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A SIMPLE ROOT n BANDWIDTH SELECTOR!
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The asymptotically best bandwidth selectors for a kernel density esti-
mator currently require the use of either unappealing higher order kernel
pilot estimators or related Fourier transform methods. The point of this
paper is to present a methodology which allows the fastest possible rate of
convergence with the use of only nonnegative kernel estimators at all
stages of the selection process. The essential idea is derived through careful
study of factorizations of the pilot bandwidth in terms of the original
bandwidth.

1. Introduction. The problem of data-based smoothing parameter selec-
tion is described and motivated in Silverman (1986), Eubank (1988), Miiller
(1988) and Hirdle (1990); see Marron (1988) for a survey of such methods
proposed up until 1987. Recently there has been quite a variety of new
methods proposed.

The point of this note is to show how a simple device allows substantial
improvement in the asymptotically best bandwidth selectors, in the sense of
eliminating their dependence on high order kernel pilot estimators (or related
Fourier transform methods). For simplicity of presentation, the explicit discus-
sion is given in terms of kernel density estimation. However, the basic ideas,
the methodology and the lessons clearly apply to a variety of other settings,
including nonparametric regression, intensity and hazard estimation, and
other estimators, including splines, histograms and orthogonal series.

The kernel density estimator uses a sample X, ..., X, from a density f, to
estimate the curve f(x) by

(L) fu(x) =07t T K = X)),

where K,(x) = K(x/h)/h, K is called the kernel function and A is called the
bandwidth G.e., smoothing parameter). Good discussion of many important
practical aspects of f,(x) may be found in Silverman (1986), including the fact
that bandwidth selection is crucial to implementation.
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A useful tool for comparison of various methods of bandwidth selection [see,
e.g., Park and Marron (1990)] is asymptotic rate of convergence to the opti-
mum. In this paper we take optimum to be the minimizer %, of the mean
integrated squared error (MISE)

MISE(h) = E [ (74(x) - £(2))

for the reasons discussed in Jones (1991), although other viewpoints are
possible as discussed in that paper. Hall and Marron (1991b) have shown that
the best possible relative rate is n /%, where n is the sample size.

While many bandwidth selectors have been proposed, the great majority fall
short of this very fast (according to a nonparametric frame of reference) rate of
convergence. For example, least squares cross-validation has a very slow
n~1/10 rate of convergence [Hall and Marron (1987a), Scott and Terrell
(1987)], and while there are many ways to improve this, a rate of convergence
of n~1/2 has still proven to be rather elusive.

One means of achieving this rate was presented by Hall, Sheather, Jones
and Marron (1991), but that approach lacks appeal for two reasons. First, it
requires the use of higher order kernels (including order 6 at one point) in the
estimation of preliminary quantities. Second it uses an asymptotic expansion
of MISE which needs to be carried to two terms in the bias. A selector with
strong ties and similar asymptotic behavior, may be found in Gasser, Kneip
and Kohler (1991) in the related setting of nonparametric regression. Chiu
(1991) proposes different selectors, which have a similar flavor. Instead of
explicit use of higher order kernels, he works with related Fourier transform
methods.

Another means of obtaining n~1/2 convergence to the optimum is based on
the idea of smoothed cross-validation, as proposed by Hall, Marron and Park
(1989). The idea is to use the bandwidth A which minimizes the following
estimate of MISE (there is a slight technical difference between this and the
version defined there, as discussed in Section 2 below)

MISE(h) = (rh) 'R(K) + ISB(h),

where we use the functional notation R(K) = (K2 [which will be applied to
other functions, e.g., R(f) = [f2, as well]. Here

18B(h) = [(Dux £,).

where * denotes convolution, D, = K, — K, (K, meaning the Dirac delta
function) and f denotes a kernel density estimator with bandwidth g and
kernel L, allowed to be different from % and K. One motivation for MiSE is
the fact that the first term is a good approximation of the integrated variance
of fh, while ISB(%) provides an estimate of the true integrated squared bias,

ISB(k) = [(Dy+ f)™.
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Other motivations may be found in Hall, Marron and Park (1989). Choice of g
and L are treated in that paper. One drawback of the approach used there is
that again higher order kernels (as discussed above, L needs to be of order 6)
are required to get an n~'/2 rate of convergence.

