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NONPARAMETRIC REGRESSION UNDER QUALITATIVE
SMOOTHNESS ASSUMPTIONS!

By ENNO MAMMEN
Universitit Heidelberg

We propose a new nonparametric regression estimate. In contrast to
the traditional approach of considering regression functions whose mth
derivatives lie in a ball in the L, or L, norm, we consider the class of
functions whose (m — 1)st derivative consists of at most £ monotone
pieces. For many applications this class seems more natural than the
classical ones. The least squares estimator of this class is studied. It is
shown that the speed of convergence is as fast as in the classical case.

1. Introduction. Consider the regression model
(1.1) Y, =u(x;) +¢ i=1,...,n.

Given the observations (Y;) and the design points (x;), we want to estimate
the unknown regression function u. The ¢,’s are independent random vari-
ables with Ee; = 0. The (random or deterministic) design points x; are
assumed to lie in a closed interval I in R. For the case that no parametric
assumptions for the regression function u are made, estimators i, of u have
been proposed which are accurate for classes of regression functions fulfilling
certain quantitative smoothness conditions. In this paper a new regression
estimator is proposed and studied which works under simple qualitative and
interpretable restrictions on the shape of the regression function.

Why do we want to estimate w? Often our interest focuses not on the
individual values u(x;), but rather on the shape of the function wu(-). In this
case we want not so much that &,(x) — u(x) be small but that the graph of &,
should resemble the graph of u. An important aspect of this resemblance is
the number and location of extreme points, of inflection points and of other
characteristic points of the curve. One important shape parameter of a regres-
sion function u is given by

T, (p) = inf{klthere exists a partition of I into &
intervals I,,..., I, such that u(™~? is concave

or convex on every I; (j = 1,...,k)} if m> 2,

1.2
(1-2) Tp) = inf{klthere exists a partition of I into k

intervals I, ..., I, such that u is monotone
onevery I; (j = 1,...,k)}.
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Regression functions u with the same shape parameter T,(u) may be
considered as similarly shaped. We consider classes %, , , of regression
functions with uniformly bounded 7', (u):

H w.p = {m: I > R|u™~? exists and there exists a constant « such
that the function u™~?(x) — kx satisfies a Lipschitz
(1.3) condition with constant D, T,,(n) <k} if m > 2,

Hono = (i 1> BT () < b, sup(u(2)) — inf (u(x)) = D).
xel x&l

Note that {u: I - R|u™ ™D exists, sup, < (1™ ™(x)) — inf, o ;(u™ D(x)) <
D, there exists a partition of I into % intervals I,,..., I, such that u™~? is
monotone on every I; (j = 1,..., k)} is dense in &#,, , ;, in the supnorm and
that &#,, , pcontains the polynomials of degree (m — 1). (This property will be
used in our theoretical results.) In particular for m = 1 and m = 2, the class
#,, 1, p CONsists in piecewise monotone functions and piecewise concave/con-

vex functions, respectively.
We propose the following procedure for selecting an estimator for u:

STEP 1. Choose m and D. This choice will be motivated by the goal of the
investigation and by a priori knowledge about u and will depend on the
number n of observations.

Step 2. Estimate T, (w).

Step 3. Estimate p using the least squares estimator 4, =4, ,, ; p of
H#,, 1, p» Where k is the estimate of T, (u):

n
N A . 2
(1.4) fin =fnmep= argmin ) (v(x;) - Y)".

Ve;fm,k,u i=1

In Step 2, the estimation of T,(u) may be based on the comparison of
A, =inf, 4 TP (v(x;) - Y)? for different k. The difference A, ; — A,
may be used as test statistic for the hypothesis 7, () = k — 1. In particular, if
it can be assumed that the &,’s have the same distribution, the critical values
of the test statistics A,_; — A, may be estimated by bootstrap. In this paper
we will make no further attempt to make Step 2 of the estimation procedure
more precise.

A, depends on the constant D in the definition of #,, , , only near the
boundary of the intervals I;. But nevertheless the right choice of D seems to
be crucial (see also Section 2). ; 3

The following slight modification T',,(u) of T,,(1) may also be used. T, () is
defined as T,(u) but u” is assumed to be monotone on every interval I i
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(j=1,..., k) for every r < m — 1. This definition seems to be more appropri-
ate for measuring changes of the structure of w.

fi,, may be compared with other nonparametric regression estimators. For
instance the smoothness classes %, - and <, . have been studied where

(1.5) F ¢ = {p: I > R|u™ exists and is absolutely bounded by C},

G o= {n: I - R|u™ exists and S,,(u) < C},
(1.6)
where S,,(1) = [ u™(x)* dx.
I

Then there exist estimators i, (depending on m but not on C) such that
under some regularity conditions on the design and on the distribution of the
e;’s, the distance sup, E, [;(i,(x) — u(x))*dx is of order O(n—2m/Gm+D),
Here the supremum is taken over %,  or &, .. It has been shown that the
rate n=2m/@m+D jg the best available [see Ibragimov and Hasminski (1980),
Stone (1982)]. It is well known that the estimator 4, can be taken as a kernel
estimator where the bandwidth 4 is chosen depending on the observations. As
bandwidth %, one can choose an estimate of the unknown optimal bandwidth
which minimizes the mean integrated squared error E, [,(ii(x) — u(x))? dx.
In analogy to our procedure of estimating the regression function, this optimal
bandwidth can be estimated by first estimating S,(u) (and the average
variance of ¢;) and by plugging this into an asymptotic expansion of the mean
integrated squared error.

