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THE POWER AND OPTIMAL KERNEL OF THE
BICKEL-ROSENBLATT TEST
FOR GOODNESS OF FIT

By B. K. GHosH AND WEI-MIN HuaNG
Lehigh University

Bickel and Rosenblatt proposed a procedure for testing the goodness of
fit of a specified density to observed data. The test statistic is based on the
distance between the kernel density estimate and the hypothesized density,
and it depends on a kernel K, a bandwidth b, and an arbitrary weight
function a. We study the behavior of the asymptotic power of the test and
show that a uniform kernel maximizes the power when a > 0.

1. Introduction. Let X,,..., X, be independent and identically dis-
tributed random variables with a continuous probability density function f.
Rosenblatt’s (1956) pioneering work and Parzen’s (1962) extension of it intro-
duced the so-called kernel density estimate f,(x) for estimating f(x) at a fixed
point x € R using the data (X, ..., X,),

1 2 - X;
fu(x) = — ZK[xb ]

ni=1 n

(1.1)

bin[%—t] dF,(t).

In (1.1), F, is the sample distribution function, K is a suitably selected kernel
function on R such that ([K(x)dx = 1 and b, > 0 is a predetermined band-
width such that b, — 0 and nb, - » as n — «. All integrals in this paper,
shown without limits, are understood to have limits —o to +c.

In this paper, we consider the problem of testing the hypothesis

(1.2) H: f=f,

at a specified significance level a, where f, is completely specified. Bickel and
Rosenblatt (1973) proposed the test statistic

(1.3) T, = nb, [[ (%) = Eo fu(x)]*a() dx,

in which @ is a suitably chosen function on R and E,f,(x) denotes the
expectation of f,(x) under f,. They show (see their Theorem 4.1) that, under
H, T, is asymptotically normal with mean w(K,a) and variance b,0% K, a),
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where

w(K,a) = I(K) [fo(x)a(x) dx,
(1.4)
o%(K,a) = 2J(K)/f02(x)a2(x) d,

(1.5) I(K) =[K2(x)dx, J(K) =[[[K(x+y)K(x)dx] dy.

Consequently, an asymptotically a-level test of H is provided by
(1.6) Reject Hif T, > u(K,a) + 2,b%0(K,a),
where z, is defined by

(1.7)  ®(z)=1-a, ®(z2)= (277)‘1/2j_:exp(—x2/2) dx.

We shall refer to (1.6) as the BR-test. They proposed a second statistic (their
T ) which requires additional assumptions. The main conclusion of this paper
applies to the power of the second test as well.

The purpose of the present paper is to study the asymptotic power of the
BR-test with a view toward an optimum selection of K. We will assume
throughout that b, = n~? for some § € (0, 1). In Section 2 (Theorems 2.1 and
2.2), we study the asymptotic power of the BR-test against fixed and local
alternatives. It is shown that, for any fixed (a > 0, §), the power of the BR-test
is maximized with respect to K by minimizing J(K) of (1.5). In Section 3, we
prove the most interesting result of this paper, which can be stated as the
following theorem.

THEOREM 1.1. Let % be the set of all LX(—x, ) functions K satisfying

K20, [K(x)dz=1, [xK(x)dx=¢,
(1.8)
[(x = &)°K(x) dx = 2,
where £ € (—o,x) and T > 0 are given numbers. Then the functional J(K) in
(1.5) is minimized on % uniquely by
-1

(19) K*(x) = (2V87) , forlx — &l <7V3,

0, for |x — & > V3,
and min g J(K) = J(K*) = (3V3 7).

It can be verified that a minimum of J(K) under the first two constraints in
(1.8) does not exist. The last two constraints in (1.8) with ¢ = 0 and 7 = 1 are
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standard practice in the theory of density estimation [see Silverman (1986),
Chapter 3].

The conclusion of Theorem 1.1 is in sharp contrast to the Epanechnikov
(1969) kernel (see the second kernel in Table 1) which minimizes [E[ f,(x) —
fo(x)]? dx asymptotically and is widely used in the estimation theory of fo(x).
In Section 4, we demonstrate that, from the viewpoint of hypothesis testing,
the Epanechnikov kernel can be worse than many other kernels. Apart from
its optimality in the present context, K* in (1.9) renders 7, more easily
computable. As a final remark, Bickel and Rosenblatt compared the Pitman
efficiency of the BR-test against Pearson’s chi-square test when f, is a
uniform density on [0, 1] [any f, in (1.2) can, of course, be effectively reduced
to this case by the probability integral transformation of the data]. They show
that the BR-test based on K* with £ = 0 and = = (2y/3)! is strictly better
than the chi-square test. Theorem 1.1 gives a better understanding of their
choice of the kernel. They chose K * not because of any optimality considera-
tion in % (see also their Remark 1 on page 1076) but seemingly because the
structure of the chi-square test prompted this. We show in Section 4 that
the BR-test based on a nonuniform K can, indeed, be strictly worse than the
chi-square test in the sense of Pitman.

