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LARGE DEVIATION PROBABILITIES FOR CERTAIN
NONPARAMETRIC MAXIMUM
LIKELIHOOD ESTIMATORS

By J. PFaNzAGL
University of Cologne

Let (X, &7) be a measurable space and {P,,’,,IM: ¥ € 0, 7 € T} a family
of probability measures. Given an appropriate estimator sequence for ¢, we
define a sequence of asymptotic maximum likelihood estimators for 7 and
give bounds for its large deviation probabilities under conditions which are
natural for the application to the estimation of mixing distributions.

This paper generalizes earlier results of Pfanzagl to the following cases:
(i) estimator sequences restricted to a sieve; (ii) estimator sequences using a
given estimator sequence for a nuisance parameter; (iii) convergence under
the “wrong model;” (iv) large deviation probabilities instead of consistency.

1. The results. For (3,7)€® X T let P, |9/ be a p-measure. For
(%, a) € ® X A, let m(+,9,a) X — (0,) be a measurable function. Assume
that for every (3,, 7y) € ® X T there exists a, € A such that

(1.1) P, ,(log[m(-, 9, ag)/m(-,9,a)]) >0 foralla €A, a+a,.

Our problem is to estimate «,, based on an ii.d. sample from Py . if a
preliminary estimator sequence 4: X" — @ for ¢ is ava.llable

The natural idea is to use some sort of ‘‘maximum” estimators for a, e.g.,
to choose a‘™(x) such that

(1.2) i log[ m(x,, 9™(x), a™(x))/m(x,, ¥™(x), a)] 20 forall @ €A.
1

In the following we give conditions under which estimator sequences of this
kind are consistent.

The family {P, ,: (3,7) € ® X T} was introduced only for indicating the
framework within whlch the following results can be applied. The cons1stency
theorem itself deals with a fixed p-measure Pylo/ (which is P, . in the
applications, and the assumptions on P, have to be fulfilled for any P, , in
the family).

We assume that ©® is a first countable Hausdorff space and A a first
countable compact Hausdorff space which is also a convex subset of a linear
space. (No connection between the Hausdorff topology and linear operation is
required.)
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The following conditions refer to a fixed element 3.

(1.3) For every @ € A the map (8, a) > m(x,?,a) is continuous at
(9, @) = (9, &), for Pyaa. x € X.

(1.4) For Pja.a. x € X and all 9 € ® the map a —» m(x, 3, @) is concave.

(1.5) There exists a, € A such that
Py(log[m (-, ¥y, @) /m(-,85,a)]) >0 foracA,a+a,.

The following proposition shows that (1.5) follows from (1.3) and (1.4) under
mild conditions. Observe that no extra effort is needed if A c R™. Since
a = Py(log m(-,3,, a)) is concave, continuity follows in this case.

ProPOSITION.  If sup, . Py(log m(:,d,, @) is finite, then (1.3) and (1.4)
imply the existence of ay € A such that

Py(log[m (-, ¥, ag)/m (-, 09, @)]) =0 forall a €A.

If a is identifiable in the sense that “m(x, 9y, a) = m(x, 9y, a,y) for Pya.a.
x € X implies a = a,,” then this inequality is strict for a € A, a # «a,.

For the preliminary estimator sequence 9™, n € N, we assume the follow-
ing.

For every neighborhood U of 3, there exist @ > 0 and & € (0, 1) such that
forall n € N,

(1.6) PrMx e X": 9™(x) & U) < ad".

To have the result as versatile as possible, the definition of the estimator
sequence for «, will be based on a “sieve.”

(1.7) A,, n €N, is a nondecreasing sequence of convex and compact subsets
of A; UTA,, is dense in A.

In the following theorem we obtain large deviation probabilities without any
restriction on the rate at which the sequence A ,, n € N, increases. [Compare
with Geman and Hwang (1982), who introduce such restrictions in connection

with a more general case.]
The estimator a™|X" maps into A,. To obtain consistency, a condition

weaker than (1.2) suffices:

(1.8) There exists vy € (0,1] such that foralln e N, x € X" and a € A,,

n

[Tm(x,, 9™ (x), a™(x)) > yﬁ m(x,, ™ (x), a).
1 1
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THEOREM. Assume conditions (1.3)-(1.7). Then any estimator sequence
a™, n €N, fulfilling (1.8) has the following property: For any neighborhood
V of a, there exist a > 0 and & € (0,1) such that for all n € N,

(1.9) P}{x € X": a'™(x) ¢ V} < ad™.