For the case that T, (1) = k is known, the least squares estimator fi,, ,, » p
has been studied for piecewise monotone regression functions (m = 1) and for
piecewise concave/convex regression functions (m = 2). The asymptotic distri-
bution of {i,(x,) for isotonic regression functions (m = k = 1) at a fixed point
x, has been derived by Wright (1981) and Leurgans (1982). Applications and
algorithms for isotonic regression are discussed in Barlow, Bartholomew,
Bremmer and Brunk (1972). The isotonic regression least squares estimator is
strongly related to the maximum likelihood estimator of a monotone density
(Grenander estimator). Characterizations of the asymptotic distribution of the
Grenander estimator (as a process) have been given by Groeneboom (1985,
1989). In Groeneboom (1985) the asymptotic distribution of the L, distance of
the Grenander estimator to the true density has been derived. For unimodal
densities (m = 1, k = 2) nonasymptotic bounds for the minimax risk are given
in Birgé (1987).

Least squares estimation of concave functions (m = 2, & = 1) has been
proposed by Hildreth (1954) for the estimation of production functions and
Engel curves. This seems to be the first paper proposing nonparametric
regression methods in econometrics. The consistency of these least squares
concave regression estimators has been proved by Hanson and Pledger (1976).
Least squares estimation of piecewise convex/concave regression functions
(m =2, k> 1) has been proposed by Holm and Frisén (1985). They also
present an algorithm for computing this estimator. Their work was the main
motivation for the present paper. Splines under constraints on T,(u) are
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considered in Mé4chler (1989). In the context of numerical analysis a data
smoothing procedure similar to 4, has been studied by Cullinan and Powell
(1982). But they minimize the L, distance instead of the L, distance. Moti-
vated by an application in software reliability Miller and Sofer (1986) consider
the problem of estimating a completely monotone regression function. They
propose the least squares estimator under the constraint that the divided
differences up to a fixed order alternate in sign and they discuss algorithms for
the computation of this estimator. In Nemirovskii, Polyak and Tsybakov
(1984, 1985), M-estimates are studied for subclasses of regression functions
where a certain derivative has bounded variation. Especially this contains the
case of the classes #,, , p. They give bounds for the rate of convergence (see
also Section 3).

This paper is organized as follows. In the next section we will show that the
estimator &, = i, ,, ; p turns out to be a regression spline of order (m — 1)
[i.e., an (m — 2) times continuously differentiable function and piecewise a
polynomial of degree (m — 1)] with knot points depending on the observations.
The number of knot points is locally (optimally) adapted to the variance of the
observations at neighboring design points and to the local density of the design
points. Some remarks will be made on possible algorithms for the computation
of i,. Simulated data will be used to compare 4, with a kernel estimator. In
the third section we will state some asymptotic results. It will be shown that
the regression function can be estimated with the same order of convergence
under the assumption S,, (1) bounded as under the assumption 7',,(1) bounded.
The proofs of the theorems will be given in the last sections.

2. Form of the estimators. Algorithms. In general a function u €
Hp 1, p 1s not determined by (u(x;));_; .. Therefore in general also the
least squares estimator [, is not unique. In the next theorem we show that to
every function in &#,, , , there exists a spline of order (m — 1) in &%, , ,
which has the same function values at the design points x,,...,x,. This

implies that i, can be chosen as a spline of order (m — 1).

THEOREM 1. For every u € #,, , p, there exists a i € #,, , p such that
u(x;) =p(x;) fori=1,...,n

and such that @™V exists and is piecewise constant outside of a finite set of
Jjump points [i.e., i is a spline of order (m — 1)].

Without loss of generality, in the rest of the paper we will choose i, as a
spline of order m — 1. For this form of 4,, Theorem 1 has the following
implication.

COROLLARY. f[i, minimizes the sum of squares L?_((Y; — u(x,))? among all
spline functions u of order (m — 1) with the same knot points and with
sup, ¢ [(u " V(x)) — inf, o ,(u~(x)) < D.
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Proor. Denote the knot points of i, in the interior of I by ¢,...,¢4
(¢, < -++ <ty). Define ei(x) =x/ (for 0 <j<m—1), e,x)=(x—
tl)m_ll(x < tl) and

eem(x) = (x = t;.)" Ux < ty0) = (2 - 1) L(x <))
(forl<j<H-1).

