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CONVERGENCE OF MOMENTS OF LEAST SQUARES
ESTIMATORS FOR THE COEFFICIENTS OF AN
AUTOREGRESSIVE PROCESS
OF UNKNOWN ORDER

By R. J. BHANSALI AND F. PAPANGELOU

University of Liverpool and University of Manchester

Given a realization of T consecutive observations of a stationary
autoregressive process of unknown, possibly infinite, order m, it is as-
sumed that a process of arbitrary finite order p is fitted by least squares.
Under appropriate conditions it is known that the estimators of the autore-
gressive coefficients are asymptotically normal. The question considered
here is whether the moments of the (scaled) estimators converge, as T — ,
to the moments of their asymptotic distribution. We establish a general
result for stationary processes (valid, in particular, in the Gaussian case)
which is sufficient to imply this convergence.

1. Introduction. Let {X}, ¢t= ...,-1,0,1,..., be an autoregressive
process of order m,
m
(1'1) Z am(j)Xt—j = &, am(O) =1,
j=0

where m > 0 is finite or infinite, {¢,} is a sequence of independent identically
distributed random variables, each with mean 0 and variance o2, and the
a,,(j) are real coefficients such that

m

m
Ylan()<e,  Xa(i)z/#0, ld=<1
Jj=0 Jj=0

The order m is seldom (if ever) known a priori. Having observed X,, ..., X,

suppose that pth-order least squares estimators d(p) = [d,(1),...,d,(p)I' of
the autoregressive coefficients are obtained by solving the following equation:

(1.2) a(p) = —-R(p) '#(p),

where p > 1 is arbitrary, that is, it does not necessarily coincide with m,
R(p) = [DD(u,v)], u,v=1,...,p, #p) = [DTN0,1),..., DTX0, p)I and

T
(1.3) DD(u,v)=(T-p)' ¥ X, X,_,, u,v=0,1,...,p.
t=p+1
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Also, let
P
(1.4) 6%(p) = Y dp(u)D(T)(O,u), a,(0) =1,

u=0

be the corresponding pth-order estimate of the residual error variance.
The theoretical parameters estimated by & ,(x) and 6%(p) are

(1.5) a(p) = —-R(p) 'r(p),
p
(1.6) o%(p) = ;Oa,,mR(j), a,(0) =1,

where R(p) = [R(u —v)], u,v=1,...,p, x(p) =[RQ),..., R(p), a(p) =
[a,(1),...,a,(p) and R(u) = E(X,X,,,), t,u =0, +1,..., denotes the co-
variance function of {X,}.

The asymptotic normality of the d,(u) when m is finite and p = m was
established in a classic paper by Mann and Wald (1943). The case when m is
unknown and therefore not necessarily equal to the chosen p has been
considered by Kromer (1969), Ogata (1980), Bhansali (1981), Kunitomo and
Yamamoto (1985) and Lewis and Reinsel (1988). In the present paper we study
the question of boundedness of moments of the standardised @ ,(u), that is, we
examine whether as T — « the moments of the scaled estimators converge to
the corresponding moments of their asymptotic distribution [Loéve (1963),
page 182].

As the autoregressive models play an important role in the statistical
literature, this question is of interest in its own right. It, however, also arises
in other contexts: for example, in studies dealing with the question of bias in
estimating the autoregressive parameters [Shaman and Stine (1988)]; for
evaluating the increase in the mean squared error of prediction due to employ-
ing the estimated autoregressive model for prediction [Kunitomo and
Yamamoto (1985)]; and for giving a rigorous derivation of the Akaike informa-
tion criterion, AIC, for autoregressive order selection [Bhansali (1986) and
Findley (1985)].

Previous work on this question is by Fuller and Hasza (1981), Findley and
Wei (1988) and Maliukevi¢ius (1988).

Fuller and Hasza use a conditioning argument to demonstrate that if m is
finite, p = m ‘and the ¢, are normally distributed then the powers of the
(scaled) estimated least squares autoregressive coefficients are uniformly inte-
grable.