The use of higher order kernels (and equivalently, the Fourier transform
methods of Chiu) is unappealing because, while they are excellent in the limit,
quite large sample sizes seem to be required all too often before their beneficial
effects begin to appear and become dominant. Of course quite large is a
difficult thing to quantify, but in Marron and Wand (1992) an example is given
where higher order kernels are still not dominant even when the sample size is
well into the millions. Another unattractive aspect of the use of higher order
kernels in pilot estimates is that, if such improved versions of kernel estimates
are used in estimating MISE, then it does not seem natural to use only the
basic kernel estimate for estimating f itself. This paradox is not avoided by
using a higher order kernel to estimate f, because this requires even higher
orders in the pilot.

The point of this paper is that the fast rate of n~ convergence of a
selected bandwidth to the optimum is not intrinsically connected to higher
order kernels and the related Fourier transform ideas. It can also be achieved
by another approach. This is most simply illustrated using the MISE method-
ology, but essentially the same results are easily established for the methodol-
ogy of Hall, Sheather, Jones and Marron (1991). An interesting sidelight,
whose details will not be given here, is that the same set of ideas do not seem
to apply in the same way to solve the equation methods, such as that discussed
in Park and Marron (1990).

The main idea consists of allowing g to depend on A, which was not
considered (except in one special case) by Hall, Marron and Park (1989). The
dependence considered here is the factorization

g=CnPh™

1/2

for various constants C, p and m, detailed choices of which will be considered
in the next section. This form is convenient, because the asymptotically
optimal choices of both g and h can be written as constants multiplied by
powers of n. Also it contains, as special cases, important ideas considered by
previous authors. The case m =0, p = —1/9 was the main one considered
by Hall, Marron and Park (1989). The case m =1, p = 1/10 was proposed
(not for MISE, but a related methodology) by Gasser, Kneip and Kohler (1991).
This case is important because here C is scale invariant, so auxiliary scale
estimation need not be done. Another case falling into this framework is
m=1, p=0 as developed by Taylor (1989), although it is seen in Hall,
Marron and Park (1989) that this choice is very far from asymptotically
optimal, with a slow n~1/1° rate of convergence.

In the next section, we present a theorem which gives the surprising result
that when m = —2, there is an important type of cancellation which is the key
to n~1/2 convergence, even in the case L = K, where K is nonnegative. We
have not yet been able to understand at an intuitive level why m = —2 (i.e., g
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is proportional to the inverse square of %) should give such special perfor-
mance.

In Section 3 some simulation results are presented. Included is description
of those situations where the asymptotic superiority of MISE yields big
improvements over least squares cross-validation for samples of size n = 100
and 1000 and of those where it does not. Also discussed are some possible
improvements. Proofs of the theorems in Section 2 may be found in Section 4.

2. Asymptotic theory. The estimation of ISB(k) by ISB(4) is closely
related to the problem of kernel estimation of integrated squared density
derivatives. In particular it involves summation of a matrix of terms where the
diagonal entries are constant. In that context, Hall and Marron (1987b)
suggested deleting those terms which do not use the data, but Jones and
Sheather (1991) have shown that there can be a substantial advantage to
leaving these terms in. For the present analysis, it is easy to handle both types
if we introduce an auxiliary variable A, which takes on the value 0 when the
diagonals are omitted, as in Hall, Marron and Park (1989), and 1 when they

are included. Since
n n

f(Dh « fg)? =n"2Y ¥ (Dy*Dy+L*L,)(X, - X,),

i=1j=1

define
n n
ISB(h) =n"2 Y Y (Dy* D= Lg* L) (X; — X;)1a(2, ),
i=1j=1
where 1,(i, j) = 1 for i #j and 1,(i,i) = A for A = 0 or 1.
In addition to the functional notation R introduced in Section 1, it is
convenient to introduce the notation, for j = 1,2, ...,

m;(K) = [+/K(x) dx.
Other convenient notation, used for both K and L, is
K(x) = -K(x) - xK'(x).
Assumptions used here are:
(A.1) K and L are symmetric probability densities, for which
m;(K) <, m;(L) <,
forj=1,...,8.
(A.2) K and L have eight bounded continuous derivatives and
IJ}Ii?oleKM(x)| =0, Iiliin)0|ij‘f)(x)| =0 forj=1,...,5,

