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ESTIMATION OF A PROJECTION-PURSUIT TYPE
REGRESSION MODEL!

By HunG CHEN

State University of New York, Stony Brook

Since the pioneering work of Friedman and Stuetzle in 1981, projec-
tion-pursuit algorithms have attracted increasing attention. This is mainly
due to their potential for overcoming or reducing difficulties arising in
nonparametric regression models associated with the so-called curse of
dimensionality, that is, the amount of data required to avoid an unaccept-
ably large variance increasing rapidly with dimensionality. Subsequent
work has, however, uncovered a dependence on dimensionality for projec-
tion-pursuit regression models. Here we propose a projection-pursuit type
estimation scheme, with two additional constraints imposed, for which the
rate of convergence of the estimator is shown to be independent of the
dimensionality. Let (X, Y) be a random vector such that X = (X, ..., X,;)7
ranges over R?. The conditional mean of Y given X = x is assumed to be
the sum of no more than d general smooth functions of B7x, where
B; € S, the unit sphere in R? centered at the origin. A least-squares
polynomial spline and the final prediction error criterion are used to fit the
model to a random sample of size n from the distribution of (X, Y'). Under
appropriate conditions, the rate of convergence of the proposed estimator is
independent of d.

1. Introduction. Recently, nonparametric regression techniques have
become increasingly popular as tools for data analysis, since they do not
confine the form of the regression function m(x) to a restricted class of
functions, such as polynomials. In the literature one can find many nonpara-
metric methods for estimating m(-), for example, smoothing spline and kernel.
All lead to rather similar procedures, that is, the estimate of m(-) is based on
d-dimensional local averaging. [See Silverman (1985).] From Stone (1982), it is
clear that nonparametric techniques based on d-dimensional local averaging
will not give a good estimate of m(-) for a moderate sample size when d is
large. This phenomenon is known as the ‘“curse of dimensionality’’ [Bellman
(1961)] in the literature.

In this paper we propose an estimator whose rate of convergence is found to
be independent of the dimensionality, d. Let (X,,Y,),(X,,Y,),... denote
independent random pairs, each having the same distribution as X,Y)
R? X R, and let (x,,y;), (X, ¥,),... denote their realization. The regression
function of Y on X is m(x) = E(Y|X = x). We propose an estimate of m(-) for
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the following projection-pursuit type regression model

K,
(1) m(X) = po + kZ 8,(BIX),
=1

where B, € S?! and E[6,(8FX)] = 0 with constraints K, <d and
ang({B,, ..., Bk,}) = M, > 0. Here S9-1 is the unit sphere in R? centered at
the origin and, for K, > 2, ang({B,,..., Bg ) is defined to be the mini-
mum among &ll the angles between B, and the linear space spanned by
{By,---,Bg,) N {B;} for 1 <i < K,; otherwise, it is defined to be 7/2. The
specifics of the proposed estimate of m(-) are given in Section 2.

In order to reconcile the need for flexible modeling and the curse of
dimensionality due to d-dimensional local averaging, a compromise between a
parametric regression model and a nonparametric regression model is needed.
Stone (1985) proposed an additive model of the form

d
(2) m(X) =pu+ Y 0,(Xp),
k=1
where X = (X, ..., X,;) and the 6,’s are arbitrary nonlinear one-dimensional

functions. He proved that for general m(-) there exists an additive model,
m (+), which minimizes the L? distance between m and any model of the form
(2). Further, he showed that the optimal rate of convergence for the estimator
of m(-) in the L? norm is independent of d. This gives a justification for the
use of additive models to explore the structure of m(x) when d is large.

A different approach was considered in Friedman and Stuetzle (1981). They
proposed the projection-pursuit regression (PPR) algorithm to approximate
m(x) by a sum of ridge functions. This motivates the following PPR model:

K
(3) m(X) =+ ¥ 6,(BiX),
k=1

where K is an unknown integer, 8, € S?™!, each 87 X may be thought of as a
projection of X in the direction B,, and 6,’s are arbitrary nonlinear univariate
functions. When B7X = X, and K = d, the PPR model (3) reduces to the
additive model (2). We obtain (1) by imposing constraints on K and
ang({B,, . .., Bk, ) stated earlier.

