P|Y and P,Y are uncorrelated, given f. It follows that the minimizing C
must satlsfy P CP2 0, for otherwise C may be replaced by P,C.
Let C* = Q'CQ, f* = Q'f and Y* = Q'Y. Then

min max E|CY-fl?=0% + min max E|C*Y* — f*llz,

C priorsin Q C* priors in Q*
where Q* consists of all priors on f* with E(f*) = 0 and trace D2 cov(f*) < p.
Given f, Y* has mean f* and covariance matrix o2I,_, and there is no loss of
generality in supposing that Y* and f* are jointly normal since only first and
second moments enter. Since E||C*Y* — £*||? is linear in 3*, the covariance
of f* and quadratic in C*, the min and max may be reversed [Karlin (1959),
page 281]. Then, for a ﬁxed prior, the f* that minimizes E IIf* £*)2 is
simply the Bayes estimate 3*(2* + o%I,_,)~'Y*. Thus

. —1
min max E|C*Y* — £*||2 = 02max trace S*F(Z* + o-zln_k)
C* priors in Q* 3*

*
=0 n%exh(z ).
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Here the maximum is taken over all symmetric nonnegative definite 3* for
which trace D23* < p.

We will show that the 3* that maximizes & is $*, as defined in Theorem 1.
Since h is a concave function of %*, symmetric nonnegative definite, it suffices
to show that if R is symmetric, with

(2a) trace D*(3* + 8R) <p
and
(2b) - $*+8R>0

for positive § sufficiently small, then

;i_%s-l(h(i* +8R) — h(3*)) < 0.

Fix R satisfying (2). Then
lim & Y(h(3* + 8R) — h(3*
lim 5 (h(2 ) — h(3*))

=g? trace(ﬁ* + azI,,_k)_zR
=o? )Y R,D}/a®+c®> ) R,/c*

ira>0? Dyl i:a<o? Dl
=o?trace D’R/a®*+ ), R;(a®-0*D})/(a%s?)
ira<o? Dl
<0,

since (2a) implies that trace D?R < 0 and (2b) implies that R,, > 0 for all i
with @ < 02D,

The theorem follows immediately, since C* = $*(3* + ¢2I,_,)" ' and C =
P, + P,CP, = P, + QC*Q*. O

The minimax estimate of f* is the sum of the projection of Y onto the null
space of A and a damped projection of Y onto the row space of A. Since

Cr>Ch> - >C~ k.n—k» the damping occurs in the direction of eigenvec-
tors corresponding to large eigenvalues of A’A. Consider the case in which
t, € % and Af is the n — 2 vector of second divided differences of f. Let
9,95 -.-,9,_5 (the columns of @) denote the eigenvectors of A’A corre-
sponding to eigenvalues D?,...,D?_, ,_,. Since q,_, maximizes (over unit
length vectors) || Aqll, the norm of second divided differences of q, q,_, can be
considered the highest frequency or roughest direction in &#”". Similarly, q,,_
may be thought of as the second roughest direction in R*. Thus the minimax
estimate of f is based on a Y that has had high frequencies lessened or
removed. Under the prior for which £* is Bayes, the linear part of f is diffuse
and the q'f’s, j = 1,...,n — k, are independent with means 0 and variances
with s, > 8502 ** 25,4,

For general A, two extreme cases: no damping of high frequency directions
(p approaches infinity) and complete damping (p — 0) are easily studied. As p

Sjj
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approaches 0, LD%s;;=p =0, so s;; >0 and C =s,,/(s; + a2 — 0.
Thus, f approaches PY, the least squares predictor of f in the linear model
Qf=0. As p approaches infinity, by Lemma 1, J=n—% and a =
(p + azZi"kDfi)/Ef‘leiil — o, Thus C’i"; - 1andf approaches Y.

LEmMMA 1. Let
J J
g(J) = ZDi _IDjjIZ | Dy
1 1

Then g(1) = 0 and g(j) = g(j + 1) with strict inequality if D, < D?,, ;..
Then J = J,(p) is the largest i < n — k such that C%(p) > 0 if and only if J is
the largest i < n — k such that p + o2g(i) > 0.

Proor. To prove the monotonicity of g, write

J
gJj)-gli+1)= (le+1,j+1| _lejI)Z |D;;| =0
1

with strict inequality if |D;,, ;.| > ID;,l. .
Let J be equal to the largest i < n — & such that C > 0 and consider the
case J < n — k. The case that J = n — k is similar. Then

o?| Dyl <a< 0'2|DJ+1,J+1|,

where a satisfies

J
L Di(a/|D;| = a?) = p.
1

Solving for a and substituting into the inequality yields
p+aig(d+1)<0<p+oig(J).

A reversal of the argument completes the proof. O

Theorem 2 gives sufficient conditions for the asymptotic normality of linear
combinations of the f(t ;)’s, conditional on f. Studying linear combinations of
parameter estimates is often used when the number of parameters to be
estimated approaches infinity [see, e.g., Portnoy (1984)].

