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ASYMPTOTIC CHI-SQUARE TESTS FOR A LARGE CLASS OF
FACTOR ANALYSIS MODELS!

By Yasuo AMEMIYA AND T. W. ANDERSON

Iowa State University and Stanford University

Three types of asymptotic x? goodness-of-fit tests derived under the
normal assumption have been used widely in factor analysis. Asymptotic
behavior of the test statistics is investigated here for the factor analysis
model with linearly or nonlinearly restricted factor loadings under weak
assumptions on the factor vector and the error vector. In particular the
limiting x2 result for the three tests is shown to hold for the factor vector,
either fixed or random with any distribution having finite second-order
moments, and for the error vector with any distribution having finite
second-order moments, provided that the components of the error vector
are independent, not just uncorrelated. As special cases the result holds for
exploratory and confirmatory factor analysis models and for certain non-
normal structural equation (LISREL) models.

1. Introduction. A factor analysis model specifies the structure of the
covariance matrix of a random vector. A goodness-of-fit statistic measures the
deviation of the sample covariance matrix from the estimated covariance
matrix with this structure. If the random vector is normally distributed, a
measure such as — 2 times the logarithm of the likelihood ratio criterion has a
limiting x? distribution. In this paper several such measures are considered,
and it is shown that the limiting y? distribution holds under conditions much
more general than normality of the observations. The definition of the model is
broad enough to include structural equation models and other covariance
structures. The impact of these results is that the use of the x? tests
computed by the standard computer packages (LISREL, EFAP and EQS, for
example) is valid asymptotically for most factor analyses and for a class of
structural equation models (LISREL models) even when the data are nonnor-
mal.

Anderson and Amemiya (1988) discussed the estimation problem in factor
analysis under general conditions on the distribution of observations. We
follow their notation to define the model which will be treated throughout this
paper (although our model here is slightly more general). Let the observable
p-component random column vector x, be written as

(1.1) x,=p+Af, +u,, a=1,...,N,
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where p is a p-component vector of parameters, A is a p X k& matrix of factor
loadings, f, is a k-component unobservable factor vector, which may contain
fixed and/or random components and u, is a p-component unobservable
random error vector. It is assumed that all f_’s and u_’s are uncorrelated and
that £u, =0 and Su,u, =W, where ¥ = diag{¢,;,...,¥,,} is a pXp
diagonal matrix with diagonal elements ¢,,, i = 1,..., p.

In (1.1) A can be replaced by AC and f_, by C~'f, (where C is nonsingular)
to obtain an observationally equivalent model. To eliminate this indetermi-
nacy, restrictions may be imposed on the parameters. In this paper we suppose
that

(1.2) A=A(N)

is a specified function of a ¢ X 1 parameter vector A. For example, the model
identified by specifying certain elements of A to be 0’s and 1’s has a loading
matrix that is a known linear function of unspecified loadings A. Here,
however, A(A) may be a nonlinear function. We shall show later that our
results derived under parameterization (1.2) hold also under some other
parameterizations.

Inference will be based on the unbiased sample covariance matrix

1 N
S=—Y (x,-%)(x, - %),
no,-1

where x = (1/N)XN_,x, and n = N — 1. We shall study the goodness-of-fit
test statistics, which were originally proposed under the normality of f, and
u,, under a large class of distributional assumptions on f, and u,. To define
the test statistics, suppose for a moment that all components of f, are random,
all f, and u, are independent, f, ~ N,(0, ®) and u, ~ N,(0, ¥). Then,

(1.3) nS ~ WP[E(()),n],
where
(1.4) 3(0) =AMN)PA'(N) + W

and 0 = (X, [vech ®1,y’); vech ® is a column vector of the 3k(k + 1) func-
tionally independent components of ® and ¥ = (¢, ...,¥,,). The computa-
tion of each goodness-of-fit test statistic involves the minimization of an
objective function of 0 over the parameter space. For this purpose we define
the parameter space for 6 as ) = Q, X Q, X Q,, where , < R? Q, consists
of vech ® such that @ is nonnegative definite and (), consists of ¢ with
nonnegative components.