Then the minimizing spline minimizes ©?_(Y; — u(x;))? over the set A, =
{u = ):;-”:()H_lajej: la; <D/(m — D! and la; —a;] <D/(m — 1! for i,
J = m}. Now in the linear space spanned by {e;: 0 <j <m + H — 1}, there
exists a neighborhood U of 4, such that U N A}, is contained in &#;, , 5. This
proves the corollary. O

According to this corollary, [i, can be interpreted as regression spline (i.e.,
least squares spline) with estimated knot points. For m < 2, the estimator i,
can be chosen such that every knot point of i, is a design point [for m = 2,
take just the linear interpolation of (x;, 4,(x;))]. Furthermore, the corollary
suggests that one can calculate i, (approximately if m > 2) by an active set
method [see McCormick (1983)]: Take a set of points {z,,..., z,} which lies
sufficiently dense in I (or take {z,...,2y} ={x,,...,x,} if m <2). Then
choose a subset of {z,,..., 2} and calculate the minimizing spline with the
elements of this set as knot points. Then add or remove one element of this set
according to a certain rule and iterate [see Holm and Frisén (1985), where for
m = 2 an active set algorithm has been proposed]. Unfortunately this ap-
proach leads to complications if one uses the statistically more appealing 7 (*)
instead of T,(-) in the definition of -#,, , , (see Section 1).

For m =1, one can use the faster pool adjacent violator algorithm [see
Barlow, Bartholomew, Bremmer and Brunk (1972)]. For m = 2, we propose an
algorithm based on successive projections which has been introduced by
Dykstra (1983) [see also Boyle and Dykstra (1986), Han (1988) and Gaffke and
Mathar (1989)]. This algorithm determines the projection of a point « onto the

intersection of convex sets C, (p = 1,..., P) and it is meant for applications
where projections onto the C,’s can be calculated relatively easily. The algo-

rithm consists of repeated cycles:

CycLe 0. Put ugo=u. For p = 1,..., P, calculate the projection u, , of
Ug ,—1 0nto C,. Put Ay , =ug 1 — Uy,

CycLe j. Forp =1,..., P, calculate the projection «; ,of u; , , + A;_

J Lp
onto C,. Put A; , =u; ,_;+A u

J=Lp ~ “jp*

To calculate f4,, we run this algorithm for every partition of I into &
intervals I, ..., I, where the interval bounds are taken in a not too large set
(to restrict computation time). For simplicity, we consider now only the case
that £ = 1 and that 4, is concave and we suppose x; < - < x,. We define
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the sets
u1+ - ul un - un_
Aq = {u e R”: g - g < D
X1+q — %1 X, —%Xp_g
and
u. —u; u; —U;
_ n. i i—q i+q i
B, ,= {u e R™: — > — }
X; —Xi—q Xirg — %

Then we run the algorithm of Dykstra with u = (Y},...,Y,) and with (C,:
p=1...,P)=(A, B, ;:i=2,...,n — 1). After the last cycle we define 4,
as the linear interpolation based on the final result vector of the algorithm.

Note that for instance a projection of a vector u onto B, , can be calculated
very fast: Look, if u lies in B, . If not, replace (u, —gr Ui Uy g) by its least
squares linear fit. Unfortunately, especially for noisy observatlons this algo-
rithm turns out to be very slow because it needs a lot of cycles for a
satisfactory approximation of f{,. But the speed of the algorithm can be
increased drastically if one introduces a set @ of natural numbers and if one
puts(C,:p=1,...,P)=(A,, B, ;:q <i<n —gq,q € Q). In the simulations
reported later, we have taken @ = {1,...,10}. In general a good choice of @
should take into account the variance of the observations.

For m > 2, this algorithm of Dykstra can also be used if the model is the
following slight modification of &#,, , ,. One may consider u as a function
defined on Z;, = {x,..., x,} 1nstead of I c R. Then a qualitative smoothness
measure may be defined as T,(-) or T (-) but with the rth derivative of u
replaced by the divided difference of order r [for a definition see de Boor
(1978)]. Using this smoothness measure, a modification of %, , , can be
defined as a set of functions u: 2, — R. The least squares estimators can be
calculated by the previously mentioned algorithm of Dykstra (1983) where the
sets (C,: p = 1,..., P) are now defined by inequalities of divided differences.
For m < 2, this is the least squares estimator as defined in (1.4) but restricted
to Z,,. We do not know if this holds also for m > 2. But we conjecture that the
rates of convergence stated in Theorem 2 in the following section remain valid
for this modified estimator.

For the case of a concave/convex or convex/concave regression curve
(m =2, k= 2), we have compared the least squares estimator 4, with a
kernel estimator £, by simulations for two regression functions u; and p, on

= [0, 1]. uq is the broken line joining the points (0, 0), (0.3, —1), (0.7,1) and
(1,0) and u, has been chosen as u(x) = 15x(x — 0.5X1 — x). The pseudoran-
dom variables ¢; (i = 1,...,n) are i.i.d. and distributed according to N(0, o2)
for 0 = 0.1 and 0.5. For sample size n = 200, we have used 1000 simulations.
f, minimizes ©7_,(u(x;) — Y;)? over all concave/convex or convex/concave
functions, that is, 4, is the #5, , least squares estimator where the
constant D has been set equal to infinity. The kernel estimator i, uses the
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TaBLE 1
Squared error at two design points and mean integrated squared error (MISE) of a kernel estimate
L, and of the least squares estimator p,. 1000 simulations, sample size 200

