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ON NEGATIVE MASS ASSIGNED BY THE BIVARIATE
KAPLAN-MEIER ESTIMATOR!

By RoNaLp C. PruUITT

University of Minnesota

Conditions under which the bivariate Kaplan-Meier estimate of
Dabrowska is not a proper survival function are given. All points assigned
negative mass are identified under the assumption that the observations
follow an absolutely continuous distribution. The number of points as-
signed negative mass increases as n? and the total amount of negative
mass does not disappear as n — », where n is the sample size. A simula-
tion study is reported which shows that large amounts of negative mass are
assigned by the estimator, amounts ranging from 0.3 t6 0.6 for a sample of
size 50 over a variety of parameters for bivariate exponential distributions.

1. Introduction. Dabrowska (1988) introduced a multivariate survival
curve estimate. In her paper she points out that her estimate may fail to be
monotone and hence may not be a survival function. This paper describes
when and how Dabrowska’s bivariate estimate is not a survival function.

Throughout we follow the notation of Dabrowska (1988). We wish to infer
about a bivariate distribution T = (T, T,;)) subject to censoring. Assume T and
the censoring variable Z = (Z,, Z,) are defined on a common probability space
(Q, #,#) and have survival functions F(s,¢) = Pr(T, >s, T, >¢) and
G(s,t) = Pr(Z, > s, Z, > t). The observable random variables are given by
Y =(Y,,Y,) and 8 = (8,,8,), where Y; =T, A Z, and 8, = 1[T, = Y;], for i =
1,2. To estimate F, suppose we have a sample (Y,,d,), i = 1,...,n, which
" consists of independent, identically distributed copies of (Y, 8). Let

HA(s,t) =n"'Y 1[Y,; > 5, Y,, > ],

Ri(s,t) =n"tY 1[Yy; > s, Yy > 8,6, = 1,8, = 1],
Ry(s,8) =n ' L 1[Y}; > 5, Yy > 1,8, = 1],
Ry(s,t) =n"t Y 1[Yy; > s, Yy, > £, 8, = 1].

These functions can be used to estimate the bivariate cumulative hazard
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function by

Ay(s, ) =[Os[0‘1€1(du,dv)/ﬁ(u— v-),
Apol(s,8) = - foskz(du,t)/ﬁ(u— 1),

Ros(s,t) = —[O‘I%:,,(s,dv)/ﬁ(s,v—).

With f(Ax) = f(x) — f(x— ), define

{1- Alo(Au,v—)}{l — Agy(u~ , Av)}

L(Au,Av) =

if the denominator of the right-hand side is nonzero, and otherwise let
L(Au, Av) = 0. Dabrowska’s estimate is

(1) B(s,t) = F(s,00F(0,¢) T1 {1 - L(Au,Av)},
O<uc<s
O<v<t

where (s, 0) and F(0,¢) are the marginal Kaplan-Meier estimates.

2. Points assigned negative mass. Since the estimate has
Kaplan-Meier marginals, it is a survival function if and only if it assigns
positive mass to all rectangles. Further, in light of the fact that it is a discrete
measure (see Theorem 1), it is a survival function if and only if it assigns
negative mass to no points. We only consider the case where Y is absolutely
continuous, since if it is discrete eventually all points at which the survival
curve can be estimated will have uncensored observations.

THEOREM 1. Assume the distribution of Y is absolutely continuous. With
probability 1, Dabrowska’s estimate is a discrete measure and assigns negative
mass in accordance with Lemmas 3-17.