Theorem 1.1 has several other applications. First, Beran (1977) proposed a
goodness-of-fit test based on Hellinger distances. The power of his test is also a
decreasing function of our J(K) and, consequently, K* should be a good
choice for his test as well. Second, if one writes J(K) = [G(x) dx, where G(x)
is the symmetrization of K(x), one can interpret J(K) as the concentration
measure of G [see Grenander (1963)] or the ¢-deviation of G from the
Lebesgue measure [see Hengartner and Theodorescu (1973)]. Theorem 1.1
then gives a lower bound to these quantities. Finally, Theorem 1.1 supple-
ments known extremal properties of uniform and triangular distributions [see,
for instance, Mori and Szekely (1985)].

2. The asymptotic power of the BR-test. The primary objective of this
section is to show that the asymptotic power of the BR-test against reasonable
alternatives is a decreasing function of J(K). This feature need not, of course,
be true in small samples. A second goal is to summarize certain other aspects
of the power which follow from the results of Bickel and Rosenblatt (1973) and
Rosenblatt (1975). ,

Bickel and Rosenblatt give regularity conditions under which T, is asymp-
totically normal when H holds and later Rosenblatt (1975) relaxed some of
them. We synthesize their conditions below because they will be referred to in
our subsequent discussions:

(@ f, is bounded, either positive on R or positive only on some [c,, d,], and
continuous with a bounded continuous derivative in the interior of its
domain of positivity;

(b) a is piecewise continuous, bounded and integrable on R;

(© [K(x)dx =1, [x®K(x)dx < », [K*(x)dx < =
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and either

(d b,=n"° for some 8 €(0,1/4) and K is continuous on R satisfying
fIK'(x)I2 dx < =, fl | 132K’ (%)l (logloglx])*/* dx < oo,
x|=3

or

(d) b, =n"? for some & € (0,1) and K is bounded on some [Cx, Dx] and 0
outside.

Theorem 4.1 in Bickel and Rosenblatt (1973) then proves that Z,(f,) is
asymptotically N(0,1) under assumptions (a)-(d), while Corollary 1 in
Rosenblatt (1975) does the same under assumptions (a)-(c) and (d’), where

Z,(fo) = nm%_l{nl_s JLf(x) = By fo(x)]*a(x) dx - uo}

and u, and o, denote (K, a) and o(K, a), respectively.

Let g be an arbitrary alternative to H satisfying assumption (a). Denote the
expressions in (1.4) computed under g by u, and agz. It follows from (1.3) and
(1.6) that the power of the BR-test against g is

(2.1) I1,(8) = P,(T, = mo + 2,01 %0).
It is not difficult to show that (2.1) reduces to

g

,(g) =Pg(Zn(g) > —nl7%2%: 1
(2.2)
«{ [la() = fo()a(x) dx + 0, (1)}

Since Z,(g) is asymptotically N(0, 1) under g, it follows that the power of the
BR-test against an arbitrary g tends to 1. One would, of course, expect this
from any reasonable test of H. What is to be noted from (2.2), however, is that
the asymptotic power is a decreasing function of J(K) for any fixed choice of
(fo, 8, a>0,0).

The case of arbitrary g does not shed enough light on the performance of
the test since the asymptotic power degenerates to 1. Bickel and Rosenblatt
(1973), Theorem 4.2, considered the Pitman alternatives

(2.3) 81n(%) = fo(x) + n"Pw(x) +o(n"F), B>0,
and obtained the following result in a different form.

THEOREM 2.1. Under assumptions (a)-(d), the power of the BR-test against
(2.3) satisfies, for each & € (0,1/4),

a, ifB>(2-26)/4,
(2.4) lim I1,(g,,) = { ®(1), if B =(2-5)/4,
" 1, if0<B<(2-38)/4,
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where
l=oj! fw2(x)a(x) dx — z,.
Moreover, under assumptions (a)-(c) and (d’), (2.4) holds for each § € (0,2/3).