Mean squared error

Optimal MISE at x = 0.5 atx = 0.8
bandwidth h o B (x10%) (x10%) (x10%)
kernel est. 0.08 0.1 My 0.052 0.046 0.059
least squares est. 0.1 "y 0.063 0.091 0.065
kernel est. 0.06 0.1 Ho 0.083 0.056 0.059
least squares est. 0.1 Lo 0.059 0.056 0.035
kernel est. 0.17 0.5 I’ 0.68 0.52 0.84
least squares est. 0.5 “y 0.98 1.22 0.96
kernel est. 0.13 0.5 Mo 0.91 0.64 0.74
least squares est. 0.5 Mo 1.24 1.23 0.83

quartic kernel K(x) = 12(1 — x2)21(|x| < 1). For the bandwidth A, the theo-
retical choice has been used which minimizes the mean integrated squared
error. The results of the simulations are summarized in Tables 1 and 2.

In Table 1, the mean squared error at x = 0.5 and x = 0.8 and the mean
integrated squared error over the interval (0.1, 0.9) are given.

REMARK A. For o = 0.1, the goodness of fit of 4, is comparable to that of
the kernel estimator.

REMARK B. [i, needs some modifications. For very noisy data (o = 0.5), i,
behaves poorly, especially near the inflection point of the regression curves.
This is caused by the large slope which, in the case of noisy data, 4, tends to
have near the inflection point (at the boundary of the intervals I ). One could
try to overcome this by smoothing noisy data before calculating £ ,. Another
possibility would be to use a finite D (instead of D = ) in the definition of
#yr.p Or to bound the slopes at the different boundary points of the
intervals I; by different estimates of the slopes at these points.

ReMARk C. [, tends to caricature the shape of the regression function u,
whereas the kernel estimator tends to oversmooth and to obscure features of
the shape of u. This can be seen in Table 2 where the expectation of
A = [sup,(¢) — inf @, (¢)] — [sup u(¢) — inf u(2)] is listed for x, = i, and i,,.
Note that for &, the expectation of A is always larger and that for fi, this
expectation is positive in the case of the smooth regression function u,. This
point indicates that (i, seems to be a good complement to the kernel esti-
mator fi,,.
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TABLE 2
Expectation of the maximum minus minimum (of the regression estimate compared with the
regression function), expectation of the number of monotone intervals and of concave or convex
intervals of the kernel estimate [, and of the least squares estimator i,. 1000 simulations,
sample size 200

Optimal

bandwidth h o n EA ET, ET,
kernel est. 0.08 0.1 T -0.014 3.09 13.38
least squares est. 0.1 my 0.026 3 2
kernel est. 0.06 0.1 o —0.147 3.08 21.22
least squares est. 0.1 Mo —0.058 3 2
kernel est. 0.17 0.5 78 —-0.078 3.07 8.65
least squares est. 0.5 oy 0.094 3 2
kernel est. 0.13 0.5 Mo —-0.301 3.38 12.06
least squares est. 0.5 Ro -0.178 3 2

REMARK D. In Table 2, listed also are the expected number ET,; of mono-
tone intervals and the expected number ET, of convex or concave intervals of
the regression estimates [restricted to the set of design points in the interval
(0.1,0.9)]. The number of monotone pieces is estimated quite well by the
kernel estimator. In our simulations, the kernel estimator is not smooth if one
measures smoothness by (ET, — 2). The large values of T, correspond to a
large number of superfluous wiggles of the kernel estimator. Note that for
instance the number of wiggles of a curve is an important point if smoothness
is measured visually.

REMARK E. Like the kernel estimator, [, is not robust. Instead of the least
squares estimator one might use the estimator which minimizes » —
Li<i<np(Y; = v(x;)), where p is some increasing function with bounded
slope. But the increase in robustness thus achieved must be paid for by a
considerable increase of computation time. For m = 1 (and % = 1), this has
been discussed by Leurgans (1986). For more general classes of regression
functions, this estimate is studied in Nemirovskii, Polyak and Tsybakov (1984,
1985). For the behavior of active set methods for such problems see Panier
(1987).

3. Asymptotic results. Our next theorem describes the asymptotic
stochastic behavior of the distance between the regression function and the
H,, , p least squares estimator 4i,. We use the following norm (depending on
the design points x, ,,...,x, ,)

]_ n
(3.1) lglls = — 3 g(xi,)"
i=1

The distance || ||, has the advantage that no assumptions for the design are
necessary in the following theorem.
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THEOREM 2. Assume
(3.2) Yi,n=p,n(xi,n) + &, i=1,...,n,

where the regression function p, is in #,, 1.\ pny [for arbitrary sequences
k(n), D(n)] and the design points x; ,, lie in a closed interval I of R. Let the
g; ,’s be independent with

(3.3) Ee, ,=0

and

(3.4) supE exp(Be?,) < const.
n,i

for some B > 0. Then for the #,, ..., pn), least squares estimator fi,, the
following holds:

(3.5) &, — mnll, = Op((k(n)D(n))l/(2m+1)n—m/(2m+l)).