The PPR model may seem to have the potential of overcoming the ‘““curse of
dimensionality,”” since all estimation is performed in a univariate setting.
However, Donoho and Johnstone (1989) show that the bias of the PPR-type
approximation based on (3) still depends on d when the regression function is
harmonic. If K in (3) is permitted to be indefinitely large, it is known that (3)
can yield an arbitrarily good approximation to any given square-integrable
function on [—1,1]%. On the other hand, Ibragimov and Has’minskii (1981)
and Stone (1982) showed that the lower rates of convergence for estimating
general regression functions on [—1,1]® do depend on d. Therefore, the
estimation of a general regression function on [—1, 1] based on (x;,y,) and
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the PPR algorithm in Friedman and Stuetzle (1981) is not immune to the
curse of dimensionality if no additional constraint is imposed on the regression
function.

In view of these problems, thé new model defined in (1) is proposed here.
The two additional constraints K, < d and ang({B,,..., Bk} are used to
guarantee that the 6,’s are uniquely determined. It is found that the rate of
convergence under model (1) for the proposed estimate of m(-), which is
defined in Section 2, is independent of d. In other words, model (3) can bypass
the curse of dimensionality if we impose the given constraints. However, model
(1) is not as flexible as model (3) since it cannot approximate general d-dimen-
sional functions well.

There are two other PPR algorithms discussed in the literature which are
along the lines of Friedman and Stuetzle (1981). The major difference among
these three algorithms is how to search for the direction B,: (i) In Friedman
and Stuetzle (1981), a forward-selection PPR algorithm without backfitting is
suggested. (ii) A forward-selection PPR algorithm with backfitting is given by
Friedman, Grosse and Stuetzle (1983). (iii) A global search algorithm with
backfitting is proposed in Friedman (1984). The algorithm proposed in the
present paper is similar to case (iii), the one in Friedman (1984). Hall (1989)
has studied case (i), the algorithm in Friedman and Stuetzle (1981), and shows
that the rate of convergence is independent of d for estimating the ridge
function at the kth stage of the forward-selection algorithm without backfit-
ting. For such an estimation scheme, however, it is not clear whether the
estimate of m(-), after the kth-stage searching, is close to the estimate of
m(-) obtained by a global search algorithm in which % directions have been
searched simultaneously. Therefore, Hall’s result cannot be easily generalized
to obtain a result similar to ours. Additional comparisons of Hall’s result and
ours are made in Section 3 as Remark 5.

The organization of this paper is as follows: The proposed estimation
scheme is described in Section 2. The main result and regularity conditions are
stated in Section 3. Implementation of the proposed algorithm and general
discussions are given in Section 4. Section 5 provides technical details for the
main result presented in Section 3. In order to facilitate the presentation of
our results, the proofs of two technical lemmas are deferred to Section 6.

2. Estimation scheme. In this paper the determination of K, and {83,},
1 <k < K,, is treated as a model-selection problem in which a model corre-
sponds to a specific choice of K, and {8,}, 1 < & < K,,. The primary goal is to
estimate a function m(-) of the form (1) which minimizes E[m(X) — m (X)I?,
where m (X) is the true regression function and m(X) is of the form (1).
Therefore, we use the estimation scheme in Stone (1985) for fixed K, and
{B,}, 1 <k < K, and then optimize over the choice of K, and {8,} simultane-
Gusly by the use of a final prediction error (FPE) criterion. This criterion
originates from Mallows’ C, criterion [see Mallows (1973)] and the final
prediction error of Akaike [see Akaike (1974)]; additional references are found
in Li (1987).
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We first establish some notation for a description of the proposed estimation
method. Let the open set U in R? contain C = {x: ©¢_;x? < 1} and let 1; be
the indicator function of V c R?. First we describe a polynomial spline
estimate of 6,(a’X) for a given set of directions, A, = {ay,..., a;,}, where
a; € S%~1. We note that polynomial splines are also used in Friedman, Grosse
and Stuetzle (1983) to approximate 6,(-).

Let B, ,n denote the class of functions

4 3) =+ sy(alx) + o +s,(al),

where u is a constant and each s, is a polynomial spline of degree ¢ on[—1,1]
with equispaced knots of distance 2/N, i.e.:

1. s, is a polynomial of degree g on [—1+ 2(t — 1)N~!, — 1 + 2tN~'] for
1<t<N;

2. s; is (¢ — 1)-times continuously differentiable on [-1, 1];

3. [s(aTx)f(x)dx = 0, where f is the density function of X.

Then B, v (hereafter abbreviated as B,,) is a vector space of dimension
Aagn = kN + k(g — 1) + 1 (hereafter, A4,). A basis of B,, will be described in
Section 4.

