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ON THE ASYMPTOTIC PROPERTIES OF THE
JACKKNIFE HISTOGRAM!

By C.F.J. Wu

University of Waterloo

We study the asymptotic normality of the jackknife histogram. For one
sample mean, it holds if and only if r, the number of observations retained,
and d (=n —r), the number of observations deleted, both diverge to
infinity. The best convergence rate n~1/2 is obtained when r = O(n) and
d = O(n). For U statistics of degree 2 and nonlinear statistics admitting
the expansion (3.1), similar results are obtained under conditions on r and
d. A second order approximation based on the Edgeworth expansion is
discussed briefly.

1. Introduction. The Quenouille-Tukey jackknife based on deleting one
observation each time is known to be effective for bias reduction and variance
estimation in many situations. However, it does not prov1de enough informa-
tion for investigating the distribution of the estimator 6. Such an investigation
is necessary if interval estimation or inference on some functional of the
distribution of 0 is desired. It also fails to give a consistent variance estimator
for nonsmooth 8 such as the sample quantiles. Wu (1986) suggested that both
problems could be resolved by relaxing the delete-one recipe to allow a larger
number of observations to be deleted each time. For the second problem Shao
and Wu (1989) showed that the consistency of jackknife variance estimation is
restored by using a delete-d jackknife with d depending on a smoothness
measure of 6. As § becomes less smooth (such as the sample median), d
increases. In this paper we address the first problem of the jackknife, i.e., we
show that the normalized histogram of the delete-d jackknife with properly
chosen d converges to the distribution of 6. Results along this line are given
for three classes of statistics. See Theorems 1 to 3 and the summary at the end
of the section.

Another resampling method, the bootstrap (Efron, 1979), does not have the
same problems as the delete-one jackknife. Several methods based on the
bootstrap histogram are known to possess some desirable asymptotic proper-
ties for estimating the distribution of # for a variety of statistics [Bickel and
Freedman (1981); Singh (1981); Beran (1987); Efron (1987); Hall (1986)]. For
the sample quantiles, the bootstrap variance estimator is consistent if the
underlying distribution has a finite ath moment, a > 0 [Ghosh, Parr, Singh
and Babu (1984)]. Because of these two problems, the jackknife is perceived to
be less versatile than the bootstrap. Given the long history of the jackknife and
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its frequent use in practice, attempts such as ours to improve its utility should
be worthwhile.

Since the jackknife employs simple random sampling without replacement
for drawing resamples (see Section 2), the jackknife histogram does not in
general approximate the distribution of 6 to the second order term for
independent and identically distributed samples. This will be studied in Sec-
tion 4. In spite of this, there are situations in which the jackknife is preferred.
This and the potential values of the present asymptotic study will be discussed

in Section 5.
Several definitions are required for the general jackknife. Let x =
(%y,...,%,) be independent and identically distributed (i.i.d.) with finite vari-

ance and 6 = 6(x) be an estimator of an unknown quantity 6. We assume that .

8 is asymptotically normal with limiting variance o2, i.e.,

(1.1) Vn (6 — 6) -, N(0,0?).

The jackknife method resamples from x by taking each subset x, (of size r) of
x with equal probability ( ) . Taking a subset of size r is equlvalent to
deleting its complement of size d = n — r. Denote this jackknife sampling by
*, Notations such as E,, v, refer to probability calculations under *. For
each selected subset x,, we calculate 6, = 6(x,) and define

(1.2) 6, =06+ \/_g(és—é).

For variance estimation,
(1.3) E.(6,-6) = %E*(és — §)?

is called a delete-d Jackkmfe variance estimator [Shao and Wu (1989)].
The definition (1.2) is motivated by moment-matching for the one- -sample
mean 6 = ¥ = n~'Lx;. It is easy to see that, for 6 =%,

Note that for the delete-one jackknife (r =n — 1), Tukey’s (1958) pseudo-
values
6,=06-(n—-1)(6,-6), s={1,...,n}/{i},

are different from (1.2).
We can construct a jackknife histogram from the normalized 6, values,
that is, its cumulative distribution is :

