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A NOTE ON BLACKWELL AND HODGES (1957) AND
DIACONIS AND GRAHAM (1981)

By MicHAEL PROSCHAN

National Heart, Lung, and Blood Institute

The papers of Blackwell and Hodges (1957) and Diaconis and Graham
(1981) contain an error concerning the asymptotic distribution of the
number of returns to the origin of a constrained random walk. The correct
distribution is given.

Blackwell and Hodges (1957) evaluate different designs to control selection
bias in experiments. Suppose there are two different treatments and patients
are entered sequentially into the experiment. One method of ensuring that
there are an equal number of patients in the two treatments is to use random
allocation: Half of the 2n patients in the study are randomly selected to
receive treatment A, and the remaining n patients receive treatment B. If the
experimenter has control over who is allowed to enter the experiment, and if
he or she has some idea as to which group the next patient will be assigned,
the experimenter may attempt to bias the results by choosing very ill or very
healthy patients (this is called selection bias). Blackwell and Hodges point out
that the optimal policy in terms of largest expected number of correct guesses
for an experimenter is, at each stage of the experiment, to guess that the next
patient will be assigned to the treatment having occurred least frequently thus
far. If there have been an equal number of patients assigned to A and B thus
far, the experimenter may pick either treatment or flip a coin to decide. This
strategy is also optimal in terms of making the number of guesses stochasti-
cally largest. This is pointed out by Diaconis and Graham (1981), who add that
it is easily proved by backward induction. Let B(¢) be the number of successes
in ¢ independent Bernoulli trials with parameter ;. Blackwell and Hodges
show that the number of correct guesses of the experimenter is G = n + B(T),
where T is the number of returns to the origin of a symmetric random walk
S;, conditioned on the event that S,, = 0. They assert that

(1) “...T/Vn has asymptotically the distribution of an
absolute normal deviate.”

Diaconis and Graham use this to conclude that [(2.4) of their Theorem 1]

G-n
(2) Pr(——— < x) - 2P(x) -1 forx >0.
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If (2) were correct, then using the optimal strategy, Pr(G > n + 1.645y/n/2)
would be approximately 0.02 for large n. But this is smaller than the probabil-
ity 0.05 associated with flipping a coin to guess the next treatment assignment!
Since (2) does follow from (1), the problem must be with (1). It is known [Feller
(1968)] that if R is the number of returns to the origin of an unconditioned,
symmetric random walk, then R/ V2n has asymptotically the distribution ®*
of an absolute normal deviate. It is not difficult to establish that T is
stochastically larger than R, so it seemed that (1) must have had a typographi-
cal error and that it should have begun with 7'/ V2n instead of T/ Vn . Even
making this correction, as can be seen from calculations in Blackwell and
Hodges, the mean of T/ V2n converges to y/m/2, and the mean of ®* is
V2/7 . Because E(T/V2n)* —> 4 as n — o [this follows from calculations in
Wei (1978)], T/ V2n is uniformly integrable. Thus the discrepancy in limiting
means rules out ®* as its limiting distribution.

It turns out not to be difficult to compute explicitly the limit of the survival
function S(¢) of T'. Again let R denote the number of returns to the origin of
an unconditioned symmetric random walk S; by time 27, and let 7, be the
time of the jth return to the origin of S;. Used in the following derivation is
the fact that Pr(S,, = 0) = Pr(S,; # 0, i = 1,...,n). This fact, proven in
Feller (1968) by a reflection argument, is used in the third line of the
following:

Pr(r; < 21, S,, = 0)

Pr(T >j) = Pr(S, = 0)

922n n-—1

- (Zn Y. Pr(r;=2i, 8;,=0)
n ) i=1
22n n—1

= Zn) Z Pr(r; = 2i,7;,, > 2n)
n i=1
22n

(Pr(R =j) — Pr(r; = 2n))

(%)
R )

(2nn—j)(n — j)2i+t

2n _

(27)2n - )
The next-to-last equality follows from Feller (1968). Suppose that j and n
approach « in such a way that » —j and n/j also tend to «. Applying
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Stirling’s formula, one obtains
n—j/2\"(n—-j/2\"7( 2n—j \'/?
n ) ( n-—j ) (2(n—j)) '
Now let j = AV2n , where A is a constant. Then (3) is asymptotic to
A" Wen noaen
(1_ _\/E_;) (1+ 2(n—)u/2_n))

@ e~

It follows that

In(Pr(T > A\/ﬂ)) = n(\—/—;_% - ;\—n +o(%)) +(n —AV2n)
y A2n ~ 2n A2 .\ (l)

2(n — AV2n) 8(n —A\/ﬂ)z n
22

- —E_

Therefore,

T A2

Pr(m >)\) eexp(—;),

a Weibull survival function with scale parameter V2 and shape parameter 2.
Thus (1) and (2) should be replaced by

T
(1) T is asymptotically Weibull(v2, 2),
2 o 1 =) g 0
' ——=<x|—>1- - > 0.
(2" r Tz = x exp 3 or x

The probability of guessing more than n + 1.645\/n/2 assignments correctly
is roughly 0.26 for large n, as opposed to 0.05 associated with using coin flips
to guess.
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