(A.3) sup| fU9(x)| <w forj=1,...,6,

x€R

(A.4) sup |x2f"(x)]| < o.

x€R
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Assumptions (A.1)-(A.4) are far from the weakest possible. They are chosen
for convenience of proof and simplicity of presentation. To weaken them is
straightforward, but not done here because it would add much to the length of
the proof, but little to the main points being made.

Furthermore we assume that g is of the form

(A.5) g=8(h,n) =CnPh™

for constants C, p and m. It will be seen that effective choice of p and m,
induces a linear constraint between them and so one of them is left as a free
parameter. Hence we will think of using the results of the next theorem to
indicate how C and p should be chosen, for each given value of m. Different
choices of m will be considered after that.

Let A denote the minimizer of MISE(%). Asymptotic properties of A are
given by:

THEOREM 1. Under assumptions (A.1)-(A.5),
(h = ho)/ho = (n"*°h%g°C,, + n7'C,,) "2,
+(—n"%°h}g3C,, + n*°hgiC,, + n"?"h3 g5 °AC,,),
where g, = CnPh{, Z, is asymptotically N(0, 1) and
Co=(1+m/2)R(f") Y°R(f®)R(K) > my(K)*°my(L)/5,
Cuz = (1 + m)R(f") " °R(FP)R(K) "> my(K)*?
x{m4(L) + 3my(L)%} /60,
Cus = R(f") " /°R(K)™*my(K)** (L L)*(0) + m(L+L£)“(0) /2] /5,
Co1 = 2R(F)R(f") " R(K) ™ *my(K)™*

xR{(L*L)® + m(L+ IZ)“”/2}/25,
C,,= 4{[(f<4>)2 f/R(f")? - 1}/25.

Now it will be shown that Theorem 1 can be used to derive good choices of
C, p and m in g, = Cn?h{. Note that the variance and bias given there can
be combined to give an asymptotic (relative) mean square error (for the
selected bandwidth),

AMSE = n~*%h8g,°C,, + n7C,,
2
+(—n*°h3g3C,, + n*"h3gsC,; + n"*/Phi gy °AC,;) .

The rest of the analysis depends on the case under consideration, because
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m = —2 makes the term C,, = 0. Further useful notation is C, =
{R(K)/(my(K)*R(f")}'/5. Note that h, ~ Con~1/5,

Case 1. m # —2, A =0. It is simple to check that, given m # —2, the
asymptotically best choices are

1/18
p=m/5-2/13, C={9C, /(4C3)}" " /Cq.
The resulting rate of convergence is
(ﬁ - ho)/ho ~ n_4/13‘

In the special case m = 0, this gives the same answer as in Section 4 of Hall,
Marron and Park (1989). This rate is the same as that obtained by Park and
Marron (1990).

CasE 2. m # —2, A =1. Here, following the main idea of Jones and
Sheather (1991) the asymptotically best choices come from trading off the first
and third terms in the bias part,

p=m/5-1/1, C=(C,/C,)""/Cs.
The resulting rate of convergence is

This rate is the same as that obtained by the method of Sheather and Jones
(1991).

CasE 3. m = —2, A = 0. The asymptotically best choices are
1/17

p=-44/85, C={9C,/(8C%)} " C}.
The resulting rate of convergence is

This is by far the best rate of convergence yet obtained for a bandwidth
selector which does not use higher order kernels at any stage.