Proor. Restrict attention to the case when Y},,..., Y], are all distinct for
i =1,2. We will follow the convention that if the largest observation is
censored, the univariate Kaplan-Meier estimate places the indeterminate
mass at the censored value of the largest observation. Define M; by Y;,,
max(Y,;,...,Y;,} for i=1,2. With this convention it is easy to show
Dabrowska s estimate does not depend on the value of §;,, for i =1,2. We
will assume §;,,, = 1 for i = 1,2. First note that mass is concentrated on the
set of points S = {(y;,¥2): ¥1 = Yy;, y2 = Y5, 8;; =1 and 8,; = 1 for some
1 < i,j < n}. The mass assigned to a point (s, #) may be written

(2) F(As, At) = Ry(s,t){R(s,t)Ry(s,t) — Rs(s,t)},
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where
Ry(s,t) = TI {1-L(Au,Av)},
sy
R(s,t) = F(s—,0) - F(s,0) T1 {1- f,(As,Av)},
O<v<t
Ry(s,t) = F(0,t—) — F(0,2) TT {1 - L(Au,As)},
0<u<s
and

Ry(s,t) = L(As, At)F(s,0)F(0,2) [T {1 - L(Au,At))
0

<u<s

x [T {1-L(as,Av)}.

O<v<t

Note that the set of points where L(Au, Av) is nonzero is contained in S, and
the marginal Kaplan-Meier estimates only both change value on points in S.
There are seventeen possible cases, the case when i = j and the sixteen cases
indicated in Figure 1. By symmetry only plots in Figure 1 on or beneath the
diagonal need to be considered; for example, plots 4 and 13 only differ in the
labeling of the variables. These fall into five cases which are covered by
Lemmas 3-7. O

We split the types of points assigned mass into five types for convenience of
exposition: The groupings are arbitrary and based on similarities which sim-
plify the proofs. Points of types I-III which receive negative mass share the
characteristic that once they appear in a sample, the addition of more sample
observations can never make them disappear. This can be seen from Lemmas
3-5. The amount of negative mass assigned will become smaller, but the fact
that negative mass is assigned to the point will never change. These points are
also very prevalent (see Theorem 8), constituting a fraction of all points
receiving mass. Type IV points are relatively rare; they are only assigned
negative mass if the coordinate values of the points involved are among the
largest in the sample. Type V points are never assigned negative mass, and
these include uncensored observation points.

Before stating and proving Lemmas 3-7 we give an auxiliary lemma which
will be used heavily. This lemma delineates precisely what determines the sign
of Ry(s,t) [or R(s,?)]. The centrality of these conditions is apparent from (2).
Let n,, = nH(s — ,¢ — ) be the number of observations in [s, ©) X [£, ®).

LemMma 2. Fixk,with1l <k <nand 8,, = 1. Lets =Y, andt = Y,,. Let
Cc=1{Y,,3,): Y, <s, Yy, >t 8, =0} Then Ryx,t) <0 if and only if
8, =1,n,,>1andx > s, with equality if and only if C is empty.
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Fic. 1. Graphical representation of configurations of observations described in Lemmas 3-17. Two
observation points are indicated in bold on each of the above plots; singly censored observations are
indicated by an arrow. Points of possible negative mass are at the intersection of the dashed lines,
say (s,t), and conditions for negative mass assignment are given. The sets D and E only contain
points with 8, = 0, and the sets D' and E' only contain points with §; = 0. The sets F and F' have
no censoring restrictions.
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ProoF. Since the observed values are all distinct,
A01(x— ,At) = {(nx,t)_l, for x <s,
0, for x > s,

and

Au(Ax, At) = {(nx,t)_l, forx = s, 81 = 1,
0 otherwise.

b

Combining this with a similar equation for A ,,

nx,t(n’x,t - 2) . N
——————~, ifx <sand K,(Ax,t) <0,
(n’x,t - 1)
& nx t

(3) 1 -L(Ax,At) ={ —"—, ifx=s,8,=1andn,,>1,
(n’x,t - 1) 1 't
1, ifx=s,6,=1landn,, =1,
1, if x > s or Ky(Ax,t) = 0.