The proof of Theorem 2 will be based on the approach for least squares
regression estimates of van de Geer (1987). It is given in Section 5. Theorem 2
is a slight improvement of a result of Nemirovskii, Polyak and Tsybakov
(1985) from which (3.5) follows up to a logarithmic factor for the case of
constant D = D(n) and %k = k(n). Theorem 2 seems to be new even for the
case of monotone functions (m = 1, k(n) = 1).

The condition (3.4) means that the distributions of the ¢; ,’s do not have
heavier tails than a Gaussian distribution. We do not believe that this strong
condition is really necessary. It may also be avoided by using robust modifica-
tions of f, [see also Nemirovskii, Polyak and Tsybakov (1985)].

For the case of constant D = D(n) and & = k(n), the theorem shows that a
regression function u, can be estimated under the assumption that 7, (u) is
bounded as well as under the assumption that S,,(u,) is bounded [see (1.2),
(1.6)] as far as the order of convergence is concerned. It should be remarked
that (uniformly over the class #,, .., p,)) the rate of convergence in (3.5)
cannot be achieved by a kernel estimator (with global bandwidth).

In the next two theorems we consider the special cases of piecewise mono-
tone regression functions (m = 1) and of piecewise concave/convex regression
functions (m = 2). The next theorem is an immediate consequence of Wright
(1981).

THEOREM 3. Assume
(3.6) Y, . =u(x;,) +& ,, i=1,...,n,

with w € #, ;, p and x; , € R. Let the ¢; ,’s be independent and distributed
according to a distribution P(x; ,) with expectation 0 and variance o*(x; ,),
where a(x) > 0 is a continuous and bounded function. Furthermore for all
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1 < nyn) < nyn) < nwith ny(n) — n(n) - » assume that

-1/2
CE I D R T e, N(OD).

nn)<i<ny(n) nn)<i<sny(n)

Fix a point x,, where u'(x,) exists and where 0 # u'(x,). Furthermore
assume that there exists a distribution function F which is continuously
differentiable in a neighborhood of x, with F'(x,) > 0 and for which

(3.8) sup |F,(x) — F(x)| = o(n™'?),
x
where F, is the empirical distribution function of the design points
Xq ps--+s %, - Then for the #, , p least squares estimator fi,,
' 1/3
1/3 (2F (xO))

2/3 (ﬁn(xo) - #v(xo))

O'(xo)z/s#«'(xo)

converges in distribution to the slope at zero of the greatest convex minorant of
W(¢) + t2, where W is a two-sided Brownian motion.

For further results on the asymptotic law of i, — u, we refer to
Groeneboom (1985, 1989). Theorem 3 can be extended to the case u'(x,) = 0
For this case the asymptotic law of f,(x,) — u(x,) can be found in Wright
(1981). In particular, then f,(xy) — u(xy) = 0p(n~'/%) holds. We conjecture
that a result similar to Theorem 3 holds also for m = 2. We especially expect
that under similar regularity conditions

F'(x0)"”

o (20)*°n"(x,)

where G is a universal distribution. The gap in the proof of (3.9) which we
have not been able to fill out consists in that i,(x,) depends asymptotically
only on the observations at points x; , in a certain shrinking neighborhood of
xo- (3.9) would have a nice interpretation. Consider a kernel estimate u, as
proposed by Gasser, Miiller (1979). Suppose (w.lo.g.) that x; , < --- <=x,
Then for a kernel K and a bandwidth 4 ,, the estimate u, is deﬁned as
Ba(x)=h 'L [ K(x ~8)/h, )ds Y;, where s,,= -, s, , =(x; , +
X;41,,)/2 (for 1 < i < n —1) and s, , = ©. Now consider the theoretical case
that the bandwidth 4, = A ,(x) is chosen depending on x such that E[(x,(x)
— u(x))? dx is minimal. Then

F 2/5
o(x )4(/3:0?,( )1/5 (Fa(x0) — 1(x0))

converges weakly to a Gaussian distribution (depending only on the kernel
function K of the kernel estimate). This suggests that the local average
distance of the knot points of {i, is adjusted to the local behaviour of u, o and

(3‘9) n?/% 1/5 (ﬁ'n(xo) - #(xo)) -, G,

n2/5
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F. i, is therefore a regression spline with well-placed random knot points.
Instead of (3.9) we will prove the following weaker statement.

THEOREM 4. Assume (3.6) with u € #, , , and where the design points
X; n lie in a closed interval 1. Let the ¢, ,’s be i.i.d. with (3.3) and (3.4).
Suppose that for constants C;, Cy:

G C,
(3.10) ’;" Sxi,,,l,n—xi’nﬁ _’l—.
Then for a point x, in the interior of I and for the #,, , least squares
estimator [,

(8.11)  f(%g) — m(%o) = Op(n~¥5) if u"(xo) exists and p'(xo) # 0
and
(3.12) Bn(xo) — m(%x9) = 0p(n™2/%) if p'(x4) = 0, u"(x,) exists and

p(x0)#0 for an (even) r > 2.