Three observations can be made from Theorem 2.1 when a > 0. First, the
asymptotic power of the BR-test against Pitman alternatives is a decreasing
function of J(K). Second, as § gets smaller (from 1/4 or 2/3 to 0), the power
improves. This feature, incidentally, conflicts with the fact that the asymptotic
normality of 7, under H improves as & gets larger (from 0 to 1/4 or 1).
Finally, the BR-test is less powerful than standard nonparametric tests of H
based on F,, (e.g., Kolmogorov and Smirnov) or parametric tests based on the
actual form of f, (e.g., Wilk and Shapiro). The reason is that the latter can
detect (with power greater than «) alternatives at a distance of order n~1/2
from H.

In order to emphasize that the last drawback of the BR-test is peculiar to
Pitman alternatives, Rosenblatt (1975), Section 3, examined the power against
a special case of the following local alternatives:

k

(2.5) 82(%) = fo(x) + n~° Ele({x —¢;}n?) + o(n7c77),

e>0,0<y<$,

which implies that the alternative density has k& > 1 sharp peaks at points c;.
One can generalize his proof for the special case to the following theorem.

THEOREM 2.2. Under assumptions (a)-(d), the power of the BR-test against
(2.5) satisfies, for each & € (0,1/4),

a, if 1 -2e—v6<8/2<¢e+y,
(2.6) lim Il (g,,) = {®(V), if8/2=1-2e—y<(1+y)/3,
ro 1, if /2 <min[(1 — £)/2,1 — 2¢ — v],

where
k
=0yt ) {a(cj)fwf(x) dx} - z,.
j=1
Moreover, under assumptions (a)-(c) and (d’), (2.6) holds for each & < (0, 1).

Here, again, note that the asymptotic power of the BR-test with any a > 0
is decreasing in J(K) and 8. Moreover, with a suitable choice of §, the BR-test
can be made more powerful than the standard tests for alternatives (2.6). To
see this, consider the triangle in the (8, y)-plane with vertices at (0, 0),
(2/3,2/3) and (1,1/2) when 2¢ = 1 — y — § /2. Expression (2.6) shows that
I1,(g,5,) = ®(I') > a for every point inside the triangle and, since ¢ + y > 1/2
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in this triangle, the standard tests will have power approaching a. Conse-
quently, the BR-test will be more powerful inside the triangle if one chooses &
suitably. For instance, Rosenblatt’s (1975) example of 6 =1/2, ¢ = 1/6 and
vy = 5/12 under assumption (d’') belongs to this category, while § = 17/72,
e=95/288 and y =2/9 is an example under assumption (d). What is,
perhaps, more striking is that the BR-test can have power 1 for (2.6) when
standard tests have no power at all (e.g.,, 6 = 17/72, e =1/4, y =1/8). On
the other hand, given that a standard test achieves power 1 (ie., B < 1/2)
against Pitman alternatives (2.3), one can always construct a BR-test with
0 < 6 < 2 — 4B whose power is greater than a, as Theorem 2.1 shows.

3. Proof of Theorem 1.1. Observe first the J(K) can also be expressed
as

2
(3.1) J(K) = f[[K(x)K(y —x)dx| dy.
This follows by writing J(K) in (1.5) as the triple integral of K(x)K(y)

K(x + 2)K(y + z) and making the transformations x =w — u, ¥y =v and
2z = u — v. We need the following lemma.

LeEMMa 3.1. let #, be the set of all L'(—o,x)-functions h such that the
m-fold convolution h,,,=h* -+ * hisan L%(— o, ©)-function. Then, for each
m > 1, the functional

(3.2) Tu(h) = [R(y) dy
is strictly convex on #,,.

ProoF. Observe first that A € L'(—o, ») implies that A, exists a.e. (in
the Lebesgue sense) and & ,,, € L'(—, ») [see Kawata (1972), page 75]. Let

(3.3) o(t) = (2m) " [e*h(x) dx, tER,

be the Fourier transform of h. Then the Fourier transform of A, is
(27)m = D/2p™(t). Since h,,, € L*(— %, ), it follows from (3.2) and Parseval’s
relation [see Kawata (1972), page 205] that

(k) = [|@m) ™ 2em ()| dt
(3.4)

= 2m)" " [le(t) " dt.

Let ¢,(t) and ¢4(¢) denote the Fourier transforms of arbitrary A, and A, in
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#,,. Then, for each fixed ¢ € R and B € (0, 1), we have
Bleut) " + (1= B)|eo(6) [
(35) = {Bleut)] + (1= B)|@x(t)|}*" by Jensen’s inequality

> |Boi(t) + (1 — B)ey(2) lzm by the triangular inequality.