If (1.3) holds, the maximum Wishart likelihood estimator 0, =
(A,, [vech @, ], d2) is the vector 8 € Q that minimizes

L,[=(0),8] = log|=(0)| — log|S| + trST~1(8) — p
=trST71(9) — log|ST!(0)| — p,

where 2(0) is defined by (1.4). The discrepancy function L,[X(0), S]is —(2/n)
times the logarithm of the Wishart likelihood function plus terms not depend-

(1.5)
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ing on 0. Anderson and Amemiya (1988) discussed asymptotic properties of 0,.
One goodness-of-fit statistic is G, = nL,[2(0,), S], which is —2 times the
logarithm of the Wishart likelihood ratio criterion for testing the null hypothe-
sis of (1.4) against the alternative hypothesis of unrestricted X. For a certain
class of nonlinear functions A(A), the standard computer packages for the
structural equation model, such as LISREL, compute the maximum Wishart
likelihood estimator 8, and the x? goodness-of-fit test statistic G,. [The
likelihood ratio test statistic based on x,, & = 1,..., N (not just on S) has the
form of G, with n replaced by N in the expression of G,, the divisor in S and
the computation of él. Our asymptotic results for G; hold also for such a
statistic based on the x_’s.]

An alternative approach to estimation is generalized least squares. [See
Browne (1974), for example.] Let 8, € O minimize the discrepancy function

2

1 , 1
(1.6) Ly[2(0),8] = 5 tr{[2(0) - 8]S7} = —2—tr[2(0)S‘1 -1)%

The corresponding goodness-of-fit statistic is G, = nL,[2(8,), S].
Another discrepancy function is

]. 2 2
(1.7) Ly[2(0),8] = Su([2(0) - 8|2} (0))" - %tr[l — 83-1(0)]%

The estimator 0, minimizes Lg2(0),S], but we define G4 = nLy[2(d,), S]
because it is more commonly used. [This statistic may be obtained by itera-
tively reweighted least squares, as presented by Lee and Jennrich (1979), for
example.]

The statistics G,, G, and G4 have been used for assessing the fit of a model
with a particular structure A(A) and for determining the appropriate number
of factors k. If (f/,u’) is normally distributed, that is, if (1.3) holds, then
under the correct model specification, as n — », each of G,, G, and G4 con-
verges in distribution to a xy2 random variable with degrees of freedom d =
ip(p + 1) — 3k(k + 1) — p — q, where q is the dimension of A in A(XA). See
Browne (1974), for example. Because the G,’s are readily computable by
existing packages, we may consider using the G,’s as the goodness-of-fit test
statistics for nonnormal data also, when the (f/,u’,)’s are not considered to be
normally distributed. This paper justifies that use.

A limited literature exists for the study of the asymptotic behavior of the
G;’s when u_’s are normal but f_’s are not normal. For a class of functional
and structural relationship models containing the factor analysis model as a
special case, Amemiya (1985) discussed asymptotic properties of the statistics
corresponding to G; and G;. For factor analysis, Amemiya’s (1985) result is
that under the correct model specification, as n — «, each of G; and G,
converges to a x2 random variable if the f_’s are either fixed or independently
and identically distributed (i.i.d.) with finite second-order moments and if u’s
are i.i.d. normal random variables. Browne (1987) showed the x3 result for G,
and G, under a condition similar to, but stronger than, the condition in
Amemiya’s (1985). In this paper we present general conditions under which
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the limiting x 2 result for the G,’s hold. In particular, we shall show that under
the correct model specification G,, G, and G, converge to a x3 random
variable if f ’s are fixed or i.i.d. with any distribution having finite second-order
moments, if u,’s are i.i.d. with any distribution having finite second-order
moments and if the p-components of u, are independent, not just uncorre-
lated. Using an approach different from ours, stimulated by Amemiya and
Anderson (1985), Browne and Shapiro (1988) showed the limiting x2 result for
G, and G, for a broad class of nonnormal linear structure models. For the
factor analysis model, their conditions on f, and u, are stronger than ours.

Anderson and Amemiya (1988) showed that the asymptotic covariance
matrix of A, the MLE of the loading parameter, is common to a large class of
nonnormal (f2,u’). Here we shall show that for the same class of nonnormal
(f;,u)), G,, G, and G converge in distribution to a x5 random variable
under the correctly specified model. The approach underlying developments in
this paper is the same as that used in the earlier paper. Because G, and G4
are functions of 01, we use a result for 01 derived in the earlier paper. A
similar result for 0 appearing in G, is derived here. The results in the earlier
paper are dependent on the identifying restriction of the type (1.2). Here, we
develop results for the test statistics G,’s which hold also under restrictions
other than (1.2).

More references for statistical inference in factor analysis as well as a
description of these results are available in Anderson (1984a, 1984b) and
Anderson and Amemiya (1988). The generalized least squares method was first
applied to the factor analysis model by Joreskog and Goldberger (1972). The
method was later applied to more general covariance structure models, for
example, by Browne (1974, 1982), Bentler (1983) and Shapiro (1983).