Case 4. m = —2, A = 1. Again using the Jones—Sheather idea, this time
trading off the second and third terms in the bias part,

p=-23/45, C=(-C,3/C,;)"°Cs.

The minus sign is not a problem, because for m = -2, C,, < 0. The resulting
rate of convergence is

(h = ho)/ho~n 12

As noted above, this very fast rate of convergence has been shown to be the
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best possible, even when the underlying density is known to be very smooth, in
Hall and Marron (1991b).

3. Simulations. A hurdle to actual use of the methodology discussed
above is that optimal performance requires knowledge of the constants C,,,
C,2 C,; and C,,. These in turn involve the unknown density in the form of
R(fY )) for varlous J. Of course if only asymptotic rate of convergence is of
interest, then for m # —2 any value may be substituted for these, but
obviously for any fixed n, it is crucial to pay careful attention to the values of
these constants. The most simple approach to this problem is to replace f by a
reference distribution. An often used reference distribution is N(0, 2), where
62 is some scale estimate.

This was implemented and tested on a variety of densities for » = 100 and
1000, with 500 replications in each case, using the sample variance for the
scale estimate, for A = 0 with m = 0,1, —2. For computational speed, the
binned implementation ideas discussed in Hirdle and Scott (1989) were used.

Existence of local minima in the least squares cross-validation function has
been studied by Hall and Marron (1991a). This was again seen here, but local
minima for MISE(%) never appeared, except for the case A = 0, m = —2, this
happened sometimes for n = 100.

Only the main conclusions of this study are described here. When f was the
gaussian density (or not too far away in terms of shape), all the MISE methods
were much better in all respects than least squares cross-validation. The faster
rate of convergence for the case m = —2 is easily seen when n goes from 100
to 1000.

However, for densities which were somewhat further from the gaussian in
terms of shape, the performance was not so good. For example, for the
asymmetric bimodal normal mixture density, 0.75N(0,1) + 0.25N(3/2,1/9)
with n = 100, Figure 1 shows MISE(%), overlaid with kernel density estimates
(using a normal reference distribution bandwidth, because of the limiting
distributions) of the distributions of the A’s. Note that for LSCV, the distribu-
tion is very spread, which is an artifact of the slow n /1 rate of convergence.
The other distributions correspond to various versions of MIiSE. In all cases,
A = 1 was used, because it gave slightly superior performance over A = 0. The
variable rs indicates the reference distribution step. The bandwidth selectors
with rs = 1 make direct use of the normal reference distribution, as discussed
above. These A’s have much tighter distributions than LSCV, however, there
is substantial bias toward larger values (although, as predicted by the theory,
this is usually less severe, and the distribution is tighter for m = —2). This
bias is large enough in the present case to give the A’s worse average (over
simulations) MISE(%) performance.

A more promising method for handling this bias is motivated by the fact
that the normal reference distribution, used in the choice of C,;, C,,, C,3 and

i
C,,, was too far from being accurate. To investigate this, we trled substituting

ag

kernel estimates of the unknowns, with their bandwidths chosen by the
method of Jones and Sheather (1991), where estimates are plugged into the
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Fic. 1. MISE(h) together with kernel estimates of densities of selected bandwidths, for (a)
n =100, (b) n = 1000, for an asymmetric bimodal mixture density. In all cases A = 1. The
symbol rs gives reference step, that is, step number where N(0, %) reference distribution is used.
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asymptotic representation of the optimal bandwidth. This gives the curves
corresponding to rs = 2 (i.e., reference distributions are used at the second
step). Observe that the bias is cut down somewhat (in the sense that the mass
is moved closer to h, for rs = 2). However, in both cases there is a slight
increase in the variability, which is due to the extra noise added by the
additional estimation step.

In comparing Figure la with Figure 1b, note that the faster rates of
convergence of the MISE methods is reflected by greater improvement, espe-
cially in the variabilities of the selectors. On the other hand, the slow rate of
LSCV means it improves more slowly with increasing n.