6, — 6 nr\/2 6, — 6
(14) J(t)=P*{—0i—/'2— St}=P*{(7) = St},

g
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where 0 = n"'62 and 62 is a consistent estimate of the limiting variance o2
in (1.1). The estimate 0 can be obtained by several methods, e.g., linearization,
jackknife and bootstrap. Consistency of the jackknife and the bootstrap vari-
ance estimators are studied, respectively, in Shao and Wu (1989) and Shao
(1987). A major purpose of resampling is to use the observed data to construct
a distribution that mimics the unknown distribution of 6. Since the limiting
distribution of § is normal, a central question is whether J(2), (1.4), will
converge to N(0, 1). For the one-sample mean, r — » and d — » is shown to
be necessary and sufficient for the asymptotic normality of J(¢) [Theorem 1(i)
and (ii)]. For U statistics of degree 2, it is sufficient for the asymptotic
normality of J(¢) [Theorem 3(i)]. Convergence rate of J(¢) to normality is
studied in Theorems 1(iii) and 3(ii). For the one-sample problem, the best
convergence rate n~ /2 is obtained when r = O(n) and d = O(n), that is to
delete a fraction of n observations. Results on asymptotic normality are
obtained in Theorem 2 for nonlinear statistics admitting the expansion (3.1).

2. Asymptotic normality of the jackknife histogram: Linear statis-
tics. We first study the problem for linear statistics. Let x, .. , %, beiid.
with mean p, finite variance o2 and distribution F((x — ) /o). For 6 =z, J(2),
(1.4), becomes

nr\t/2x. — X 1 =
ey p{(F) s T
1

o

where %, is the mean of the x,’s in the subset s. We note that the jackknife
sampling * is the same as simple random sampling (srs) without replacement
from the population {x,, ..., x,,}. Therefore, in this context, X is the population
mean and X,, is the mean of an srs sample without replacement. We can
rewrite (2.1) as

(2.2) P { [ Vr (&~ ) }

where f = r/n is the sampling fraction and (1 — f)é2/r is the variance of %,
under srs without replacement [Cochran (1977)]. This connection with finite
population sampling enables us to obtain simpler proofs.

From the central limit theorem,
(2.3) PF{M < t} — ®(¢) foreach ¢,
where ®(¢) is the standard normal distribution. Therefore a requirement of
J(2), (2.1) or (2.2), is its convergence to the same limit. In Theorem 1(ii) and
(iii), a strong version will be proved, that is, J(¢) as a function of x converges
to ®(¢) a.s. in x.

From Theorem 1(iii) the best convergence rate n~!/2? is obtained when
r=0(n)and d = O(n).
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THEOREM 1. (i) If either d or r is bounded, J(t) - ®(¢) for each t a.s. does
not hold except for normal F.
(ii) Under 0 < Ep(X — p)? < », r > w and d - » imply

(2.4) sup|J(¢) — ®(¢)] >0 a.s.

(iii) Under Ep|X — u|® < © and o > 0, the upper bound in (2.5) converges
to zero a.s. at the rate max(r='2,d %) as r » » and d - «,

C n ey, — &)

min(Vr , Vd ) &8 ’

where C is a constant independent of r and n.

(2.5) suplJ () — ®(2)| <

Proor. (i) Let ¢,(¢) be the characteristic function of

nr\t/2 (%, — x)
(7)==
under *, that is,

1 nr (X.—X)

¥a(€) = 2; exp{i§ a —&——}

—_
<3|

(2.6)
1 r . n 1 B
i el 30}
r r
where ¥, denotes summation over all the subsets {%,, ..., k,} of size r. Using
r(x, — %) = —d(X,; — X), where %, is the mean of the x,’s in the complement

5 of s, ¢,(£) can be written as
1 d RV _
(27) —(—Z_)§ Jl:[lexp{—zf(—r—d—) —&—(xkj——x)}.