Findley and Wei examine the use of AIC for nonnested model comparisons
and in this context provide an extension of the result of Fuller and Hasza to
the case of vector autoregression. Moreover, they consider the situation when
m is finite and p does not necessarily equal m, and some special cases of the
situation with m infinite.

Maliukevifius considers the estimation of a vector of parameters, ® =
[¢15.-.,9,], say, of the spectral density function of a discrete-time stationary
Gaussian process, based on a realization of T' consecutive observations of this
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process. Let & denote the maximum likelihood estimator of ®. By appealing to
results of Ibragimov and Has’minskii (1981), Maliukevitius establishes that,
under a set of technical assumptions, the moments of vT' T (d — ®) converge, as

T — o, to the corresponding moments of the asymptotic Gaussian distribution
of this vector. His result applies, in particular, to the maximum likelihood
estimators of the parameters of a Gaussian autoregressive moving average
process of known order. However, the more plausible case in which the fitted
model only provides a rational transfer function approximation [Hannan (1987)]
to the spectral density function of the observed process has not been consid-
ered.

For the situation considered in the present paper, Bhansali (1981) and
Kunitomo and Yamamoto (1985) obtain uniform integrability of the scaled
powers of é,(u) by making a “boundedness’’ assumption concerning {R(p) -
R(p)} or R(p)~L. This assumption is, however, more restrictive than necessary
for establishing the result and, in any case, does not hold when {X} is
Gaussian.

It is nevertheless clear from an expansion for R(p)~! given by Bhansali
(1981) that it is enough to assume a condition of the form

. —1119

(1.7) lim sup E{|R(p) [} <=
where |IC|| denotes the operator norm of the matrix C. Thus, for example, if
(1.7) holds with g = 3 then it follows from Bhansali (1981) that for each fixed
u’
(1.8) E{d,(u)} = a,(u) + O(T™),
provided also that the fourth-order moment of &, exists.

Other references where a condition analogous to (1.7) is used are Shaman
and Stine (1988), Lewis and Reinsel (1988) and Findley and Wei (1988).

The result of the next section implies that if, for instance, {X,} is any
stationary nondegenerate Gaussian process, then (1.7) is true for arbitrary p
and q > 0.

2. Upper bounds for the norms. For our main result we do not assume
that
(2.1) : X o, X, X, Xy, X,
is an autoregressive process. Instead we assume the following:

(I) The process (2.1) is strictly stationary.
(I) The X;’s have finite moments of all orders.

(III) For any finite set {/, ll, ly,...,1,} of distinct integers the joint distribu-
tion of X;, X, , X, 1 , Xy, 1s absolutely continuous and there exist a constant
K>0 and a version f}, 1) ( le, , x;,) of the conditional probability density
function of X; given X, cies Xl,, = x; such that

sz,...z,,(xlxl, .oy x) < Kt
for all x, x,,...,%,.
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Note that condition (III) is satisfied by any Gaussian process with nonde-
generate finite-dimensional distributions, since for such a process the condi-
tional variance of X; given X; =x,,..., X, =x, is the same for all values
Xy,...,%;. If a Gaussian process i$ autoregressive, nondegeneracy is guaran-
teed by the errors {¢,} in (1.1). For non-Gaussian autoregressive processes it
would be of interest to have broad conditions on the distribution of &,
guaranteeing (III) [or (2.2) below], but we do not discuss this matter in the
present article.

Let p be a positive integer and for each j =0,1,2,... consider the
positive-definite symmetric p X p matrix:
Xp+jXpej Xp+jX}+j
Aj= : : .
X1+jXp+j X1+jX1+j

Note that the operator norm of any positive-definite symmetric matrix is
equal to its largest eigenvalue. We will prove the following theorem.

THEOREM. If (2.1) is any stochastic process satisfying (I), (II) and (IID),
then for each q > 0 there is a nonnegative random variable A, and a number
r > 0 such that E(A%) < © and for all N > r,

1 1\%——:1 i
— A.
[Nj=0 ’}

Proor. Given q > 0, fix a positive integer k& greater than 4p + 2q — 2.
U1

<A, almost surely.