We have made no attempt to state Theorem 4 under weaker assumptions on
the design and on the distribution of the ¢, ,’s.

4. Proof of Theorem 1. It remains to show the theorem for m > 2. Fix
i €(1,...,n — 1}). For simplicity, we consider only the case that u(™~ " exists
and that it is continuous and increasing on [x;, x,;]. We will construct i(x)
on [x;, x;,,] such that

(4.1) A(x) =p(x;)) O<r<m-1
(4.2) AO(%;41) = w7(%5401) O<r<m-1

a™~b is piecewise constant and increasing on [x;,x;,,]

(4.3) with a finite number of jump points.
Without loss of generality, suppose x; = 0, x;,, = 1 and u(0) = 0 for 0 <
r<m— 1. Put G(t) = —u™ Y(1 — t). Then one gets by Taylor expansion:
1 tm—l—r
4.4 (1) = | ———— t <r<m-1.
(44) w0 = [0 0srsm

We will show

there exists a discrete positive measure G with finite
(4.5) support and [lt’G(dt) = flt’G(dt) for0<r<m-1.
0 0
If one chooses i such that a™0) =0 (0<r<m—1) and G(@) =

—a™=D(1 — t), then (4.5) implies (4.1)-(4.3). Note that this construction also
implies that sup, . ; 4™~ (x) — inf, . ; 4™ (x) < D.
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Proof of (4.5). Consider a sequence of positive discrete measures G, (with
finite support) which converges weakly to G and an interval partition
(Jy,...,dy,) of [0,1] with G(J;) > 0 for j=1,...,m.Fora =(ay,...,a, ) e
RrR™, deﬁne the measures G, (dt) = a;G,(dt) for t € J;. Now choose a(n) €
R™ such that [4t"Gy,, ,,(dt) jolt’G(dt) for 0 <r <m — 1. Then one can
show easily that @(n); = 0 for 1 <j < m and for n large enough. This shows
(4.5).

5. Proof of Theorem 2. The number of balls of diameter § (measured by
the || - ||, distance) which are necessary to cover a set -# will be denoted by
N8, - I, #). We will use the following result which is an immediate
consequence of Theorem 6.2.5 in van de Geer (1987) [see also van de Geer
(1990)).

THEOREM. Assume (3.2), (3.3) and (3.4) with u, in a set #, ' of functions
I->R Forany>10<v<1, §,>0 and M, (with 1/M, bounded and
M,/n — 0), suppose that

(5.1) log Ny(8,1l - lln, #,) <M, 67" ford <8y, n=n,.
Then the #, least squares estimator @, fulfills

(5.2) 17, = walls = Op((M,/n )" *7).

For the application of this theorem we put M, = (E(r)D(n)"/™, v =1/m
and ¥, = #,, i), pny N P, , where &, is the set of polynomials of degree
(m — 1) and 9”,,3,, is the orthogonal complement of &£, (using the scalar
product { , ), associated with the norm |- |l,). Then me k(n), D(ny 1S the
orthogonal sum #, ® &, . For notational simplicity let us 1dent1fy vectors u in
R”™ and (classes of) functions w: I - R with function values u(x; ,) = u,. We

apply the theorem for the observation vector Y, =Mpu, +¢, where €, 1s the

error vector (e ,,...,&, ,)T and II, is the ,II II,,-pro_Lectlon onto JZ’ Now,
the #, least squares estimator of the observation Y, is I1,Y, l'[ Y, =
M,4,, where Y,=(Y,,,...,Y,,)". Then (5.1) would lmply IIan,n

Mu,l. =0, ((k(n)D(n))l/(z”‘“)n'"‘/(2’"“)) Furthermore the &, least
squares estlmator of the observation vector Y, = (I — I Ju, + ¢, is l'l Y, =
ny,=l,a,=U-1,)4a,, where II], is ‘the || - ||n-pr03ect10n onto 9”
This implies that (I - I1,)(4&, — ,u.,,)II,, = 0,(n~'/?) because for every fune-
tion e, in &£, with lle,ll, =1: {e,,(I =), ) — e, (I =TI )p,>n =
(e,,,l'[’Y' - l'I,,/.l,n),l = (e, e, 0 = ey, 6,00 = 1/nET je(x; e, , =
0,(1/ Vn). Therefore for the proof of Theorem 1 it suffices to show for a §,

and for a n,
(53) log Ny(8, 1l - ln, #,) = O((k(n)D(n))"/"57%/™)
for 6 < 6y, n = n,.

We will apply the following results in Babenko (1979) [see also Birman and
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Solomjak (1967)): Put “(m, M, L) ={g: [0,1] » R: [}lg"(x)ldx < M,
Supg ., <1 18(x)| < L}. Then
(54)  log N(8,d,,#(m,M,L)) < K(M/8)"™ + mlog(L/s)
for a constant K if m > 2 and
(5.5)  log N(8,d,, #(m,M,L)) < K(M/8)"™ + m log(L/5)

for a constant K if m = 1. Here d (g) = supy.,<:lg(x)| and d3(g) =
Jo8%(x) dx.
We show first that the functions in -#, are uniformly absolutely bounded.