Consider the case of bounded d. We have n/r - 1, X - u, & » o and (2.7) is

asymptotically equivalent to
1 d 11

(2.8) @Z =1exp{_ngl/-2;(xkj_l-")}a

d J

which is a U statistic of degree d with kernel

d 11
hxs ) = TTewp( it gms o (x = ).
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Since E|h| < =, from the strong law of large numbers of U statistics [Serfling
(1980)], (2.8) converges a.s. to

d

o).

where ¢(n) is the characteristic function of (X — u)/o under F. Except when
F is normal, (2.9) cannot be the characteristic function of a normal distribu-
tion. Therefore, convergence to a normal limit holds only for normal F.
Similarly for bounded r, it can be shown that (2.6) converges a.s. to {¢(£/ Vr )}
by following the same proof.

(i) The expression (2.2) for J(¢) is for the mean of an srs sample (without
replacement) from the population {x,,...,x,}. Hijek’s (1960) result on the
necessary and sufficient condition for the asymptotic normality of X, (in
conjunction with Polya’s theorem) establishes (2.4) if {x,,..., x,} satisfy the
condition

. 1 = =\2
(210) r}l_I)I:o mzl (xi - x) I(|xi—f|z‘r(rd/n)1/2¢‘7) =0 a.s.

for any 7 > 0. Since Ez|X — u|®> <, ¥ > u and & — o a.s., (2.10) is equiva-
lent to

1 n
(2.11) lim Py Y (x; - [L)ZI(le_#IZT(rd/n)l/z) =0 a.s.forany s> 0.
n—o 1
From the inequality
rd 1
(2.12) min(r,d) > — > Emin(r,d),
n

min(r, d) - » iff rd/n — ® as n —> ». For any positive constant %, choose a
large m such that rd/n > k2% for n > m. Then the left-hand side of (2.11) is
bounded above by

1 n
lim — Z (%, — /'1‘)2[(|xi—,u|21-k) =Ep(X - #)2I<|X—,L|sz)’

n—o N 1

which is arbitrarily small since % can be arbitrarily large and Ex(X — u)? < .
(iii) Using the following Berry-Esseen bound for srs without replacement
[Hoglund (1978)],
n1Trx, — x°

(rd/n)l/Z 6_3

)

(2.13) sup|J(¢) — ®(¢)| <

where C is a constant independent of {x,...,x,}, r and n. Since
EglX — p|® <o, n 182, — %|° > Ex|X — 1|® and & - o. From (2.12) and
(2.13), (2.5) and the conclusion in (iii) follow.
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3. Asymptotic normality of the jackknife histogram: Nonlinear
statistics. In this section we extend Theorem 1 to nonlinear statistics. First
we consider the class of estimators #(x) which admit the expansion

A

1 n
(3.1) =0+ ;Z(I)F(xi) +R,,
1

where ¢ is measurable in x with Ep(¢z(X)) =0, 0 < Ep(¢3(X)) = 0® <
and the remainder term R, satisfies

(3.2) Vn R, — 0 in probability.

From (3.2), o2 = Ep(¢%(X)) is the limiting variance of Vn (§ — ). Any consis-
tent estimator & in (1.4) can be used for estimating this o.

Conditions (3.1) and (3.2) give a broad class of estimators 6. Noting that the
linear term n~'E ¢ (x,) in (8.1) is of the order O,(n~ 1/2) (3.1) and (3.2) imply
that the estimator  can be approximated by a linear statistic with the
approximation error being of lower order. This very general property covers
many smooth and not-so-smooth estimators, including the sample quantiles, L
statistics, M estimators, smooth functions of the sample mean and U statistics
[detail in Serfling (1980) and Shao and Wu (1989)]. If 6 = T(F,) is a functional
of the empirical distribution function F, of (x, x, ..., x,,), a sufficient condi-
tion for (3.1) and (3.2) is that T is quasi -Fréchet differentiable with respect to
a norm || - || for which ||F, — F||= O, (n‘l/Z) [Serfling (1980), page 221].

Similarly for any subset of size r, 0 has the expansion
és =60+ — Z d)F(xz) + Rn,s’
r iE€s
where the remainder R, , = 0,(r~'/?). To study the limiting behavior of J(¢),
(1.4), we decompose 6, — 6 into the linear part and the remainder part, i.e.,

), - { 2¢F<x)——2¢p<x>]+w“— R,].

LES

The limiting behavior of J(¢) for the linear part was considered in Theorem 1.
In Lemma 1 we give conditions under which the contribution of the remainder
part of J(¢) is asymptotically negligible.