THEOREM 2. Suppose that (1) holds and that the ¢;’s are independent and
identically distributed. Let A = A(p) be an (n — k) X (n — k) diagonal matrix
with A;; = 1if s;; > 0 and zero otherwise and let e; be an n-vector of zeroes,
with a 1 in the ith position. Let a? by the conditional variance of b‘f given f.

If
lim max [|Pe;ll + 1AQ%e;ll = 0,
n

n—oo l<i<
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then

b (f - E(f| f))

Ty

lim sup sup|P

n2®hioy>0 2z

<z

fi—®(2)|=0,

where ® is the standard normal cumulative distribution function.

REMARK. Note that in the case that Q'f = 0, EfIf) = £. If Qb = 0, then
b’Eflf) = b'f.
Proor. Let b be an n-vector. Then
31
&
b(f - E(F ) = b*(P, + QC*@)| | = cte
z,

and

o2/a? = lel = Pb* +QC*Qb|" = | P,b|? +|¢*@b]".
Now
;| =|efe| <|e:P{PDb| +|e!QC*QD]
=|(Pe,)'(P)| +|(4Q',) (C*@'b)]
<||Pie; ]| |1 Pb| +[AQ, [ [C*@b]

< llel{ll Pre; || +] AQ%e]]}.

The theorem now follows from the Lindeberg—Feller theorem [cf. Hajek and
Sidak (1965), pages 153-154]. O

3. Minimax estimates when f is smooth. Throughout this section,
assume that t; = ¢, = i/n. To apply the results of Section 2 to priors with the
kth derivative of f small, A is the (n — k) X n matrix with Af = A®Xf), the
vector of kth divided differences based upon f. For instance

f(ts) — (%)

ty —
AD = A(l)(f) = :
f(tn) - f(tn—l)
t, —t

n n-—1
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and
A(?}) _ A(zl)
ta -4
AD(f) = .
AD — AD,

tn - tn—2
THEOREM 3. Suppose that p = p, satisfies
0 < limp,/n =p* <1.
n—o
Then

J=dJ, = max{i <n-—k: C’i”; > 0} ~ (ﬁ*n)l/(2k+1)’

min max E(Ilf‘ - f||)2 ~ 0.2(nﬁ*)1/(2k+1)’

k+1

where

L, (B+1)I(k—-1)1(2k +1)
=p 202 .

Furthermore, if F, = {f: |ACf(¢)), ..., f&)? <p,), then

ﬁ*

k
£ _ ¢l - 2 #\1/Qk+1)
}ré;;):E("f £] lf) o (nB") .

Proor. Fix k and let y, = 2(1 — cos(im/(n — k + 1))}. Since D2 is an
eigenvalue of A A’, by Lemma 6 of Utreras (1983), for 2k + 1 <i < n — 2k,

_9 _2
(k) "n?*y} g <DE < (k) ""n*yk ..

Using these bounds and the fact that D% < D2, < -- -, one can show that for
all K, there exists K;, not depending ‘on i such that
-2 2k 2k
thl—(k') (m) (l7T) SK1i2k_1

and

<K,*!

1Dl = (k) ) (im)*

for all i < K n?/3.
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Suppose that j = j, satisfies j2**'/n ~ B, 0 < B < 1. Then

j 2k -2
N i L)
T (26 +1) °
ﬂ(k+1)/(2k+1),n_k

—(k+1)/(2k+1)2 IDuI -
(3) 7 (& + 1)!

_ -1
n k/(2k+1)leJ-|—>ﬁk/(2k_+1)’77k(k!) ,

w2tk

(ED*(2k + 1)(k+ 1)’

n~'g(j) > -8B

where g is as defined in Lemma 1. Furthermore, convergence is uniform in g
in compact subsets of (0, 1).
To study the asymptotics of /,, by Lemma 1, J, satisfies o2g(J, + 1) +
<0< 02g(J,) + p,. The first statement of Theorem 3 follows from (3) and
the monotonicity of g.
To calculate the asymptotic minimax Bayesian mean squared error, write

Z Du( - — 62)
| D;; |
and thus

J
_ pn+0?L{D},

k2
s\ k/@R+DT O
n - JlD ( ﬂ ) .

k!

44
ul

The asymptotic expression is then calculated by applying (3) and the asymp-
totic value of J, to

A o2 J
E|CY - £|° = o2 {k +d - —Y |D,l|}.
a

To calculate the maximum conditional mean squared error, fix f. Then
E(”f - f||2| f) =o% +o? trace((f’*)2 + "(C’* - In_k)Q‘fuz.
By the asymptotic value of J, and by (3),

2k2
(k+1)(2k + 1)

2
trace(é'*) ~ (nﬁ*)l/(2k+1)
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Also, writing p for p,,,

C* -1 | 4 o — 1.
max (6~ 1)@ = max (€ -1,,)]

max ”(é’* - In_k)D‘lv”2

IvI2<p
2
o (G-
1<isn—k D2

=p max{o-“a_Z, maxDijz}
i>d

= pmax{o*a~?, D32 5.}
k
2+ 1)(k+1)°

The last statement of the theorem follows. O

ComMENTS. Theorem 3’s assumption that p = O(n) is a reasonable one
since, if one believes that the variance of the ith component of £* is bounded,
then one would assume that the trace of cov(f*) = O(n).