LEMMA 1. sup,c s sup,c;lg(x)l = O(D(n)).

ProoF oF LEMMA 1. For m = 1, the lemma follows immediately. Assume
m > 1 and for simplicity I =[0,1]. Choose an m — 1 times continuously
differentiable function g € %, (ie., g € # N C™ V[0, 1]). Note that for
O<r<m-1,

fg(x)x’dx =0
1
Because of g € #,, ;) pn, this gives for0 <r<m — 1,

@0 1
> &™"(0)

O<iem—1 ! o r+i+1

(l)
= /Ig(x)x’dx— Y fg (©) ’”dx‘

O<i<m-1

g™ P(£(x)) — g P(0)
I (m - 1)!
D(n)
T (m-D!'r+m
This shows that supOS,Sm_llg(’)(O)l/D(n) is bounded in U,.;# N
com= 1)[O 1] because the matrix (1/(r + i + 1)), ; is invertible [note that 0 =
rmot ,/(r+z+1)for0<r<m—11mphes a;=0for0<i<m—1 be-
cause 1,x,...,x™ ! are linearly independent and rrga,/(r+i+ 1) =
P2 1a xix dx] Now put g(x) = g(x) — g™ 0)x™"1/(m — 1)!. Then
sup05x<1 |8~ D(x)| < D(n) because of g € Jf _k(n), D(n)y- This implies that
SUP) <y <1, 0<i <m—1 18P /D(n) is uniformly bounded for gin U, # N

C™ =10, 1] [note that §(0) = g®)0) for 0 <i < m — 2]. This proves the
lemma because of |g(x)| < |g(x)] + I1g™~0)|/(m — 1. O

xr+m—1 dx{

fora £(x) with 0 < £(x) < 1.

For m > 2, (5.4) implies (5.3) because #, N {u: u is m times continuously
differentiable} is a subset of &(m, D(n)k(n), const. D(n)) and it is dense in
#, in the supnorm. For m = 1, it suffices to consider the case that the
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design points are pairwise different (otherwise N,(8,| - Il,, 5%,) is smaller).
Furthermore because ||g|l, depends only on the function values at the design
points x; , and because it is invariant under strictly monotone transforma-
tions of the design points x; ,, without loss of generality, we can assume that
%; , = i/n and we can consider the subset #,* C #, of functions which are
constant outside of {x1 5., %, ,} and left-continuous (see also Theorem 1).
Now ligll, = dy(g) for g € #,* and (5.3) follows from (5.5). O

6. Proof of Theorem 4. We will give only the proof of (3.11). (3.12)
follows similarly. For simplicity, assume k =1, m"(x,) <0, I =[0,1] and
x; , = i/n. With probability tending to 1, 4, is concave (because of Theorem
2). Therefore, without loss of generality, we can assume that {i, is the least
squares concave estimator with slope absolutely bounded by D. We write
x; = x; ,. The proof of Theorem 4 is divided into several lemmas.

l

LEMMA 2. f[,(x) can be chosen as a broken line (a continuous and piece-
wise linear function) with breaks only at design points x4, ..., x,. Let G(x) =

L. <Y = 2,(x)x — x,) and let T C {x,,..., x,} be the set of breaks of fi,.
Then there exists a random variable A, with

G(x) = A, forallx €[0,1],

G(x)=A, forallxeT.

n

Proor oF LEMMA 2. Note first that we can define the linear interpolation of
(x;, i,(x;)) as [i, because it has the same residuals as fi,,. Furthermore note
that the function 4,(x) — 8(a —x)*+ 8(b — x)* is contained in #;, p if
a,b €T and |6| is small enough or if a €[0,1], b€ T and 6 > 0 is small
enough. The lemma follows from

d + + 12
_5 (Yi_(/ln(xi)_‘s(a_xi) +8(b —x;) )) )

1
G(a) - G(b) = 5

I/\

For the rest of the proof we will choose i, as a broken line with set of
breaks T C {x,,...,x,}.

LEMMA 3.

sup| 3 Y; = f,(x;)| = Op(logn).

x€T lx,<x

Proor oF LEMMA 3. For x € T define a (and b) as the largest (smallest)
element of {x,,...,x,} which is less than x (greater than x). Apply G(a),
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G(b) = A, and G(x) = A,,. Then
L Y- a,(x;) = (G(b) - G(x))/(b—-x) 20,

x,<x

T Y - n(x) = (G(x) - G(a))/(x — a) < 0.

x,<x

This implies

sup| 2 Y; — A,(x;)| < sup |Y; — A,(x;)|
xeT x,<x x;€T
< sup | |+ sup [An(x;) — pu(x;)]

l<i<n l<i<n
Now (3.4) implies sup,_;_, l¢; ,| = O,(log n). Furthermore because of
Tt of(x) —wu(x) =0 and L7 ;x(4,(x;) — u,(x;)) =0 the function i —
fn(x;) — p,(x;) has at least two sign changes. Because of 4,, u, € #5, p
this shows sup, _; _, 14,(x;) — u(x)l = 0O(1). O

LEmMma 4. Putforu <v e T:

_ u+v\" 1
foul®) = [2- |5 - 552 -1
Z(u,0) =n7t T fum) (% ).

l<i<n

Then
G Z(u,v) <0foru<veT,
i) Sup, <y 7 12,0) = n'E < 2y funo(2)¥] = O(n~Xlog ).