For a given A,, set U(A,) = {x: £, c 4 (a/%)? < 1 and x € U}. Set n to
be the cardinality of the set {i: x; € C}. Let 7, ,n(X) € B, [hereafter,
M, 4 X)), be of the form

k
M,a(X) =fga, + > ejAk(a;’rx),
j=1
and solve the (constrained) minimization problem,
n
. N 2
(4) min )} [yi - mnAk(xi)] ]-U(Ak)(xi)'
i=1

Suppose that (4) has a unique solution and its corresponding n X n projection
matrix is denoted by P, , . (hereafter, P, , ). (The existence and the unique-
ness of the solution will be discussed in Section 4.)

Let I, be an n X n diagonal matrix such that the ith diagonal element is 1
if x, € V and 0 otherwise. Let 27, denote the collection of all A;, 1 <k < d,
such that ang(A,) > M for some positive constant M < /2. Now the pro-
posed procedure is defined as follows:

1. For given & and A,, compute 712, 4 (x) and the quantities

RSS, (A4, ¢, N) = L [ — Mna(x)] 1c(x)),

i=1
ne + tr(P,4lc) RSS,(A,, g, N)
E = k ‘
FP n(Ak, q,N) nc_tr(PnAkIC) e

2. The estimate of m(x), M ,(x), is defined to be any of those i, 4 (),
1 < k < d, which minimize FPE (A,, q, N) over A, € &7,.
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REMARK 1. In contrast to the algorithm described in Friedman and Stuet-
zle (1981), the direction in which to project is no longer chosen in a forward
stagewise manner. This new scheme is motivated by the following two facts:
Diaconis and Shahshahani (1984) showed that the representation of m(-) in
the form (1) is in general not unique. Moreover, in Section 3 and Appendix I of
Friedman (1984), it is reported that a global search over A, and 1 <k <d
will be required if a good estimate of m(-) is desired. However, for large d, the
computational effort required in carrying out our algorithm is considerably
heavier than the one in Friedman and Stuetzle (1981).

REMARK 2. Suppose that the density function of X is uniform over C. Then
for all a, the pseudo—density functions of a”X1, decrease to zero like (¢ +
1)?~! at —1 and like (¢ — 1)~ ! at 1. In fact, this phenomenon is shown in
Fig. 9.1 of Huber (1985). Therefore, the estimate of most ridge functions based
on the data over C only may exhibit erratic behavior near —1 and 1. This is
also reported in Hall (1989). In order to overcome this problem, both his paper
and the present work suggest use of the data in U to estimate the regression
function over C only.

3. Main result. Since we only have finitely many observations, the flexi-
bility of model (1) may increase the chance of finding spurious structure in the
data. In the proposed algorithm, this chance is affected by P,,, for all
A, € &, and y;, — m(x;). Conditions 1 and 3 are chosen to resolve this
difficulty. Condition 1 is imposed to guarantee that the diagonal elements of
P, 5, are far from 1. This statement will be made precise in Lemma 4(iii).

ConpITION 1. The density function of X over U, is bounded away from
zero and infinity, where U, is a compact set and C c U, c U.

Note that, in particular, the density function of a”X for any « € S¢~! is
bounded away from zero and infinity on [— 1, 1] under Condition 1. Let ¢, and
¢, be two given positive constants. For a nonnegative integer ¢ and 0 </ < 1,
let p = q + [. Define ®, to be the collection of g-times continuously differen-
tiable functions 6(z) in R such that max, gl6(z)l <c; and [6P(u') —
6 9(u)| < cylu’ — ul* for every u',u € R.

ConDITION 2. m(X) = o + L %0,0,(BFX) for some K,, 1 <K, <d and
6, €0, for 1 <k <K,, where u, is a constant and ang({B,,..., Bg}) =
M, > 0.

ConpITiON 3. There exist a positive integer 7 > (2d + 5)2p + 1)/(2y — 1)
for some v, 3 < ¥y < 1, and a positive constant c; such that

supE[IY - m(x)|"X = x] <cg

and inf, Var(Y|X = x) > 0.
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Condition 3 is imposed to control the influence of y;, — m(x;) on #i(x,). The
restriction on 7, which depends on d, can be viewed as another manifestation
of the curse of dimensionality.

Set Ag, = {By;...,Bg,} Let &, , denote the collection of functions in R?¢

taking the form of (1) and also satisfying Condition 2. The following condition
states that Ax is among the class of A, to be searched or that the user-
specified constant M should not be greater than M,,.

ConpITION 4. Ay € o).

The notation N = n!/?P*D j5 used henceforth to denote that Nn—1/@r+D
is bounded away from zero and infinity.