Moreover, Jensen’s equality holds iff |¢,(¢2)| = |p,(#)| and the triangular equal-
ity holds iff ¢,(¢) = k@y(¢) for some & > 0. These two conditions jointly imply
that the left-hand side of (3.5) equals the right-hand side iff ¢,(£) = ¢,(¢) a.e.
Since h, # hy, = ¢(¢) # ¢,(¢) on a set of positive measure, we finally conclude
from (3.4) and (3.5) that

BIm(h1) + (1 = B)dn(h2)

= 2m)" " [{Blex ™" + (1 = B)leo(2) ") dt

> (2m)" 7" [1Bei(t) + (1= B)eo(t) [ dt = J,u(Bhy + (1 = B)hy).
Thus, J,,(h) is strictly convex on #,, forevery m >1. O
Observe from (3.1) and (3.2) that J(K) is the same as J,(K).

Proor orF THEOREM 1.1. Simple computations show that K* of (1.9)
indeed satisfies (1.8) and that (3.1) yields J(K *) = (3V37)~ % If any K, in %
is such that J(K,;) = o, then obviously J(K*) < J(K,). Such an example
arises if ¢ = 1/4,7=1/2and K(x) =x"3%*/T(1/4) forx > 0, K{(x) = 0
for x < 0. It suffices, therefore, to restrict attention to the subset ¥’ c %
where J(K) < «. It follows from Lemma 3.1 that J is strictly convex on %',
Now, using (3.3) and (3.4) for m = 2, we can express (3.1) as

(3.6) J(K) = %/[{fcos(tx)K(x)dx}z + {fsin(tx)K(x)dx}z] dt.

Let R(x) = K,(x) — K*(x) for an arbitrary K, € %", which implies K* +
eR € %' for each ¢ € (0,1). We will first show by variational calculus that
the Gateaux differential dJ(K * + ¢ R)/d¢ at ¢ = 0 is nonnegative for every K,
and the assertion of the theorem will then follow from the strict convexity of o/
[see Luenberger (1969), Chapters 7 and 8]. Let A,, A, and A be real variables
(Lagrange multipliers) and define

M(K, A, A, A3)
(3.7) =J(K)+A1{[K(x)dx—1} +)t2{/xK(x)dx—§}.

+ A3{/(x - &) K(x) dx — 72}.
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Then any local (i.e., on a subset of .%’) stationary point K* for M must
satisfy the four equations
(3.8) IM/or, =0, OM/dr, =0, OM/dr; =0,
(3.9) OIM(K* + eR, A, Ay, A3) /0¢|,_y =0,
where M in (3.8) refers to (8.7) at K = K*. It is clear from (3.7) that the
equations in (8.8) yield the last three constraints in (1.8) and, as mentioned
earlier, K* of (1.9) indeed satisfies these constraints. It follows that the
left-hand side of (3.9) under K * of (1.9) is precisely dJ(K* + ¢RK)/ds at ¢ = 0
for any choice of (A}, Ay, A3). Substituting (1.9) and (3.6) in the left-hand side
of (3.9), one gets, after some simplifications [see Gradshteyn and Ryzhik
(1965), page 452, for the relevant integrals].

0J(K* + eR) /de|,_o =OM(K* + eR, Aj, Ay, A3) /9€]. _q
(3.10)
= [d’(x, )‘1’ A2’ A3)R(x) dx’
where

U(x, A5 Ag, )‘3) =

£2 - 972 £ 1
M- |+ A+ ——== |2+ |2 — — |2%, for x € A,
(3.11) (1 6v3r? 2 3/373 8 6y3+3
2
3V37 — |x — £
[ ;2‘/3_. 5 4l + A+ Agx + Agx?, forx € B,
.
AL+ Agx + Agx?, forxreC=R-A-B,

and A and B refer to the sets |x — ¢ <7V/3 and /3 < |x — & < 3V3 7,
respectively. Hence, if we choose A; = A%, A, = A% and A3 = A%, where

X= (€2 - 912)/(6V31%), X5 = —£/(8V37%), A% = (6V37%) ",

then (3.11) reduces to
0, forx €A,

(3.12) ¢(x, A%, A%, x%) = { (& — & - 7/3)"/(4/37%), forxeB,
{(x - £)>— 97%}/(6V37%), forx € C,
and consequently (3.10) yields
dJ(K* + eR) /foe|,_o = (4\/§73)_1 [B(lx — ¢l - T\/§)2K1(x) dx
(3:13) +(6037) " [ (- )" - 97K (x) ds
>0 forall K, € %".