Note that K,(Ax,t) < 0 precisely if there exists an observation with first
coordinate uncensored at x and second coordinate greater than or equal to ¢,
so that K,(As,t) < 0 if and only if §,, = 1. Now

nu,t(nu,t -2)
{ (nu,t_ 1)2 }

IT {1 - L(Au,At)} I

O<u<s _0<u<s
(4) Ky (Au,t)<0

Moyt (ns,t -1)

h (n0+,t —1) ng; ’

with equality if and only if C is empty. If C is empty, the product is a
telescoping product and if C is nonempty terms less than one are left out of
the product. If x > 5,8, =land n,,> 1,

1 - L(Au,At)} = 1 - L(Au, At > .

0<1:[<x{ : ( )} 0<1:[<s{ ( )}ns,t_ 1 (no+,z_ 1)
This shows the sufficiency after noting that ﬁ'gO, t—)/F,t) = n, i/
(ny, , — 1. For the necessity, Ry(x,?) = F(0,¢— ) — F(0,¢) > 0 whenever x <

s,0y,=0o0rn,,<1. 0O

UF Noy, ¢

For any set A € R2 X {0,1}% let A’ = {(31, ¥9, 81, 83): (¥3, ¥4, 82, 61) € A}

LemMA 3 (Type ). Assume Yy, <Yy, Yy, > Y,,, 8;; = Land 8,; = 1. Then
negative mass is assigned to the point (Yy;,Y,;) if and only if D or D’ is
nonempty, where D = {(Y,,8,): Yy, > Yy;, Yy, <Y,; and 8,, =0 for some
k=1,...,n}.
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Proor. Let s =Yy, t =Y,;, and note R(s,?) > 0. From (4),

I (1 L(su,a0)) 2 ot (e =D

0<u<s B (n0+,t_ 1) ng.

I

with equality if and only if D’ is empty. Applying this to (2) gives

F(As, At R ng 1 n 1
F(85,80) _pig oy—leor L pig gy o
Ro(s’t) (ns,0+_ 1) U (n0+,t - 1) N ¢
1 A A ns ns - ].
_—_2"F(S7O)F(O7t) 0 ( ! )
(ns,t - 1) (ns,0+_ 1) ng
Nog,: (ns,t -1 —o
(n0+,t -1 Nt ’

with equality if and only if D and D’ are both empty. O

LEMMA 4 (Type II). Assume Yy <Yy, Yy, <Yy, 8;=1, §;;=1 and
8,; = 1. Then negative mass is assigned to the point (Yy;, Y ;) if and only if the
set E = {(Y,,d,): Yy, > Yy, Yy, <Yy and 8,, =0 for some k=1,...,n} is
nonempty.

Proor. Note that R4(Yy;,Y,,) = 0, and by Lemma 2, Ry(Y};,Y,;) > 0 and
R(Yy;, Y,;) <0 if and only if E is nonempty. Also note from (3) that 1 —
L(Au,Av) = 0 only if n,, ,,= 0 and hence R(Yy;,Y,;) > Osince n,, ,, > 1
for0<u<Y;and0<v <Y, O

LeEmMa 5 (Type III).  Assume Yy; > Yy, ¥y, <Yy, 8;;,=1,085;=1,8;,;=0
and 8,; = 1. Then negative mass is assigned to the point (Yy;,Y,;) if and only
if the set E of Lemma 4 is nonempty, the set F ={(Y},,3,): Yy, > Yy; and
Y,, > Yy, for some k =1,...,n} is nonempty, and R (Yy;, Y5;) > 0.

Proor. Note that R4(Yy;,Y,,) = 0, and by Lemma 2, Ry(Yy;,Y,;) > 0 and
R(Yy;,Y,;) <0 if and only if E and F are each nonempty. O

LEmma 6 (Type IV). Assume Yy; > Y, Y, <Yy; and 8;; =0y = 0y =
85, = 1. Then (Yy;,Yy;) is assigned negative mass if and only if [the set
G = {(Y,8,): Yy, > Yy, and Yy, > Y,; for some k =1,...,n} is empty, the
sets E and F of Lemma 5 are each nonempty and R (Yy;,Y,;) > 0] or [the set
G' is empty, the sets E' and F' are each nonempty and R (Y,;,Y,;) > 0.