2. Main results. The statistics G,, G, and G5 are functions of the
sample covariance matrix S, which in turn is a function of the unobservable

sample covariance matrices of f, and u :
N

S—‘I‘Z (x, - X)(x, - X)
no,-1
1

21) 1A ] ) ] .
= ;[A(Ao)(f f) + (u, - 0)][A(X) (£, — ) + (u, — T)]

=A(X))®(n)A'(Ag) + A(A)T(n) + T'(n)A'(Aq) + W(n),
where A is the true value of A (the value of A in the population sampled) and
the (unobservable) sample covariances of the factors and errors are

1 X - -

o(n) = L (6.~
1N

¥(n) = 4 L (a, -, - W)
1N

I(n) =~ T (£ - Hlu, -9,

R
I
-
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=1/N)L¥ £, u=(1/N)LY_ju,. We need to separate the diagonal ele-
ments and the off-diagonal elements of W(n): Let w(n) = [¢;,(n),..., ¥, (n)I
be the p X 1 vector consisting of the diagonal elements of ¥(n) and let ¥, (n)
be the 3p(p — 1) X 1 vector listing the off-diagonal elements of W(n). We
present assumptions on these quantities which will be used later.

AssumpTiON 1. (a) ®(n) -, @, positive definite.
(b) ¥(n) -, ¢,, where each component of ¥, is positive.

Throughout this section the model (1.1) holds with the parameterization
(1.2). We define 0, = [N, (vech ®,), ¥;], where ®, and ¥, are given in
Assumption 1. The vector 0, is the limiting true value of 6. In order to
estimate 0, the family of matrices of X(0) must have the property that any
3(0) corresponds to exactly one value of 0; that is, the model must be
identified. In Assumption 2(a) the inverse of £ = 2(0) is continuous at 6 = 0;
Rao (1973) calls this condition strong identifiability. [Assumption 2(a) is
slightly different from the identification condition (v) in Anderson and Amemiya
(1988); the condition here is easier to understand and verify.] Let ||x| =
Vxx, |X| = VtrXX = y/(vecX)' vecX and vecA =(a},...,a),) for A=
(a,...,a,).

AssUMPTION 2. (a) Given & > 0, there exists a § > 0 such that
[Z(0) — =(8p)|| <

implies ||8 — 8, < e.
(b) The population vector A, is in the interior of (,.
(c) A(N) is twice continuously differentiable in a neighborhood of A, and

dvec 2(0)
FT

is of full column rank.

The crucial idea in Anderson and Amemiya (1988), which was suggested by
Anderson and Rubin (1956), is obtaining an asymptotic expansion of 6, — 6(n)
instead of 8, — 0,, where 8(n) is the hybrid vector

0(n) = {N,, [vech ®(n)]’, ¥(n)}".
They showed that the leading term in 61 — 0(n) is a linear function of
g(n) = {[vecT'(n)]',wy(n)}’

and is free of ®(n) and ¥(n). In this paper we derive the same expansion for
8, — 0(n). Using the expansions of 8, — 6(n) and 6, — 6(n), we shall show
that each of G,, G, and G is approximately a quadratic form in &(n). When
the asymptotic covariance matrix of this vector is of a certain form (related to
the matrix of the quadratic form), the statistics have a common asymptotic x?2
distribution.



1458 Y. AMEMIYA AND T. W. ANDERSON
AssumPTION 3. £(n) = O,(1/ Vn).

LemMa 1. Assumptions 1, 2 and 3 imply

(2.2) 8, —0(n) = Cy(0,)vec(S — z[o(n)]} + op( ! i=1,2,

where C(8,) is a matrix depending only on 0,,.

PrROOF. - Anderson and Amemiya (1988) proved (2.2) for 6, and A(A) =
a + AN under Assumptions 1, 2 and 3 and argued further that the result was
true for any A(A) satisfying Assumption 2(c). We present here the proof for 62.
Assumptions 1 and 3 imply S -, 2(0,) and

0 < L,[2(8,), 8] < L,[2(8;),8] -, 0.