REMARK 1. Relation (1.9) implies

@ a
PY U {(xeXN:a™(x) &V} < o"
m=n -8
[if we now interpret (™ as a map on X", depending on (x,,..., x,,) onlyl.

Hence, estimator sequences fulfilling (1.9) are, in particular, strongly consis-
tent, i.e., lim, _,, a™(x) = a, for P)-a.a. x € XN, A slight modification of the
proof shows that this also holds true if condition (1.6) is replaced by
lim, ,, 3™ (x) = 9, for P)-a.a. x € XN.

ReEMARK 2. The specific feature which distinguishes this theorem from
theorems on the consistency of maximum likelihood estimators in general is
the concavity of a - m(x, ?, a). The intended application is to the estimation
of mixing distributions. Such applications have been discussed extensively in
Pfanzagl [(1988), Sections 5 and 6]. Hence, we restrict ourselves to a few
additional remarks.

Let H be a locally compact Hausdorff space with countable base, endowed
with the Borel algebra. Let {P,,ml.xa/ : 9 € 0, n € H} be a family of mutually
absolutely continuous p-measures. Let w|%/ be a dominating o-finite mea-
sure. If T is a finite measure over H, the I'-mixture is defined as P, (A) :=
/P, ,(A)(dn), A € /. Without loss of generality, we assume that the densi-
ties are positive and finite on X. Throughout the following we assume that
(x,m) - p(x,9,n) is measurable for every 3 € ®. Then the function x —
p(x,9,T) = [p(x,d,nI(dn) is a u-density of P, r. (Observe that such a
product measurable version of the densities always exists if .27 is countably
generated [see, e.g. Strasser (1985), page 17 ff.]. Here we need continuity of
n — p(x, ¥, n) anyway. Then any version of these densities is product measur-
able [see Pfanzagl and Wefelmeyer (1985), page 451, Lemma 3.1.12]).

Thebas1cfam11y{P1, e, reT) 1snow{P,,r Y €0, T e g, if 4,
denotes the class of all probablllty measures over H. Our intention is to apply
the theorem with p(-,9,I) taking the role of m(:,9,a). The map I' —»
p(-,9,T) is linear, hence, in particular, concave. The theorem requires, more-
over, conditions of a topological nature: continuity of (3, a) - m(x, 3, ) and
compactness of A. Hence we use for A the class of all sub-probability measures
over H, say . ¢ is convex, and, endowed with the vague topology, a compact
metrizable space [see Bauer (1981), page 243, Corollary 7.8.3 and Theorem
7.8.4].

One could think, of course, of using other topologies. If, for every x € X,
9 € 0, the function n — p(x,#,7) is in €(H), the class of continuous func-
tions which vanish at infinity, the vague topology is, however, the natural one.
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If T is identifiable in ¢, then the linear closure of {p(x, ¥, - ): x € X} (with
¥ € O fixed) is dense in €,(H) with respect to the sup-norm. [See Blum and
Susarla (1977), page 201, Theorem 2.1.] Hence, continuity of I —
[p(x, 3, T (dn) for all x € X implies continuity of I' = [h(n)['(dn) for all
h € €,(H). Therefore, the vague topology is the smallest possible in this case.

Conditions for the identifiability of I' in the case of exponential families
{P, ,: n € H with HCR™ can be found in Pfanzagl [(1988), page 152,
Propos1t10n 6.2].

A is not necessarily to be taken as all of . One can use for A any convex
and closed subset of 4 (which may or may not contain the true I}). Since
P, r(log p(:,9,,1)) < Py r(log p(+, 9y, T,)) < for all I' € &, the Proposi-
tion guarantees that the functlon I - Py r(log p(:, 3, ) attains its supre-
mum on any convex and closed subset of Z.