Proor. Note R4(Yy;,Y,;) = 0, so that negative mass is assigned if and only
if [R(Yy;, Yy,) > 0, Ry(Yy,, Yy,) < 0and Ry(Yy;, Yy;) > 0] or[Ry(Yy;, Y,;) > 0,
R(Yy;,Y,;) >0 and Ry(Yy;,Y,;;) <0]. By Lemma 2, R(Y},Y,;) <0 and
Ry(Y,;,Y,;) > 0ifandonlyif G =, E+ Jand F + 3. O
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LemMma 7 (Type V). Negative mass is not assigned to any points not covered
by Lemmas 3-6.

Proor. For the case of mass-assigned to an uncensored point, we have
R(Yy;,Y5,) >0, Ry(Y;,Y,;) >0 and Ry(Y};,Y,;) < 0. For the other cases,
R3(Y1i’ Y2j) = 0, R2(Y1i, Y2j) > 0, Rl(Yli’ YZJ) > O and RO(Yli’ YZJ) > O. [}

3. Number and magnitude of negative mass points. In this section,
we provide a rough lower bound on the expected number of points assigned
negative mass which grows as n?, and then show that the total amount of
negative mass remains bounded away from 0. This is followed by discussion of
a simulation study.

3.1. Number of negative mass points. Let T, be the total number of
points assigned negative mass from the sample Y,,...,Y,.

THEOREM 8. Assume the distributions of Y, T and Z are absolutely
continuous. Also assume that the supports of T and Z have nonempty
intersection which contains an open set. Then E(T,) = O(n?).

Proor. Define the point p,; = (Y};,Y,;) and let T,(Z, j) be the indicator
that p;; is assigned negative mass. Let B be the event that points 1 and 2
form a type I pair; that is, B = {Y;; < Y}, Yy, > Y, §;; = 895 = 1}. Recall the
events D and D' from Lemma 3. Then

E(T,) = X X E(T.(i,)))
=n(n - 1)P(T,(1,2) =1)
>n(n —1)P(B)P(T,(1,2) = 1|B)
=n(n - 1)P(B)[1 - P(D =0, D = J|B)].
The conditions of the theorem suffice for P(D = &, D’ = J|B) to be less than
1, and P(B) to be greater than 0. O

Note that this same method of attack works for points of type II or III as
well to show there are O(n2) of these type of points. We can also evaluate
these bounds for special cases. The sets D and D’ depend on n, denote these
events as D, and D, if the sample size is n. Then

P(D, = @, D, = @I|B)
- [{P(Dy = @, Dy = @IB, m;, m,)}" dF(my, m,),

where W, = (Y;; AY,,) for i =1,2 and F is the distribution function of
(W, W,)|B.

In particular if the supports of T and Z are both all of R2, this probability
decreases to 0. Of all the points of type I (I or III) in such a sample, a
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vanishing fraction does not receive negative mass as the sample size increases.
In such cases, the percentage of points receiving negative mass in large
samples will be determined by the relative frequency of type I-III points.

3.2. Magnitude of negative mass points. This assignment of negative mass
might be acceptable in practice, although philosophically troubling, if the
amount of negative mass assigned was small. This is not the case, however.
The amount of negative mass assigned to each point receiving negative mass
does go to 0 which can be seen since the estimator is consistent. Here we
develop a bound on the rate at which this occurs. Let U, be the total amount
of negative mass assigned by Dabrowska’s estimator.

THEOREM 9. Assume the distributions of Y, T and Z are absolutely
continuous. Also assume that the supports of T and Z have nonempty
intersection which contains an open set. Then liminf, . U, > 0 almost surely.