THEOREM 1. Assume that Conditions 1-4 hold and set N = nl/@p+D,
Then, for p > %, there exists a positive constant ¢ such that

n
lim sup Pr,,(n'1 Y [A(x;) — mo(x:)]*10(x;) = cn'zp/(z‘"“)) = 0.
0,4 i=1

According to Stone (1985), {n~2P/P*D} are optimal rates of convergence
for estimating m ,(x), since model (2) is a special case of model (1).

Remark 3. If we replace FPE (A,, ¢, N) by either
ne rRSSn(Ak, q,N)

GCVn(Ak7 q, N) = [

ne —tr(P, 4 Ic) e
or
ne RSS,(A;,q, N)
ICE,(A =
RICE.(Av @ N) = o Pade)  ne

Theorem 1 still holds.

REMARK 4. Note that the one-component projection-pursuit regression
model is a special case of model (1) and that the rate of convergence for
m,(x) — m o(x) in Theorem 1 does not depend on d, the dimensionality of X.
Hence, Theorem 1 provides an affirmative answer to the question posed in
Stone (1982) ““whether {n~2P/P*1} is an achievable rate of convergence for a
one-component projection-pursuit regression model.”

REMARK 5. If 7, is restricted to the collection of all @ € S¥1, the
proposed algorithm reduces to the one-step forward-selection PPR algorithm
in: Friedman and Stuetzle (1981). In this case, 7 ,(x) is the first projective
approximation in Hall (1989). Since there does not exist a unique first projec-
tive approximation in general, Hall (1989) makes an assumption on the
uniqueness of the first projective approximation. This reflects the principal
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difference between the aim of Hall’s paper and ours. In our work we are
interested in estimating m(-) only, while Hall is interested in estimating not
only m(-) but also the right direction in which to project. In order to evaluate
the bias between the estimated direction in which to project and the ““theoreti-
cal” direction in which to project, Hall (1989) needs another assumption, called
‘“‘an extra derivative on m(x),” which is not required here.

4. Existence and uniqueness of the solution of (4). In this section,
we study the existence and uniqueness of the solution of (4) and the structure
of the projection matrix P, , . Let SD(Z) denote the standard deviation of a
random variable Z. We state without proof a lemma which is a direct general-
ization of Lemma 1 of Stone (1985).

LeEmMMA 1. Assume that Condition 1 holds. Let v; = h(a] X) be random
variables such that ):ji_ 1v; has finite second moment, “where Ad {ag,..., a4}
and ang(A;) > a > 0. Then each v; has finite second moment. Also, for
l1<j<d,

1-5 )(j—n/z

SD(v, + -+ +v;) = ( (8D(vy) + --+ +8SD(v;)),

where & depends on a and 0 < 8§ < 1.

REMARK 6. Let 6,,, be chosen to minimize

& 2
E (mO(X) T M4, T ) ojA,,(aJTX)) 1U(Ak)(X) ’
j=1

subject to the constraints E[6;, (aTX)IU( 4,yX)] = 0, where u,, is an un-
known constant. When 2 < & < d it follows from Lemma 1 that these func-
tions exist under Conditions 1 and 4. Again, by the same lemma and Condition
1, the functional components 6;, are uniquely determined up to sets of
measure zero and there exists at most one continuous version of each such
function. When % = 1, the same conclusion holds by a conditioning argument.
Therefore, there is a unique solution in the population version when A, is
given. In the sample version, the same result holds based on Lemma 4(i) when
the user-specified constant M > 0 and it does not depend on the sample size n.

Now, We describe a basis of B,, which is taken from Burman (1988). Let
by (0), t = , N + q, be the normalized B- sphnes of degree ¢ on [—1,1]
with respect to equlspaced knots of dlstance 2N~1 Let D,y be the (N + ¢) X
(N + ¢) identity matrix and for i = ,k, let D,y be any (N +q — 1) X
(N + ¢) matrix whose rows are orthonormal and orthogonal to the (N + ¢)-
row vector (1,...,1). Let

bNAk = (bm(a{x), ceey bN, N+q(0‘fx), bN1(0‘gx), ceey bN,N+q(0‘£X))T,
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which is a k(N + g)-column vector. Let ,, = D(A,)by,,, where D(A,) is a
k X k block diagonal matrix with D,y as the (i, i) block. Then ¢, is a column
vector of A, functions and they form a basis for B,,. We will use y¢,,; to
denote the ith element of ¢,,. °

Define ¥, = (EwAki(X)qukj(X)lU( Ak)(X))’\AkX ra, Let Amin(G) [respectively,
Amax(G)] denote the smallest (respectively, largest) eigenvalue of a matrix G.