We also tried some densities which were extremely far from the normal in
shape. Here all of the MISE seemed unacceptable, with the above bias problem
being so bad that the selected bandwidth was often more than three times the
size of h,. LSCV however, was as expected very variable, but gave better
average performance because of its lack of bias.

4. Proofs. Here and below, for any function I, Il! denotes the ith
derivative of [ with respect to h. The randomness of h is driven by the
variability of ISB(2)!], which is quantified in the following lemmas.

LeEmMA 4.1. Under the assumptions (A.1)-(A.5),
E(ISB(h)™) = ISB(h )™M - h%g?C,,C), + h3g*C,,Cp + n~h3g~°AC,;Cp,
+ O0(n"'h® + n"'h'g ™% + hPg® + K°g?),
where

Cp=5R(f")°R(K)* my(K)"".

The proof of Lemma 4.1 comes after it is shown how the lemmas imply
Theorem 1.

LEMMA 4.2. Under the assumptions (A.1)-(A.5),

var(ISB(h)™M) = n=2r8g=9C,,C3 + n~1/5C,,C3 + o(n"2h%g~°).
The proof of Lemma 4.2 follows that of Lemma 4.1.
LeEmMA 4.3. Under the assumptions (A.1)-(A.5),

{18B(h)™ ~ E(18B(h)™) /var(18B(h)™)}) " >, N(0,1).

The proof of Lemma 4.3 is omitted because it follows from Lemmas 4.1 and
4.2 by a standard martingale argument, see, for example, Hall and Marron
(1987a).



1928 M. C. JONES, J. S. MARRON AND B. U. PARK

These lemmas give Theorem 1 also by standard arguments as in Hall and
Marron (1987a), for example. Hence only a rough sketch is given here. Since

0 = MISE®(h) + {(MISE - MISE)"(4))

— MISE®I(h*)(h — ho) + {(MISE — MISE) "(4)},
where h* is between A and h,, it follows that
. (MISE — MISE)"(4)
(h=ho) = MISE®I( 2*)

Theorem 1 follows by suitable preliminary results showing £/ ho — 1 and the
representations

ho = R(K)°ma(K)°R(f")°n"1/5 + O(n~2%),
MISE®( ko) = n~255R(f")*°R(K)*°my(K)*® + O(n=%%),

together with the fact that the dominant part of MISE — MISE is ISB(h) —
ISB(h).

Before proving the lemmas, some convenient representations for ISB(A)!!
and ISB(A) will be established. Using the notation D = K — K, from Sec-
tion 1, note that

ISB(h)™M = 2]{]Dh(x - 5) f(s) ds}{jz)ggl(x — 1) F(¢) dt} dx

(4.A) =2 [(D,* D)(s — t) f(s) f(t) dsdt
= (2/h) [ [(D*K)u(s = 1) f(s) f(¢) ds .
From
n [1] R n n
J{(Pus 2} =2 (B £)(DR« 1+ Du= 1)
=2n"2 Sy (D,+ DM« L L,
i=1j=1 |,
+Dy, + D, + L+ Lg)(Xi - X)),
it follows that
(4.B) ISB(h)M = 2n2 f; f T,
i=1j=1

where

1 - m .
T = |5 {(D*B)u(LxL)g} + —{(D* D) (Lx L) g}|(Xi = X))1a(, )
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Proor oF LEMMA 4.1. Useful facts about the functions appearing in (4.B)
are:

mo(D*K)=myD*K)=0; my(D*K)=12m,(K)?%
mo(L*L) =1; my(L*L)=2my(L);
myL*L)=2m,(L) + 6my(L)?
mo(D*D) =my(D*D)=0; m(D*D)=6myK)>%
| mo(L*L) =0; my(Lx*L)=2my(L);
m,(L*L)=4m,(L) + 12my(L)>
Given symmetric functions a and b, for i # j,
E{(ay*b,)(X; - X;)} = [ [an(x - u){[bg(u -y f(») dy}f(x) dxdu.
But

Jo(u =) F(y)dy = Z g f 0 (u) (;’;(),) +0(g%),

and so
E{(a;*b,)(X; - X;)}

2 mg,(8)
_ 2k 2k
L5 ey

+//ah(x - u)0(g°%) f(x) dxdu,

where the factor O(g®) is uniform over © and independent of x. Next observe
that for £ = 1,2,...,5.