Ug

With v denoting a vector | : |, consider the quadratic form
o
(k—Dp kp+1
Q(v) = UT[ 'Zo Ailv= t Y 1(Xt_lv1 + X, gy + - +X,_pvp)2.
J= =p+

Let v’ be a fixed vector such that ||v'|| = 1. For g > 0,
P(Q(v) <B)

p p
= P(_\/E <X X, 1-U; < \/E» _\/E <X Xop+r1-iV; < \//?,
i=1 i=1

P
= VB < L Xypr1oiti < VB |
i=1

For at least one i, |v}| is greater than or equal to 1/ \/}7 . If for this i we apply
condition (III) to the conditional pdf of X,,;_; given the other X,’s, we see
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that the last probability is

p
<constyBP|-yB < ¥ Xop+1-il; < VB,...,
i=1

p
—VB < X Xppi1-iUi < VB
i=1

Iterating, we obtain
(2.2) P(Q(V') < B) < const B*/2.
Now let v, v’ be on the unit sphere S of R”? and note that the inequality

p p p 1/2
Y X, v <| X X+ [Z th—i] llv" = vll
i=1 i=1 i=1

implies that if [lv' — vl < & and L %2, X? < 1 /¢, then

(2.3) Q(v) < 2Q(v) + 2(kp — p + 1)e.

It is easy to see that, given £ € (0, 1), there is a subset S’ of S, with fewer
than 2[4p2/2]7~! elements (a crude upper bound), such that given any v € S
there exists v € S’ with ||v' — v|| < . From this and (2.3) we deduce that

P(Q(v) < ¢ for some v € S)

kp 1
SP( Y X2 > —) + P(Q(V') < 2¢ + 2(kp — p + 1)¢ for some v’ € S’)
£

24y 7
iy 1 (4P2)p_1 k/2
< P(iglx.z > ';) + 2—;2—(;_—1)—const[2(kp + 1)8] /
< const g*/272P+2

since 7, X? has moments of all orders.

Now consider the smallest eigenvalue A, = inf, . Q(v) of L ;PPA;. By

(2.4), P(Ay < ¢) < const £#/272P*2 hence

E(A;@*V) = pr(Aa(q+1) > x) da
0
<1+ me(Ao <x~1/@*D) g
1

© k/2-2p+2
<1+ const;f1 (x~1/@*h) /272 0,

which is finite since £ was chosen greater than 4p + 2q — 2.
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Next set r = (k — 1)p + 1, let A, be the smallest eigenvalue of £¢,V" A,
v=20,1,2,..., and define

N n—1 -1

A= supn[ Y )«,,] .
n>1 v=0

For a >0, {A>a}={n>aX} jA, for some n > 1} = {sup,., L7241 -

@),) > 0}. Since the random variables A, are integrable, the maximal ergodic

theorem [Doob (1953), page 466, Lemma 2.2] implies [, », ,(1 — aAo) dP > 0,

that is,

f AgdP <a 'P(A > a).
{A>a} .

By Hdlder’s inequality

P(A>a) = E[I(A>a,)“;}*1)/(‘1+2>A5“7+1)/(‘7+2’]
(g+1)/(g+2) - 1n11/(@+2)
< E[Ls o] E[rg@*D]

< (a_lP(A > a))(q+1)/(q+2)E[A6(q+l)] 1/(q+2),

which implies P(A > @) < a @*PE(A;@*D) for all a > 0 and hence
E(A?) < o [cf. Neveu (1965), page 212].

Now from the definition of A, n < AL}ZgA, < AVT[E?.G'A v forall v € S
and all » > 1. This implies that the smallest eigenvalue of L775"A; is almost
surely greater than or equal to nA~! and hence the largest eigenvalue of
[£725"A;]17 1 is less than or equal to n™'A, that is,

nr—1 -1
Y A <A
Jj=0

n

almost surely. It follows that

1 Nil !
— A. <rA
[Nj=0 J]

for all N of the form nr, n > 1. If N=nr+s,n>1,0<s<r, an easy
extension shows that

< 2rA,

1 N-1 1

— Z A.
[N =0’
which proves the theorem. Note that condition (III) was only used in deriving