LeEmMma 2. For any fixed positive constant M (< w/2), there exist two
positive constants ¢, and cs, which depend on M but not on N, such that

0< cy < Amin(N\I’Ak) =< Amax(N\PAk) <c¢5 <>,
for all A, € 273, as N — », under Condition 1.

Proor. For all A, € o7, it follows from Condition 1 that the density
functions of (afX,..., aI'X) are bounded away from zero and infinity over C.
This lemma follows from Lemma 1, Theorem 4.44 of Schumaker (1981), the
construction of §, and the argument used in Lemma 2 of Chen (1988). O

Please refer to Chapter 2 of Pollard (1984) for the argument used in the
proof of the following lemma and for the definitions of polynomial discrimina-
tion and graphs. Set Jy,, = {x: aTx €[—-1 + 2(¢ — DN, —1 + 2tN~']}. Let
E, denote the expectation operator corresponding to the empirical distribution
based on x,,...,X,.

LEmMA 3. Suppose that Condition 1 holds and that M (< 7/2) is a
positive constant which does not depend on n. Then the following hold for all
A, €y andalll <t t' <N +q:

(i) Su‘I: IEn b( aTX) by ( aTx) 1U(A,,)(X) — Eby,( aTX) by ( aTX) 1U(Ak)(X) I
acS9-1
=0,(N"'a,),
where {a,} is a nonincreasing sequence of positive numbers for which log n =
o(nN~1a?),

(ii) SBU-PA IEnbNt(aTx)bNt'(ﬁTx)lU(Ak)(x) - EbNt(aTX)bNt'(BTX)lU(A,,)(X)I
a,BEA,

=0,(N%,),

where {c,} is a nonincreasing sequence of positive numbers for which log n =
o(nN~2%c2).

Proor. Denote by %, the collection of all partitions of U formed by Jy,,,
1<t <N, for all « € S¢"! and by %, the collection of all partitions of U
formed by Jy,, and Jy,5 1 <t <N, for all a,B € S9-1 satisfying la”B| <
cos M. According to Lemma 18 of Pollard (1984), %, and %, have polynomial
discrimination. Then, by Lemma 15 of Pollard (1984), the graphs determined
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by ¢, and all A, € o, have polynomial discrimination. Note that the
length of the support of by,(-) is (2¢ + 1)N~! and that by,(-) is bounded for
1 <t <N + q. Then we have

E[by(a™X)by, (a7 X)1y0,(X)]* = O(N"Y)
and
E[by(a"X) by, (BTX)Ly,(X)]* = O(N~2).

It follows from Theorem 37 of Pollard (1984) that Lemma 3(i) and 3(ii) hold.
O

Assume that the minimization problem (4) has a unique solution 7, 4 (x)
for all A, € ©%,. Then ’

(5) ’hnAk(x) =) WnAki(x)lU(Ak)(xi)yi’
i=1

where the functions W, , (%) on [-1,1]% are uniquely determined. Set &,
to be the n X d matrix with x; as its ith row vector, W2 (%) =
LWl 1y, (X)), e; =y; — my(x,), and & = (e,...,e,)". Let G, be the
n X A4, design matrix associated with 77,4 (x) in the minimization problem

(4) which is determined by £, and ¢,,. Then
-1
PnAk = IU(Ak)Gn(GrZ‘IU(Ak)Gn) GZ'IU(A,,)-

LemMma 4. Suppose that Condition 1 holds and that p > 3 and N =
nl/@P*D Then, for all A, € o7y, except on an event which depends on Z,
and whose probability tends to zero as n — «, the following hold:

(i) the minimization problem (4) has a unique solution 1, 4 (X):
(i) 0 < Apin(BN"HGT Ty 4,)G) ™ < A (RN~ HGT Ty 4,,G,) ™) < oo
(i) supy ey, 1 W,2a, X = n~'N.