Proor. Suppose (by renumbering if necessary) that Y; and Y, occur in the
configuration given in plot 13, and let s =Y;; and ¢ =Y,;. Let K, = #E,
where E is given in Lemma 4, and let M, = n,, — 1. Note that (K, M) has
a multinomial distribution with parameters n — 2, p; and p,, where p; =
P[K; = 1] and p, = P[M; = 1]. Assume p; > 0 and p, > 0, and note that the
probability of Y, and Y, being in this arrangement is nonzero by hypothesis.
The expected number of pairs of this type in a sample of size n is O(n?).
Consider n so large that K, and M, are both nonzero. Note R4(s,t) = 0. We
now develop bounds on R,, R, and R,. Note

ns,0+_ Kn

1 - L(As,Av)) > —2—"—,

o!:[q{ ( ) ngo.—K,—1
which may be seen by noting that if K, is 0 the product is a telescoping
product, and for every element in E one term gets left out, so to minimize the
product we leave out the largest terms. Also note that I'T, ., . {1 — L(Au, At)}

< 1, so that
R2(3at) n0+,t

= > -1>0
F(O’ t) Noy,e — 1

and

R1(37t) _Kn

= <

F(S’O) (ns,0+_ 1)(ns,0+_ Kn - 1)
Since 1 — ﬁ(Au,Av)zz 1-M;2? for any u,v in [0,s) X [0,¢), we have
Ry(s,t) = (1 — M, %)™, This yields

N ~ n2
—K,n?F(s,0)F(0,t)(1 — M,?)

(ns,0+_ 1)(n0+,t - 1)(ns,0+_ Kn - 1)

-K 2
n _ ar—2\n
),

<0.

n?F(As, At)

IA

<
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The right-hand side of this last inequality converges almost surely to
—p,exp(—p;?) <0. O

Similar bounds can be obtained for the other points of type I and II, but the
algebra is messier.

The bound for the magnitude of negative mass depends on the number of
censored observations in a certain region, rather than there just existing such
points as was the case for the number of negative mass points. For this reason,
we might expect the amount of negative mass to be more variable and to
depend on different factors in the distribution. These general observations are
supported by the simulation results, but further analysis seems to be difficult.

.

3.3. Simulation results. Data for T and Z were generated from the bivari-
ate exponential model of Marshall and Olkin (1967): F(s,t) = exp{—A,s —
At —Ap(s V) for s, >0 and A, > 0, Ap > 0. The distribution for Z has
parameters A, and A;. Only models symmetric in s and ¢ were considered.
Simulations were performed for all combinations of A, =1; A;,=0,1; A, =
0.5,1,2; A, = 0, 1. The independent, identically distributed case and the cases
which gave extreme readings in terms of numbers and mass of negative mass
points are summarized in Table 1. The percentage of grid points assigned
negative mass refers to the percentage of the possible points receiving mass

TaBLE 1
Simulation results for Dabrowska’s estimator for the bivariate exponential model F(s,t) =
exp{—A,s — At — Ap(s V )} and G(s, t) = exp{—A,s — At — Az(s vV O

Sample Percentage of grid points Total amount of
Parameters size assigned negative mass negative mass assigned
Ay Ap A, Mg n Average Minimum Maximum Average Minimum Maximum
1 01 0 10 0.29 0 0.73 0.22 0 1.21
25 0.46 0.14 0.71 0.44 0.04 2.09
100 0.57 0.41 0.71 0.74 0.34 2.46
400 0.61 0.52 0.67 0.97 0.52 1.67
1 02 1 10 0.19 0 0.62 0.11 0 1.03
" 25 0.35 0 0.69 0.26 0 1.62
100 0.47 0.20 0.68 0.52 0.03 2.04
400 0.50 0.38 0.62 0.81 0.24 2.27
1 1050 10 0.24 0 0.75 0.16 0 0.91
25 0.45 0.07 0.82 0.25 0.01 0.91
100 0.69 0.43 0.83 0.36 0.14 0.84
400 0.76 0.68 0.81 0.41 0.25 0.69
112 0 10 0.30 0 0.76 0.22 0 1.07
25 0.50 0.06 0.81 041 0.02 1.48
100 0.64 0.39 0.79 0.69 0.21 1.77
400 0.67 0.59 0.74 0.91 0.51 1.78

*The trial size is 1000. The estimated standard errors for the averages are all under 0.01.
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and not to the percentage of n? This tends to remove some of the noise of
having a large or small number of censored observations.