J antx = w) £ () f(x) dudx

- lgf’oh?l—"z;‘l()"!) (~D!TR(FHD) + O(R2H),

J [an(x = w) £ () f(x) dudx

ffah(x -u)0(g®) f(x) dx du
=my(a)O(g®) + my(a)O(h%g®) + O(h*g®).
Applying these results in the above cases and simplifying yields, for i # j,
= ISB(h)"/2 — K3g%(1 + m/2)R(f<3>)m2(K)2m2(L)/2
(4.C) + kg4 (1 + m)R(f@)my(K)*{m (L) + 3my(L)*) /24
+ O(h®g® + h°g?).
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The above provides a convenient representation for the i #j terms in the
double sum. To handle the remaining terms, note that again for symmetric a
and b,

2
(anxby)(0) = 3 h*g™' "% my,(a)b®(0) /(2k)!+ O(h°g~6).
k=0
Using this in the above cases gives
T, = h%g°my(K)*{(L* L)®(0)/2 + m(L+ £)“(0) /4)a + O(*g™®).
Lemma 1 follows from using this together with (4.C) applied to (4.B). O

Proor or LEMMA 4.2. Given symmetric, eight times uniformly continu-
ously differentiable functions a, b, ¢, d with

mo(a) = my(a) = my(c) = my(c),

we have
8
Je(w)d(t + k(s —w)/g) dw = ¥ A;s' + o(h®g™"),
1=0
where
8 k
A= X khghm,_(c)d®(o)(% ) et
k=1

But for / >4, A,=0and for l <4, A, = O(h'**g='**) and
3
f(y +hs+gt) = L (hs)' fOy + gt) /' + O(h*),
=0
and so

[ [a(s)e(w)d(t + (s - w)/g) f(y + hs + gt) dwds

~ g~ (y + g)d®(t)my(a)m(c)(§ ) 81+ o(h% ).

Hence
[ [ fa(s)e(w)d(t + k(s —w)/g) f(y + hs + gt) f(y) dw ds dy

= g R(£)dO(t)m(a) my(c)( §)/81+ o(h% ).
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It follows from this that for i # j,
E{(ap*bo)(X; - X;)(ch* d,) (X, — X))
=[] Je)b)e(w)d(s + (s ~ w)/g)
Xf(y + hs + gt) f(y)/gdsdtdwdy
= h8g %R( f)m4(a)m4(c)fb(4)d(4)(i)/8!+ o(h®g~?).
But by calculations of the type done in the Proof of Lemma 4.1,
E(ay+b,)(X; - X;) = O(h%),
and similarly for (c,, * d ). Thus,
cov{(a, *b,)(X; — X;), (cx * d,))(X; - X;)}
— h8g9R( f)m4(a)m4(c)fb‘4)d(4)(Z)/8!+ o(h®%g~)

and hence

var(T,;) = hSg°R(f)ma(K)* [{(L *L)® + m(L » L’)“"/2}2/4
(4.D) N o(hﬁg‘g),

Next, for i, j, & all different,
E{(a)xb,)(X; — X;)(ch *d)(X; — X))
= [[[ ] [a(s)b(u)e(t)d(v) f(x)
Xf(x — hs — gu) f(x — ht — gv) dsdtdu dvdx
= B*my(a)m(c)mo(b)mo(d) [(F©)’ f/(a1)* + o(h®)
and so
cov(T,;, Tiy) = h‘*mz(K)“{ J(r®) - R f”)z} /4 + o(R°).
Thus from (4.B), Lemma 4.2 follows from (4.D) and
var{ISB(h)"")} = 4n—4{22 L var(T,,) +4Y Y ¥ cov(Tij,Tik)}. 0

itj itjtk
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