Proor. Note that both nN~! and nN~2 tend to infinity with increasing n
when p > 1 and N = n!/@P*D, Then, by Lemma 3, appropriate choice of {a,}
and {c,} such that a, —» 0 and ¢, — 0, and (2.2-11) in Golub and van Loan
(1985),

” En‘/’Ak(x)d’g,,(X) 1U(A,,)(X) - ‘I'A,, "2

1/2
= " En‘//Ak(X)‘l’Xk(X) Lycay(x) — ‘I’Aknl
1/2
(6) X ” E, ()1 (%) Lycan(X) — ¥y, "oo
= 0(1)o,(N~'a,) + O(N)o,(N~%,)
=0,(NY),
where || - |l1, || - llz and || - |l are the usual matrix norms. Then, by Lemma 2

and by (6), A, (n " INGTIy, 4,G») is bounded away from zero in probability.
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Thus, Lemma 4(i) holds. Lemma 4(ii) follows from Lemma 2 and
|5 (Entra (U3 Lyga(%) = T4, )|, = 0,(1).
Since ‘
/\min((G,Z"IU(Ak)Gn) _1) u'u < u'(G,fIU(Ak)Gn)"lu < Amax((G;{IU(Ak)Gn)—l) u'u

for any A, -column vector u, Lemma 4(iii) then follows from Lemma 4(ii). O

REMARK 7. In order to exploit the sparsity of GIIy, oGr» a minimization
algorithm based on Gauss—Seidel iteration, proposed earlier in Friedman,
Grosse and Stuetzle (1983) and Friedman (1984), can also be applied to the
proposed algorithm to expedite the computation of. 772, o (%). Recall that the
least-squares minimization problem of (4) has a unique solution, except on an
event whose probability tends to 0 with increasing n. Then it follows from
Theorem 10.1-2. of Golub and van Loan (1985) or Theorem 9 of Buja, Hastie
and Tibshirani (1989) that the solution of (4) obtained from the Gauss-Seidel
iteration in Friedman (1984) converges to the direct minimization solution
of (4).

5. Proof of Theorem 1. From now on, we only consider the case that the
minimization problem (4) for all A, € &7,, has a unique solution and N =
nt/@r+D Set m = (my(x,), ..., mox,)T. By writingy;, — 1, 4 (x,) as the sum
of [mo(xi) - E;L= IWnAbj(xi)lU(Ak)(xj)mO(Xj)]’ - [27= IWnA,,j(xi)lU(Ak)(xj)ej]
and e;, we have

n
RSS,(A,q,N) — Z eizlc(xi)
(7 i=1
= ZnAkl - 2ZnAk2 + 2ZnAk3 + ZnAk4 - 2ZnAk55

where
Zppg = mT(IU(Ak) - PnAk)ICTIC(IU(A,,) - PnAk)m’
Zyayo = mT(IU(Ak) - PnAk)ICTICPnAkE’
Zyps = mT(IU(Ak) - PnAk)IgICE»
ZnAk4 = 3TPnAkIgICPnAk€,
and
Zyays = aTICTICPnAks.
Hence,
ncFPE, (A, q, N)
® - nffriﬂ”;ﬁc) RSS, (44,4, N) + L,(4, ¢, N)

n
+2ZnAk3 - 2ZnAk5 + Z eile(xi)’
i=1
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where

L,(A,q,N) = Z1~[m o(X;) — 4 (X, )] lo(x;)

=Zpan —2Z,0,0F Zpags

Let o7, be the collection of A, such that 7%, 4 (x) attains the minimum of
L,(A,,q,N) over A, € o/. In Proposition 1, we show that for those A, €
D15

. 2
Z [mnAk(xi) - mo(x,-)] lyay = 0,(n/@+h),
12

under regularity conditions. If Lemma 6 holds, it follows from (8) that

M, 4 (%) — (%) is small when A, € 27,,. This statement will be made precise
in the Proof of Theorem 1. We first obtaJn rates of convergence for some terms
which will be used later in the proofs of Proposition 1 (to be stated later) and
Theorem 1. The proofs of the next two lemmas, Lemmas 5 and 6, are deferred
to Section 6.

LEMMA 5. Suppose that Conditions 1 and 3 hold and that p > 5. Then for
any given vy, <y < 1, and A, € 7y, the following hold:

() Z,4,4 E(ZnAk4|,92”) = O,(N7”) and E(Z, 0,4 2,) = tr(IcP, 5,) <
cgN, where cg IS a positive constant

(ii) |Z, 4,3l = O,(max(N, Z, 4,)1");

(iii) IZnA ol = O,.((max(N, Zoa, P n N

(V) Z, 45 — E Zoa 525 = o) (NY) and E(Z,4,527) = tr(P, 4, 1c) <
cgN.