In general, observation pairs consisting of a small censored variable and a
large other variable cause negative mass points as can be seen in Lemmas 3-5.
For this model such conditions tend to occur if the T' variables are correlated
and the Z variables are uncorrelated, for example, A, = A; = 1 and A, = 0. A
smaller percentage of points are assigned negative mass if the T variables are
uncorrelated and the Z variables are correlated. The total amount of negative
mass assigned and the percentage of points receiving negative mass are not
strongly positively correlated; in fact, the parameters which gave the highest
percentage of negative mass points gave the lowest average total negative
mass. The independent case gave the most negative mass.

4. Conclusions. Why does Dabrowska’s estimator assign negative mass,
and should we be worried about it? The same questions can be asked of the
estimator proposed by Langberg and Shaked (1982), which also assigns nega-
tive mass. We provide an answer to the first question by analogy with the
univariate problem. The assignment of negative mass is not a problem if the
estimate at a single point is all that is desired, since it can be checked that the
estimator assigns positive mass to all upper orthants. It may also be feasible to
get an estimator which is a probability measure by smoothing, either into fixed
bins making the problem discrete, or by choosing a smoothing window around
each point. Our main concern here is why such a sensible generalization of the
univariate problem can give an estimator which essentially always assigns
negative mass.

In one dimension, assuming T and Z independent in the censored data
problem makes the distribution of T identifiable. The assumption that T' and
Z are independent can be slightly weakened [Tsai (1986)], but not much. There
is nearly a one-to-one correspondence between the (Y, §) and (T, Z) distribu-
tions with T and Z independent. One way to view the Kaplan—Meier estima-
tors for T and Z is as distributions which are consistent with the observed
data being the entire population.

The situation for bivariate data is quite different. Consider a simple exam-
ple. Suppose Y, =(2,2) and Y, =(3,1), and both points are uncensored
(6,; =1, 1 <i,j <2). Suppose Y; = (1,¢) with 8,3 = 8,3 = 0. First assume
t < 1. The given data are consistent with T and Z being independent in the
sense of there existing distributions for T and Z which combine to give the
empirical distribution for the observed data. If Z has mass 1/3 at (1,¢) and
2/3 at (3, 3), and T has mass 1/2 at (2,2) and 1/2 at (3, 1); then the observed
data are the population values for Y and .

But if # > 1 this is no longer true. Now the observation at (1, ¢) makes it
appear that T and Z are not independent. If T and Z are independent, T has
mass at (3,1), and Z has mass at (1,¢), so that eventually there will be
observations at (1, 1) with the first coordinate censored. Since no such observa-
tions exist in this sample, a tension is created between the independence
assumption and the treatment of the sample data via empirical survival and
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subsurvival curves. Since the estimation procedure is making use of both the
independence and the empirical mass assignment this tension causes difficulty.
In the particular treatments of Dabrowska or Langberg and Shaked, it causes
negative mass assignment. ¢

There are two avenues of approach to deal with the problem just outlined.
The first, which apparently has not been attempted, is to relax the assumption
that T is independent of Z and find a weaker assumption which still allows the
distribution of T to be identified. This is pursued in Pruitt (1989) for discrete
distributions with full support where it is shown that assuming 7; indepen-
dent of Z; conditional on T;_; and Z,_; for i = 1,2 is enough to ensure
identifiability. In this setting, estimators may be found which are consistent
with the observed data being the entire population. The other option is to find
a distribution for T which is not consistent with the observed data being the
entire population. There is nothing wrong with this approach, but properties
such as being a proper survival function which are guaranteed in the former
approach become theorems to be proved.

Acknowledgment. The referee’s comments were useful in improving the
presentation. ’
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