Proor oF LEMMA 4. (i) follows from the concavity of i, + 6f, , for 6 > 0
small enough. (ii) Lemma 3 implies

Z(uv) —n Y fuo(x) (Y- /an(xi))‘ = 0,(n""(log n)).

u<x;<v

sup
u<veT

For (ii), it suffices to show sup, ., c7|Z, <y, <o fu, ()R, (x)] = O,(1). But
this follows from '

2: ﬂhv(xﬂ

u<x,<v

sup
u<veT

=0(1) and sup

u<veT

> fu,o(%:)%;

us<x,<v

=0(1)

and the boundedness of |4,| and |4/,| (see the proof of Lemma 3). O

LEMMA 5.

sup |f,(x) — u(x)| » O (in probability) for ¢ > 0.

x€le,1—¢]
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Proor oF LEMMA 5. From Theorem 2, it follows that for every 6 > 0 and
for every fixed interval partition [a,, a,],...,[a ;_1, a ] of [0,1], there exists
random variables A;, € (a;, J+1] such that P(Z,) » 1, where Z, =
{la,(A; ) —u(A; )l <éforl <j<dJ — 1}. For two points (tl,yl)and (t2,y2)
define the linear function g[(¢,, y,), (¢,, ¥o)1 with gl(¢,, y,), (¢4, y2)2,) = ¥, for
k = 1,2. Now apply that on Z;, for x € (e}, a,,,] (note that i, is concave):

2(%) <8[(Aj—5, (Aj5.0) = 8), (Aj_1,s m(Aj1,) +8)](2)
< max{g[(a;_5,, #(@;_3,) = &), (a; 1,0 m(a;1,) +8)](x),
8[(@j-2.mr (@) 2.n) = 8),(@j-1,0r(a;_1.0) +8)](2)},
Bn(%) = &[(Aj-1,n#(Aj-1,0) = 8)s (Ajerins B(Ajir,n) = 8)] (%)

= g[(aj—l,m#(aj—Ln) - 8)7(aj+2,n7/'1'(aj+2,n) - 5)](x)
The lemma can be shown by an appropriate choice of a sequence of §’s and of
interval partitions. O
Now define for z, € [0, 1] with z, — x:
U,=sup(x;€T:x,<z,),
V,=inf(x;€T: x;, > z,).

Then Lemma 5 implies V,, — U, — 0 (in probability). Furthermore Lemma 4
implies

Z( n’ n) 1( rn n)+Z2( n» n)+0(n l(logn))

where

Zyu,v) =n"t Y fy(x)n(x),

u<x,<v

Zy(u,v)y =n"1 Y f, . (x)e;.

u<x,<v

The next lemma follows by direct calculations.

LEMMA 6.
Zy(U,, V) = 2k (%0) (Va = Up)’(1 + 0,(1)) + (V, = U,)O,(1/n).
The next lemma treats Z,(U,, V,).

LEMMA 7. There exists a two-sided Brownian motion B(+) with
|Zo(U,,V,)| < const.n"2 sup |B(x) — B(z,)]|

U,<x<V,

+(V, = U,)0,(n"*(log n)).
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Proor oF LEMMa 7. Put U = U,, V = V,. By partial summation one gets

Z2(U’V)=n_1fU,V(V) YoE

U<x, <V

+n7t ) (fU,V(xj—l)_fU,V(xj)) Y e

U<x;<V U<x,<x,_;

The lemma follows by strong approximations of the partial sum process
J2 Y, cxer i Gf x;22) 0r =%, ., ., 6 (f x;<z,) by a two-sided
Brownian motion [see Komlés, Major and Tusnady (1975)]. O

Lemma 8. 'V, — U, = 0,(n™'/?).

Proor oF LEMMA 8. Choose ¢, — ». Note that Z(U,,V,) < 0 (see Lemma
4). Therefore one gets from Lemmas 6 and 7 for a constant C:

P(V, - U, >c,n"'/?)

sP(n_l/2 sup |B(x) — B(z,)| = C(v — u)’ for some u,v

U<x=<v

with u <z, <vandv —u > cnn‘1/5) +0(1)

=P( sup |B(x) — B(0)| = C(v — u)® for some u,v

uU<x<v

withusOsvandv—uzan)+o(1)

<2P(|B(v) — B(0)| = Cv® forav > ¢c,) + o(1)
=0(1). 0

Now the theorem can easily be proved: Apply Lemma 8 for z,, = x, + Cn~1/5,
2, =x, and z, = x, — Cn~1/5 for C large. Use Lemma 3 and argue similarly
as in the proof of Lemma 5.
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