LEMMA 6. Suppose that Conditions 1 and 3 hold and that p > 1. Then,
for all A, € oy, the following hold:
(i L,(A,,q, N) > c;N for some positive constant c,,
G (Z, 4,5 — Z,a,3)/L(Ay q, N)| - 0, where A, € &,
{tl‘( nAkIC)/[nC - tr(PnAkIC)] }RSSn( Akv q, N) - ZnAk5

111 -0,
( L.(A,, 4, N)

except on an event whose probability tends to zero for increasing n.
It follows from (7) and Lemma 5 that, for given v, 3 <y < 1,

RSSn(AIw q, N) - Z eile(xi)
i=1

(9) = Zpp + Op([max(N, ZnA,,1)]y)
+ E(ZnAlAl%) - 2E(ZnAk5|%) + OP(NY)
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The following lemma, which is proved in de Boor (1968), is used to find the
bias for using the functions in B, v to approximate m(x). Let |8], =
sup, ¢(_1,1j/0(xw)l. Define B,y to be the collection of (g — 1)-times continu-
ously differentiable functions on [*—1,1] each of which is a polynomial of
degree g on[—1+2(t — DN~Y, -1+ 2tN1]for1 <¢ <N.

LEmMMA 7. For each 6 € 0, and n > 1 there exists an s € B,y with

|s — 8l. < aN~P, for some fixed positive constant a.

ProrosiTioN 1. Suppose that Conditions 1 to 4 hold and that p > %. For
all A, € 7,,, except on an event whose probability tends to zero with increas-
ing n,

n
S 2
X [mnA,,(xi) - mo(xi)] 1.(x;) < anl/(2p+1),
i=1
where cg is a positive constant.

Proor. Let ./,, be the collection of A, such that 64, attains the
minimum of Z, , ; over A, € o/, By the definition of &7, ,, Conditions 2 and

4 and Lemmas 4(iii) and 7, it follows that, except on an event which depends
on Z, and whose probability tends to zero with increasing 7,

(10) ZnAk,l < Z"AKOI < MlnN_ZP = M2N fOI‘ Ak' (S .,Q/nz,

where M, and M, are positive constants. Then, from (9), Lemma 5 and (10),
for A, € &7,, and A, € &,

|Zoss = Zoga| < Op(N) +| [ E(Z, 0,4l 2;) = 2B(2, 0,4 ;)]
- [E(ZnAk4IQ/;z) - ZE(ZnAk5I%)]

It follows from Condition 2 that Z, A < cin for all A, € o7,. Hence,
|Z,, 4,2! <N with increasing n. From (10), (11) and Lemma 5() it follows that,
for A, € o/,, and A,, € &7,

Li(A00,N) = £ [ya (k) = mo(x)] Le(x)

(11)

SIZnAkl - ZnAk,ll + ZnAk,l - 2ZnAk2 + ZnAk4

<|[E(Zoa,dl2;) - 2B(2, 4,4 2;)]
- [E(ZnAk4l%) - 2E(ZnAk5IQ/;L)]
+ O,(N”) + MyN + (cg + 2)N

<cgN,

where cg is a positive constant. Hence, by our choice of N (= nl/@r+D)
Proposition 1 holds. O
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Proor oF THEOREM 1. Note that L,(A,,q, N)>c,N, by Lemma 6().
Recall that ##:, achieves the minimum of FPE (A,, q, N) over A, € o/, and
M, 4, achieves the minimum of L,(A,,q, N) when A,, € ©,,. Then, by (8)
and Lemma 6(ii) and 6(ii), *

fl [An() = mo(x)]PLo(x:) = 5 [Frma, (5) — mo(x:)]*Te(x,)
i= i=1

=0,(N).
Using Proposition 1, we get for some constant ¢ (say, ¢ = 2c¢g),
lim sup Pro( Y [hn(x,) — mo(x)]*10(x,) = Cnl/(2p+1)) -0.
n ®p,d i=1

Hence, the proposed least-squares estimate of m(x) based on the FPE
selection criterion achieves the optimal rate of convergence {n ~2P/@P+1} This
completes the Proof of Theorem 1. O

6. Proofs of Lemmas 5 and 6.

PrOOF OF LEMMA 5. Based on Lemma 4, sup, ¢;_; ;¢ W,’4 (%) = n™'N for
all A, € o7, except on an event whose probability tends to zero with increas-
ing n. In this proof, we only consider the case in which such an event does not
occur. It follows from Condition 3 and Lemma 4 that

E(Z,4,4|%;,) = tr(P o I81oP, o, Var(eeT)) = tr(Io P, 4,) < 6N,

where cq is a positive constant. Note that Z,, , can be written as &; ;a,;e;e;
and