The definition of the estimator sequence I'™, n € N, is based on a sieve. In
the particular case of mixtures such a sieve consists of convex and compact
subsets of sub-probability measures &, C . In addition to these general
properties (see (1.7)) we require that I' € &, implies I'/T(H) € &,. This
guarantees that one can always take the estimator fulfilling (1.8) to be a
probability measure. As a particular example of such a sieve, consider the case
where H is a separable metric space with a countably dense subset {n,: £ € N}.
Then one can take for &, the class of all sub-probability measures with
support {n,, ..., n,}. It follows from Parthasarathy [(1967), page 44, Theorem
6.3] that U7, is dense in ¢ with respect to the vague topology.

ReEMARK 3. Whereas condition (1.8) suffices for consistency of the resulting
estimator sequence, in applications it appears natural to determine estimators
fulfilling the stronger condition (1.2), with A replaced by A, . Under a slightly
stronger version of conditions (1.3) and (1.4) [both conditions for all x € X,
and (1.3) for all 9 € 0), condition (1.2), with A replaced by A ,, is equivalent
to the following condition:

(1.10) n Z,: m(x,,9(x), a)/m(x,, 3™(x), a™(x)) < 1

foralla € A,,.

Condition (1.2) requires that a(x) maximize & — L7 log m(x,, 9™(x), a)
for « € A,,. Apart from the technical question whether the supremum is
attained, thls poses no problem. As against that, the existence of an a™(x)
fulfilling (1.10), and its identity with the a"X(x) fulfilling (1.2), is anything but
obvious. It depends on the concavity of @ = m(x, 9, a) and can be established
by some sort of minimax theorem. [See, e.g., Lindsay (1983), Part I, for the
mixture model.]

With the lemma below at our disposal, this can easily be seen as follows. Let
n and x = (x,,...,%,) € X" be fixed. Let a™(x) € A, be a value fulfilling
(1.2) with A replaced by A, (which exists by the proposmon stated previously).
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For v €{1,...,n} let h(y, a) = m(x,, 3™ x), a)/m(x,, ™), a™(x)). Ap-
plying the lemma with L(¢) =logt, ay,=a™(x) and Q{v} = 1/n for v €
{1,...,n} = Z, we obtain

n m(x,,, ¥™(x), a)
(1.11) 21:L (5, 97(x), a(x) <0

for all « € A, and all functions L which are strictly increasing, concave and
fulfill L(1) = 0. Relation (1.10) follows with L(¢) = ¢ — 1. Since the function
“log” is concave, (1.2) follows immediately from (1.10).

The fact that we may switch in (1.11) from one function L to another one
offers the possibility of using one function L for the numerical computation of
a™X(x), and another function L for studying the asymptotic behavior of the
estimator sequence a™, n € N. In the case of the mixture model, '™ can be
determined by the E.M. algorithm using (1.10), based on L(¢) = ¢ — 1, whereas
the proof of the theorem uses L(¢) = (1 + ¢ )~! — 4.

2. Proofs.

LEmMA. Let (Z, €') be a measurable space, and Q|€ a probability measure.
Let A be a convex set, and h: Z X A — [0, ) a function such that

(i) z - h(z, a) is measurable for every a € A,
(ii) a — h(z, a) is concave for Q-a.a. z € Z,
(iii) there exists ay € A such that h(z,a,) =1 for Q-a.a. z € Z.
Let . denote the class of all strictly increasing and concave functions L:
[0,%) = [, ) with L(1) = 0, and £, C £ the subclass of functions which
are differentiable in a neighborhood of 1, with a derivative which is continu-

ous at 1.
If there exists L € .£;, such that

(2.1) fL(h(z,a))Q(dz) <0 foralla €A,

then this relation holds for all L € 2.
If L is strictly concave, then (2.1) implies strict inequality for all a € A,
except for the case of h(-,a) = 1 Q-a.e.

Proor. (i) We shall show that relation (2.1) for some L € .#|, implies
(2.2) fh(z,a)Q(dz) <1 foralla €A.

Since h(z, - ) is concave, we obtain for a € A, u € [0, 1],
h(zyua+ (1 —u)ay) 21+ u(h(z,a) — 1).
Hence (2.1) implies for a € A, u € (0, 1],

JLI1+ u(h(z,a) - 1)]Q(dz) < 0.
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For any ¢ > 1, h(z,a) > ¢ implies L[1 + u(h(z,a) — 1)] > L(1) = 0, hence
also

(2.3) jh(_ a)<cL[1 +u(h(z,a) - 1)]Q(dz) < 0.