Hence, S™1/%[S — 2(0,)IS71/2 > 0 and =(4, ) =, 2(8;). Thus by Assump-
tion 2(a), 6, —, 0y. Hence the probablhty that 02 satisfies the derivative
conditions tends to 1 as n — «. By Assumption 2(c), the first and second
derivatives of L,[X(0), S] with respect to 0 exist and are continuous functions
of 8 and S. Thus, using the Taylor expansion around 6(n), we have

Op( 1) dL,[X(90),S]

n 0

b,

6L2[E(0)’ S]
a0

9%L,[2(90), S]

o(n) 6 96’ 0*[

- 0(n)],

where 0* is on the line segment between 62 and 0(n). Direct computation
shows

8L2[E(0), S]
a9

6(n)

~ [a vec X(0)

Py o(,.)J (S7'® S Yvec(S — =[0(n)]}

’[2_1(00) ® 2_1(00)]vec{S —3[0(n)]}

d vec X(0)
_[ 39

L1

1
+0p W)

o
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because
S — 2[0(n)] = A(A)T(n) + I'(R)A(Xo) + W(n) — diag(¥(n))
(2.3) _o (i)
P ‘/; ’

the diagonal elements of W(n) — diag{W(n)} are zeroes and the off-diagonal
elements are elements of y,(n). [Because phmn .S =plim, ., =(®,) = (8,
is positive definite by Assumption 1, S™! and X~ 1(0,) exist with probability
approaching 1.] The proof is completed by

92L,[2(90), S| 9?L,[2(0),2(0,)]

R
3000 |0 P 36 00’ o
d vec X(0) d vec X(0)
=|——— T 10, ® 7! _—
[ o, | [0 ez 0] 5|
=H(00)9

say; H(0,) is positive definite by Assumption 2(c). O

LEMMA 2. Assumptions 1, 2 and 3 imply
Gi = ng’(n)P(OO)g(n) + Op(]')) 1= 1929 3,

where P(0,) is a symmetric nonstochastic matrix depending only on 0.

Proor. For G, = nL,[2(8,), S]

S

Gy = = {vec[S — =(8,)]} (S~ ® S~ Vvec[S — 2(8,)]

S N

—{vec[S — 2(8,)]} [=71(8,) ® =1(8p)]vec[S — £(8,)] + 0,(1).

\V]

By (2.3), vec(S — Z[0(n)]} = C,(0,)&(n), where C,(8,) depends only on 6.
Hence, by Lemma 1,

vec[S - 2(62)] = vec(S — Z[0(n)] + Z[0(n)] - 2(8,)}

1
- Cy0E(n) + 0, 7
where
d vec X(0,)
C3(00) = 02(00) - [T ]01(00)02(90)-

Hence, for i = 2,

(24) G, = %g’(n)CQ(OO)[E_I(OO) ® 2_1(00)103(00)§(n) + Op(]‘)‘
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For i = 3, the proof is similar. For i = 1 we use the Taylor expansion

G, = n{tr[S — £(8,)]=71(,) — log|T + [S - 2(8,)]=1(8,)[}

n n A
= Sur{[s - 2(8,)]=1(8,))” + 0,(1)
to reduce the proof to the case of G,. O

if the (f/,u/,)’s are normally distributed, the covariance matrix of vn &(n)
depends only on @, and s, say Wy(0,). In this case by the usual asymptotic
theory for likelihood ratio criteria, G; —»; x3, where d = ip(p + 1) — q —
3k(k + 1) — p. We, therefore, shall replace Assumption 3 by the following
more restrictive assumption on the limiting behavior of &(n).

ASSUMPTION 4. As n — o,
\/Eg(n) —)L N[O)WO(OO)])

where Wy(8,) is the covariance matrix of Vn &(n) computed for the case of
normality.

THEOREM 1. Assumptions 1, 2 and 4 imply
(2.5) G, - x3, 1=1,2,3,
whered = ip(p + 1) — q — k(k + 1) — p.

Proor. Lemma 2 implies that limiting distribution of G, depends only on
the limiting distribution of vVn £(n). However, the limiting normal distribution
of Vn £(n) depends only on the covariance matrix. So it has the x 2-distribution
if the limiting covariance of Vn £(n) is the same as the normal case. O

AssumpTiON 5. The two sequences {f,} and {u,} are independent, the
p-components u,,,t=1,..., p, of u, are independent and u;,, « = 1,...,n,
are independently identically distributed with mean zero and positive variance
¥o,, the ith component of ¥, i = 1,..., p.

ASSUMPTION 6. As n — », ®(n) - ®, a.s., where @, is positive definite.

COROLLARY 1. Assumptions 2, 5 and 6 imply (2.5).