Z. a%; = Z a;; = tr(IcPyacP,a,) < tr(P,4,) = O(N)
i,Jj i

According to Theorem 2 of Whittle (1960), Condition 3 and the Markov
inequality, for any given A, € &7,

E( Zons — E(Zoad 2| g'n)
P(|Z, a0 — E(Zundl2:)| > V|2 < 20 cz(,Nﬁff
= 0—02—’(']_1\[—\’2;7): = 0(NT(1—27)),

where c¢ is a positive constant. Let & denote the collection of all partitions of
U formed by Jy,,, 1 <t < N, for all @ determined by £7,,. Then by Lemma 18
of Pollard (1984), # has polynomial discrimination. To be specific, the number
of distinct partitions of {X,, ..., X} by & is no more than (2n)%¢*?, Therefore,
there exist at most (2n)*“@*? different P,, determined by .7,. Hence,
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Lemma 5(i) holds by
P( Sup |Z, 4,4 = E(Z, a4 2 |>ch

A ey

) _ (zn)2(d+2)0 (NT(I 2-y))
= Op( n2(d+2)+tr(1—2’y)/(2p+1)),

with 7 > (2d + 5X2p + 1)/(2y — 1). Observe that E(Z, 4,5/2,) = 0. Accord-
ing to Theorem 2 of Whittle (1960), Condition 3 and the Markov inequality, for
any given a,

o(z: .
P(]ZnAk3| > c[max(N, ZnA,,l)]YI%) < %[max(N, Zya)]”
= O(N-r(l—z‘/)).

Lemma 5(ii) follows from the argument used to prove Lemma 5(i).

Note that Z, , , can be written as = ;b;e;. Then, L7_ 107 < Z, 5, max; p; 4,
by the Cauchy—Schwarz inequality, where Diia, 18 the (L i) element of P,,
Lemma 5(iii) follows from Lemma 1, Theorem 2 "of Whittle (1960), Condltlon 3
and the same argument used to prove Lemma 5(ii).

Finally, note that E(Z,,5/2,) = tr(P,4,Ic) <cgN and that Z, , 5 is a
quadratic form in e. Lemma 5(v) holds by applying the argument used in
proving Lemma 5(). O

Proor oF LEMMA 6. By Lemma 4(ii), we have tr(P, 4, I¢) = cN for some
positive constant c, except on an event whose probability tend to zero with
increasing n. Therefore, there exist positive constants b and a such that, for
all A, € &,

(12) L (Alwq’N) nA4>btr( AkIC)ZaN’
except on that event, by Lemmas 5(1) and 5(iii). Hence, Lemma 6(i) holds.

Recall that A, € o7,,. It follows from the definition L,(A,,q, N) and
Lemmas 5(i) and 5(iii) that

(13) 2Ln( Ak’ v, N) 2 ZnA,,l + ZnAk,l’
for large n. For any ¢ > 0, it follows from Condition 3, (12), (13), Lemma 4,

Theorem 2 of Whittle (1960) and the fact that & has polynomial discrimina-
tion that

ZnA 3~ ZnA 3
P{ sup |—F——"|>¢c|Z,
{AkEMM Ln(Akaq’N) )
ZnA 3 ZnA 3 4
< Py max T - 7z|> 3 |%n
| (aN) [i(ZnAk1 "'ZnA,,ll)]

= 0,((2n)**®N"7).
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Note that the last series converges to zero. This completes the proof of Lemma
6(ii).
Observe that
tr( P, nAkI C )
ne — tr(PnAkIC)

_ tr(PnAkIC)
ng = tr(P,a,1c)

e

RSSn( Ak’ q9, N) - ZnAk5

(ZnAkl —2Z, 4,0 + 2ZnAk3)}

SpLTA

1.(X;) + -2Z -Z
neg— tr(PnAkIC) Z € C( z) Zn‘Ak4 nAkS:I nAkS}

i=1
= (D + (ID).
It follows from Lemmas 5(ii) and 5(iii), (13) and tr(P, 4, Ic) <A,, = N that
__(E)___ < (_I)_ (D o E
L,(A,,q,N)| " |aN Znau=h} Zpa, Znap>N| = Yo\ ]

Furthermore, E[(ID)|Z,,] = 0 by Lemmas 5(i) and 5(iv) and
E{[(I) - E(ID]*|2;,} = O,(N").

Hence, Lemma 6(iii) holds by (12), Condition 3, Theorem 2 of Whittle (1960)
and the fact that & has polynomial discrimination. O
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