2.2). o

To apply this theorem to the estimators of the first section, assume that the
process (2.1) is a Gaussian autoregressive process. Then (I), (II) and (III) hold
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and the theorem shows that
(2.5) IR(p) 7! < A,

for T — p > r. From (1.2), (1.5), (2.5) and the results of Bhansali (1981), it
then follows that

E{la(p) - a(p)|'} = O(T~97?)

as T — o, for arbitrary q. Another consequence of (2.4) is that
- A _ q
E[{6%(p - 1) ] < B|(tr(R(p) )" < p°E (1)

for sufficiently large T, since {6%(p — 1)}~! is the first diagonal element of
R(p)~! [Bhansali (1990)]. The case g > 1 of this result is useful in the
derivation of the Akaike information criterion [Findley and Wei (1988)]. The

same bound holds for the other diagonal elements of R(p)~!, a fact useful in
the interpolation problem.

Acknowledgment. The authors wish to record their thanks to a referee
for several valuable comments.

REFERENCES

BHaNsALL R. J. (1981). Effects of not knowing the order of an autoregressive process on the mean
squared error of prediction. I. J. Amer. Statist. Assoc. 76 588-597.

BHansaLl, R. J. (1986). A derivation of the information criteria for selecting autoregressive
models. Adv. in Appl. Probab. 18 360-387.

BuaNsALL, R. J. (1990). On a relationship between the inverse of a stationary covariance matrix
and the linear interpolator. J. Appl. Probab. 27 156-170.

Doog, J. L. (1953). Stochastic Processes. Wiley, New York.

FinDLEY, D. F. (1985). On the unbiasedness property of AIC for exact or approximating linear
stochastic time series models. J. Time Series Anal. 6 229-252.

FinDLEY, D. F. and WEI, C. Z. (1988). An analysis of AIC for linear stochastic regression and
control. Unpublished manuscript.

FuLLER, W. A. and Hasza D. P. (1981). Properties of predictors for autoregressive time series.
J. Amer. Statist. Assoc. 76 155-161.

HANNAN, E. J. (1987). Rational transfer function approximation. Statist. Sci. 2 135-161.

IBraGIMOV, I. A. and Has'minski, R. Z. (1981). Statistical Estimation: Asymptotic Theory.
Springer, New York.

KROMER, R. E. (1969). Asymptotic properties of the autoregressive spectral estimator. Technical
Report 13, Dept. Statistics, Stanford Univ.

Kunitomo, N. and Yamamoto, T. (1985). Properties of predictors in misspecified autoregressive
time series models. J. Amer. Statist. Assoc. 80 941-950.

LEwis, R. A. and REINSEL, G. C. (1988). Prediction error of multivariate time series with
misspecified models. J. Time Series Anal. 9 43-517.

Lokve, M. (1963). Probability Theory. Van Nostrand, Princeton, N.J.

MaLkeviCius, R. (1988). Maximum likelihood estimation of the spectral density parameter.
Lithuanian Math. J. 28 353-364.



1162 R. J. BHANSALI AND F. PAPANGELOU

ManN, H. B. and WALD, A. (1943). On the statistical treatment of stochastic difference equations.
Econometrica 11 173-220.

NEVEU, J. (1965). Mathematical Foundations of the Calculus of Probability. Holden-Day, San
Francisco.

OGATA, Y. (1980). Maximum likelihood estimates of incorrect Markov models for time series and
the derivation of AIC. J. Appl. Probab. 17 59-72.

SHAMAN, P. and STINE, R. A. (1988). The bias of autoregressive coefficient estimators. J. Amer.
Statist. Assoc. 83 842-848.

DEPARTMENT OF STATISTICS AND DEPARTMENT OF MATHEMATICS
COMPUTATIONAL MATHEMATICS THE UNIVERSITY OF MANCHESTER

THE UNIVERSITY OF LIVERPOOL OxrorDp Roap

BrownNLow HILL MANCHESTER M13 9PL

P.O. Box 147 ENGLAND

LiverpooL L69 3BX .

ENGLAND