In the following, a € A is fixed. For ¢ > 0 there exists §, > 0 such that
|[L'(1+y) —L'(1)|<e forlyl <8,.
Since, for some 1 € (0, 1),
L(1+y) =L(1) +yL'(1 + ny)
= L'(1)y +y[L'(1 + ny) — L'(1)],
lyl < 8, implies
L'(1)y < L(1 +y) + lyle.

Let ¢ > 1 be fixed. For all u €(0,5,/c) the relation h(z, a) < ¢ implies
ulh(z,a) — 1| < §,, hence

(2.4) L'(Du(h(z,e¢) — 1) <L[1 + u(h(z,a) — 1)] + uce.
From (2.3) and (2.4) we obtain for all u € (0, 5,/c),

L’(l)uf (h(z,a) — 1)Q(dz) < uce,

C,a
and therefore,
(2.5) L’(1)f (h(z,a) — 1)Q(dz) < cs.
h(-,a)<c
Since ¢ > 0 and ¢ > 1 are arbitrary and L'(1) > 0, relation (2.2) follows.

(ii) Since L is concave and increasing, we obtain from Jensen’s inequality
and (2.2) that

[L(h(z,@)Q(d2) < L([h(z,a)Q(dz))
<L(1) =0,

(2.6)

which is (2.1).

(iii) It remains to be shown that the inequality in (2.1) is strict if L is
strictly concave, and not A(-, @) = 1 Q-a.e.

If L is strictly concave, the first inequality in (2.6) is strict unless h(z, @) =
[h(&,a)Q(d¢) for Q-a.a. z € Z. The second inequality in (2.6) is strict unless
[h(&,a)Q(dE) = 1. Hence, equality in (2.1) implies h(z,a) =1 for Q-a.a.
zeZ. O

PROOF OF THE PROPOSITION. Since ¥, remains fixed, it will be omitted
throughout this proof.
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() Let ¢, 1 0. For n € N choose a,, € A such that
Py(logm(-,a,)) >s —¢,, withs:= supP,(log m(-,a)).

a€A

Without loss of generality we may assume that «,:=1lim, ,, a, exists. We
shall show that

s = Py(log m(-, a,)).
For any a € A, u €0, 1],
Py(log m(-,a,))>s — ¢, > Py(logm(-,(1 —u)a, + ua)) —¢,
> Po(log[(1 - u)m(-, a,) + um(-,@)]) - ¢,.
Hence, .
m(-,a)

-1 <e¢, foralla € A,ue<]0,1].
m("an)

(2.7 Po(log[l +u

To simplify our notations, let
-1, n=0,1,2,....

Let ¢, T, t, > 1. For all u € [0, 1],
Ly <¢ylog(l +uh,) <log(l + uh,),
hence,
(2.8) Po(l(h,,st,,) log(1 + uh,)) <e,.

Since log(1 + 2) > z — 22/(1 + 2z) for z > —1, we obtain from A ,(x) > —1
for u € (0,d),

log(1 + uh,(x)) = uh,(x) — 2u2h,(x)?
and therefore,
(2.9) L, <e(%)log(l + uh,(x)) = uh,(x)1, ., (x) — 2u?t2.
From (2.8) and (2.9) we obtain for u € (0, ),
uPo(h, 14 <;)) <&, + 2u%2.
Taking u = £2/3, t, = ¢, 1/5, we obtain

n *%n

(2.10) limsupPo(hnl(hnstn)) <0.

n—>
Since k, = h, P,a.e., we have
holy <oy = ho Pj-a.e.
Since h,1y .., = —1, this implies by Fatou’s lemma
(2.11) Py(hy) < liﬂingo(hnl(hnS,")).
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Together with (2.10) this implies
Py(hy) < 0.
Expressed in the original notation,
m(-,a)
P)l——— | <1 foralla € A.
m( ) aO)

By the lemma this implies

Po(log[m("a") ]) >0 forallacA.

m("a)