The last inequality and the strict convexity of J establish the theorem. Note
that the first equation in (3.12) and the convexity of J show that K* of (1.9)
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minimizes o locally in the subset .#” c %, where K, has support A or
interior to A, while (3.13) globalizes the conclusion to .¥’. [J

4. The relative efficiency of the BR-test. In order to assess the rela-
tive gain of K * over a competing kernel K, denote the statistic (1.3) for the
BR-test by T,(K). We are, of course, assuming that K satisfies (1.8) and both
T.(K) and T,(K *) use the same & and § in (1.3). Then the asymptotic powers
of the two tests against Pitman alternatives (2.3) are given by (2.4), in which
0y(K) and o((K*) are defined by (1.4). It is easily shown [Noether (1955)]
from the middle part of (2.4) that the Pitman efficiency of T (K) relative to
T(K*)is

(4.1) Ry(K,K*) = [J(K*)/J(K)]"/??.

For each § €(0,1), R,(K, K*) is positive, ¢&invariant, r-invariant and by
Theorem 1.1 less than 1. Moreover, it is not difficult to show from (2.6) that
(4.1) is also the asymptotic relative efficiency of T,(K) against T,(K*) for
alternatives (2.5) when ¢ > 0and 0 < y/2 <§/2=1-2c —y <(1 + v)/3.

Table 1 shows values of R (K, K*) for some standard kernels [see Parzen
(1962) and Epanechnikov (1969)] and special choices of §. Values of I(K) and
J(K) are also shown merely because they are needed to carry out the BR-test.
The chosen values of & reflect the extreme cases stated in Theorems 2.1 and
2.2. The blank spaces in Table 1 indicate that the corresponding kernels do not
satisfy assumption (d') and therefore the BR-test may not be valid.

The first K in Table 1 is the well-known Epanechnikov (1969) kernel which
is asymptotically optimal from the standpoint of estimation of fo(x). As our
table shows, from the standpoint of hypothesis testing, its efficiency is slightly
less than K *. It seems more important to realize that the Epanechnikov
kernel can be less efficient than many others. Consider, for instance, the
general family of kernels

(3/8)(e/5)"*[(8 ~ ¢) + (3¢ - 5)ex?/5],
(42) K.(x)= for x| < (5/¢)"?,

0, for |x| > (5/¢)"?,
where ¢ € [1, 3] is a constant. It is easily verified that for each ¢, K, satisfies
assumptions (c), (d) and (d') as well as (1.8) with ¢ = 0 and 7 = 1. Moreover,

K, is the Epanechnikov kernel, K, ,3=K*, and K, is U-shaped for c
(5/3, 3]. Some algebra with (3.1) and (4.2) yields

(4.3) J(K,) = Vc (2715 — 2468c + 1548¢% — 540c® + 81c*) /30805,

which decreases from J(K,) to J(Kj ), and then increases to J(K). Conse-
quently, (4.1) shows that K, is less efficient than K, for every ¢ € (1, ¢"),
where ¢’ > 5/3 satisfies J(K,) = J(K,). In fact, ¢’ = 1.9655 if one solves
(4.3) equal to 167(387V5)~ 1. It is interesting to note here that U-shaped
kernels (e.g., K, for any 5/3 < ¢ < 1.9655) are usually avoided in the estima-
tion theory of f,(x).
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The family (4.2) also illustrates a final point. Bickel and Rosenblatt (1973)
proved (their page 1083 has several printing errors near the end) that the
Pitman efficiency of the chi-square test relative to the BR-test when the latter
uses K * is (2/3)1/2~? and, therefore, correctly concluded that the BR-test is
more powerful for all § € (0,2/3). On the other hand, it follows from this,
(4.1) and J(K *) = (3y/3)! that a BR-test based on some other K will be less
powerful than the chi-square test for all 8 € (0,2/3) if that K satisfies
J(K) > (2y/3)~ L. Although none of the kernels in Table 1 is of this type, every
K, in (4.2) with ¢ € [2.9316, 3] satisfies J(K,) > (2/3)~!. The point of the
example is to emphasize the importance of Theorem 1.1 in assessing the merit
of the BR-test.

Acknowledgment. The authors wish to thank a referee for several help-
ful comments.
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