Note that the Bayesian and conditional rates of convergence of the mean
squared error are equal. Furthermore, a rate of n'/®**V is that which a
frequentist would expect for n[(f(t) — f(¢))?dt if the function f had k
continuous derivatives; see Stone (1982).

If & = 1, then the minimax estimate of f can be easily computed. Let

v; = (sin(jm/n),sin(2jm/n),...,sin((n — 1) jm/n))’,

D? = 2n%(1 — cos(jm/n)).

(4)

Then v; is an eigenvector of A A* with corresponding eigenvalue Dj-zj. There-
fore, the principal value decomposition of A is VDQ’, where @ = A'VD~! and
the jth column of V is v; /IIvaI. The projection matrix P, is (P,); i =1/n.

THEOREM 4. Suppose that k = 1. Then

P{ b(f - E(f] f)) 3

lim sup sup __z}f} - P(2)|=0.
%

noXbioy,>0 2z

Proor. By Theorem 2, we must show that

max || Pe;| - 0
1<i<n
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and

max |AQe;| — 0

1<i
as n approaches infinity. The ﬁrst statement is immediate, since [P;];; = n~".
For J as defined in Theorem 3,

" AQ'e; "2 =

Let v, énd Djzj be as defined in (4). Then

n(v)l ifi—1
e
n((v)),_ —(vj).)
Q,; = L) =, ifl1<i<n,
! | Dy 11wl
L\APEY ifi=n
D111
It is easily shown that
"Vj"2

-0

lim max
nowl<j<d

- flsinz(ij) dx
n 0

and [} sin®(jmx)dx = 1/2. Since 2(1 — cos u)/u® approaches 1 as u ap-
proaches 0,

D2
lim ——— —-1|=0.
w1250 | 2 )
Thus
1 2
n—ow lstJ D2"V " 772j2n B

Since there exists K, not depending on i, j or n, such that (vl < Kj /n

(v, — (vl <Kj/n, 1 <i<n, and I(v)n 1|<K1/n 2 0(1/n) uni-
formly in i s n and j < J. Therefore,
max Z =0(J/n) - 0. i

lszsn

4. Comments. Our approach is inspired by several techniques in non-
parametric (or smoothing) regression.

In standard Bayesian methods, a prior on the entire function f is chosen
and thus the resulting estimate is best for a particular prior, rather than for a
whole class of priors. Wahba (1978) shows that the usual spline function
estimates are Bayes estimates. In a more classical Bayesian vein, O’Hagan
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(1978) develops a general framework for Bayesian regression under both
proper and vague priors. Weerahandi and Zidek (1988) use Taylor series
expansions of f to justify a particular form of f’s prior, which depends upon a
few hyperparameters. Since these hyperparameters can be estimated from the
data, this method may produce estimates which perform well over a class of
priors.

Frequentist approaches to nonparametic regression can be divided into two
classes. In the first, one finds the f that fits the data well, but is not too
rough. For instance, the estimate f that minimizes ||f — Y|| subject to
J(F®@)?dt < p is a spline; see, for example, Eubank (1988). In the second
approach, a minimax method, one seeks f close to all f in a class of smooth
functions. For evaluation of f at a fixed point ¢, one might seek f(¢) linear, to
minimize the maximum (over all f’s in a particular class) E(f(¢) — f()). In
the approximately linear model [see Legostaeva and Shiryayev (1971), or Sacks
and Ylvisaker (1978)] one considers all f with, roughly, |[f®*X(¢)| < p, a known
constant. Li (1982) considers all f with [(f®*X(x))2dx < p. To estimate the
entire function, Speckman (1985) and Nussbaum (1985) find the linear estima-
tor which minimizes the maximum of E||f — £||>. The maximum is taken over
all f with [(f®(@)*dt < p.

Our Bayesian minimax approach places seemingly softer smoothness con-
straints on f. However, the Speckman and Nussbaum estimate is a particular
case of our estimate. Specifically, let ¢,,..., ¢, be the basis for the space of
natural splines of degree 2k — 1 with knots at ¢, ..., ¢,, proposed by Demmler
and Reinsch (1975). Then [¢F¢(® = A, I {i =j}, where 0 = A; = -+ =), <
Agyi1 < *°° <A,. Let A be an (n — k) X (n — k) diagonal matrix with iith
element equal to Apy; and let @ be n X (n — k) with @;; = ¢, ;(¢,). If, in
Theorem 1, we let A = Al/2Q)’, the resulting minimax Bayes estimator of f is
the same as the Speckman and Nussbaum estimate.

The Bayesian minimax approach has also been employed in other contexts.
Leamer (1982), Polasek (1984) and DasGupta and Studden (1989) estimate a
normal mean 0, but consider classes of priors on 0 different from those
considered here. The Bayesian minimax approach is used in ranking and
selection, where it is often called the I' minimax approach; see, for example,
Gupta and Hwang (1977).
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