(ii) It remains to be shown that this inequality is strict. Since a —» m(x, a)
is concave for Pya.a. x € X, so is a — log m(x, a). Hence,

m(-, ag) m(',%a0+éa)
Po(log[m]) zPo(log[ m(.’a)
1 m(-,ay)
—Zp.llog| ———2~
22 O(Og[ m(.’a) :I)r
where the last inequality is strict unless m(:, ay) = m(:,a) P,-a.e. Hence,
a # a, implies strict inequality, and Py(loglm (-, a,)/m(-, @)]) > 0 follows. O

ProoF oF THE THEOREM. (i) The conditions of the lemma are fulfilled for
h(x, @) = m(x, ¥y, a)/m(x, ¥, ay) [see (1.4) and (1.5)], L(¢) = log ¢ (the func-
tion in .#}) and L(t) = (1 + ¢ 1)~! — } (a strictly concave function in _#).
Since «, is identifiable, we obtain

(2.12) [(1 + m(, 8, @)

-1 1
P, —.
m(x,9,,a) ) o(dx) < 2

Since (1 + m(x, ¥y, ay)/m(x, ¥, @)~ < 1, Fatou’s lemma can be used to
infer from condition (1.3) the existence of open neighborhoods U, = 9, V, 2 «,
and W, 3 a such that

m(x,U,, V) \ " 1
) _—7 ) < =
(2.13) [ 1+ m(x’Ua’Wa)) Py(dx) < ,

where

m(x,U,V) =inf{m(x,9,a): 3 € U, a € V}
m(x,U,V) = sup{m(x,d,a): 3 € U, a €V}.
(ii) From (1.8),
m(x,, 9™(x), a™(x))
m(x,, 9™ (x), &)

(2.14) Y log[ ] >logy forall@ €A,.
1
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From (1.4) we obtain for all ¢ € A, and Pl-a.a. x € X",
3(m(x,, 9™(x), &) + m(x,, ¥™(x), a™(x)))
< m(x,, ¥™(x), 3¢ + 2a™(x)).

Since A, is convex, & € A, implies ;& + 32™(x) € A,. Hence, (2.14)
implies for @ € A, and Pj-a.a. x € X",

( m(x,,,ﬂ(")(x),&) )_I:I > logy

(2.15) L log2|1+ m(x,,9™(x), a™(x))

(iii) Let V, be an arbitrary open neighborhood of a, in A. Since A is
compact, so is A — V;, and the open cover {W,: a« € A — V,} contains a finite
subcover, say (W, ,..., W, }. Let U= N]_ U V nl Ve,

The following relatlons hold for i = 1,.

m(x,U,V) zm(x,U Vi)
m(x, U, Wai) < m(x7 ai7Wai)’

hence also
L, 20V 1P .
f + m(x, U,Wa,.) o(dx)
(2.16) _
m(x’Ua,—",ai)
< f(l + m Po(dx)
Let
2.17 P 2 1+——-m(x’U’V) _IP dx
(217) = max 2f|1s S | Potd),

From (2.13), (2.16) and (2.17)
(2.18) 5 <[o0,1).
(iv) We have
Pi{x € X™: a™(x) & Vp} < Plx € X™: 9)(x) & U}

2.19 A
(2.19) + Y Pi{x e X" 9™(x) € U, a™(x) € W, }.
i=1
Now, #)(x) € U and «™(x) € W, imply
m(x,, "(x), a™(x)) < m(x,, U, W,).
If n is large enough, we have A, NV # &, hence,

m(x,,9™(x), &) = m(x,,U,V) forsomeq €A,.
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Therefore, #™(x) € U and a™(x) € W, imply by (2.15),

m(x,,U,V)

-1

Y log 2(1 +

1

Hence, by Markov’s inequality, the following relation holds with & defined by
(2.17):

Pg‘{x e X" 9"(x) e U, a™(x) € Wai}

n U,v)
(2.20) g e X m(,0,V)
<PrxeXm: E,l log|2|1 + CRAA)

-1
) > logy

<y "
From (2.19) and (2.20),
P}xe X" a™(x) & V,} < Pi{xeX": 0™ (x) ¢ U} + ry 18",

for all sufficiently large n € N. Since & €[0,1) by (2.18), this proves the
assertion. O '
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