Proor. Assumptions 5 and 6 imply Assumptions 1 and 4. See the proof of
Corollary 1 (for estimators) in Anderson and Amemiya (1988). Thus the result
follows from Theorem 1. O

3. Discussion. The impact of Theorem 1 and Corollary 1 on factor

analysis with structured factor loading matrix A(A) is that the three goodness-
of-fit test statistics G|, G, and G have the asserted asymptotic significance
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level under the correct model specification for possibly nonnormal (f.,u’).
Although the asymptotic distribution of S may depend on the existence of
fourth-order moments, the limiting distribution of G,, G, and G4 requires no
restriction on the third- or higher-order moments of f, a.nd u,, not even their
existence. (In the earlier paper examples of nonnormal models were given.)
The conditions of Corollary 1 are identical to the conditions under which the
asymptotic distribution of Va (A, — A,), i = 1,2, is the same as that under the
normality. Anderson and Amemiya (1988) discussed the generality of these
conditions. They also showed that the results for the factor analysis model
with parameterization (1.2) apply to a certain class of structural equation
(LISREL) models.

In the literature two kinds of factor analysis are distinguished depending on
the nature of the restrictions imposed to remove the indeterminacy in (1.1). In
exploratory (unrestricted) factor analysis the restrictions are imposed only for
uniqueness of the parameters. In confirmatory (restricted) factor analysis the
investigator uses prior knowledge about the variables to formulate a hypothe-
sis imposing restrictions on the parameters, such as certain factor loadings
being 0. The model may be restricted in the sense that the number of
restrictions may exceed that required for identification [Joreskog (1969)]. If the
restrictions are placed only on A as in (1.2), then the results of Section 2 apply
to both exploratory and confirmatory factor analyses.

The assumption that restrictions are placed only on the factor loading
matrix A can be relaxed to some extent without altering the results of
Theorem 1 and Corollary 1. Suppose that for the model with random f_, one
parameterization, denoted by A, places restrictions on the factor loading
matrix A, the factor covariance matrix ® and the error variance vector .
Suppose also that parameterization B places restrictions only on A and that
there is a one-to-one relationship between the two sets of possible X =
A®A’' + ¥ under parameterizations A and B. Then, our results hold for G,
G, and G4 computed under parameterization A with restrictions on A, ® and
¥. This is because 0 enters the log Wishart likelihood (1.5) and the generalized
least squares criterion (1.6) only through X(8), because the maximum likeli-
hood estimator 8, or the generalized least square estimator 0,, enters G, G,
and G only through 2(8,) or 2(8,), and because the values of G,, G, and G3
computed under the two parameterizations are the same. For example, a
commonly used confirmatory factor analysis with random factors assumes that
certain loadings are 0 and factor variances are 1. Such a model is equivalent to
the model where the same factor loadings are 0, one of the nonzero factor
loadings in each column of A is set to be 1, and factor variances are unre-
stricted. Thus, our results hold for such a confirmatory factor analysis model
with restrictions on factor variances.

In exploratory (unrestricted) factor analysis with random f, there exist
several equivalent parameterizations. One such parameterization assumes that
A is of the form (A}, I,) and leaves ® unrestricted; Theorem 1 and Corollary
1 directly apply to G;, G, and G3 under this parameterization. The set of
possible ¥ under this parameterization with A = (A}, I,) is the same as that
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under any other parameterization of exploratory factor analysis, for example,
the parameterization assuming that ® = I, and A'W A is diagonal. Thus,
the values of G, G, and G3 do not depend on which of the equivalent
parameterizations for exploratory factor analysis is used in the computation.
Hence, our results hold for G,, G, and G4 computed under any parameteriza-
tion for exploratory factor analysis.

For exploratory factor analysis, stronger results than Lemma 2, Theorem 1
and Corollary 1 hold. In that case, the common leading term in the expansions
of the G;’s in Lemma 2 is a quadratic form only in ¥,(n) [free of I'(n)] and
Assumption 4 in Theorem 1 can be replaced by the condition that vz ¥,(n) has
the same limiting normal distribution as that for the case with normal u,.
Corollary 1 holds for exploratory factor analysis replacing the independence of
{f.} and {u,} in Assumption 5 by I'(n) = O,(1/ Vn). See Amemiya and Ander-
son (1985).

It is possible to extend our results to cover goodness-of-fit test statistics
other than G,, G, and G;. Using L,[2(0),S] and 0, i = 1,2, 3, defined in
(1.5), (1.6) and (1.7), we can consider nine test statistics nL,[%(8,),8], i =
1,2,3, j=1,2,3. Lemma 2, Theorem 1 and Corollary 1 hold for all nine
statistics. The derivations follow the steps of the proof given here for G, G,
and G3. We have concentrated on G,, G, and G5 because these three are
commonly used goodness-of-fit statistics.
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