LemMma 1. (i) Under (3.2), d/n > A for some A > 0 and r — » ensure that

nr\1/2
(3.3) Q(x) = P*{(—d—) IR, ,—R,| = 5} — 0 in probability.
(ii) Under
a a
(3.4) ER?2 = — +0o(n7?), E(R,R,)) = — +o(r 2,
n n

where a is independent of n, d/n — 0 and r — » ensure that (3.3) holds.
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Proor. (i) Since Q(x) is nonnegative, (3.3) follows from
nr\1/2
EQ@) = Pe{( ) IR, ~Ril e} =0,
which follows from

nr 1/2
(7) IR, —R,| <AY2Vr|R,— R,| » 0 in probability

under (3.2).
(ii) Under (3.4) and r — «, Lemma 2 of Shao and Wu (1989) shows that
’ nr
—Er(R.-R,)" >0,

which implies

nr1/2
(7) |R, — R,| » 0 in probability.

The rest of the proof is the same as in (i). O

By combining Theorem 1 and Lemma 1, we have the following result for the
nonlinear estimators (3.1) and (3.2). Unlike Theorem 1, it is a weak result
because the Q(x) in Lemma 1 converges to zero weakly.

TuEOREM 2. For 0 satisfying (3.1) and (3.2), the following results hold for
J(@), (1.4).

(D If d is bounded and (3.4) holds, J(¢t) — ®(¢) for each t in probability
does not hold except when ¢p(X) is normally distributed.
(ii) If d > o, d/n > 0 and (3.4) holds,

sup|J(t) — ®(¢)|] » 0 in probability.
t

(i) If d/n > A for some A > 0 and r — =,
sup|J(t) — ®(¢)] » 0 in probability.
t
Proor. Since & in (1.4) converges to o in probability, we will consider the

version of J(¢#) with & replaced by o. Note that Theorem 1 applies to
6 = n 'L 1dp(x;), since 0 < Ep(¢2(X)) < . By writing

(nr)l/2 6, -6

d

g
as
nr\l/21[1 1n nr\1/2 1
. — —|= ) — — +l=] = -
@5 (7 o[r L ér(x) - L ¢F<xl)] (7) " F(Rus- R
we can apply Theorem 1 and Lemma 1 to the first and second terms of (3.5),
respectively. Part (i) follows from Theorem 1(i) and Lemma 1(i). Part (ii)

follows from Theorem 1(ii) and Lemma 1(ii). Part (iii) follows from Theorem
1Gi) and Lemma 1G). O
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Theorem 2(iii) gives the weak consistency of the jackknife histogram for any
6 satisfying (3.1) and (3.2). This is a significant result since, as discussed after
(3.2), it covers a very broad class of estimators including many smooth and
not-so-smooth estimators. It is worth noting that, under the conditions of
Theorem 2(iii), the delete-d jackknife variance estimator (1.3) is weakly consis-
tent and asymptotically unbiased [Shao and Wu (1989), Corollary 1].

While d = O(n) in Theorem 2(iii), the complementary case of d = o(n) and
d — « is addressed in Theorem 2(ii). An additional condition (3.4) on 6 is
required. Roughly speaking, (3.4) imposes a more severe requirement on the
smoothness of 6. Shao and Wu [(1989), Theorem 5 and Example 5] gave two
classes of 6 satisfying (3.4): (i) § = T(F,), where T is second order Fréchet
dlﬁ‘erentlable with respect to the supremum norm and Var(d) = o2 /n +
o(n™1), o2 given in (3.1); (ii) U statistics of any degree [see (3.6) and Remark 2
after Theorem 3] satisfying a condition analogous to (3.7) for the case of degree
2. It is not surprising that a more severe condition on the smoothness of 8 is
imposed when d — « at a slower rate than n, since the theory of Shao and Wu
(1989) for jackknife variance estimation points to an inverse relationship
between d and the smoothness of 6.

The weak result in Theorem 2(ii) and (iii) can be improved to obtain a
strong version if a finite population central limit theorem for 6 is available.
Similarly, by using a finite population Berry-Esseen bound for 6, a conver-
gence rate result analogous to Theorem 1(iii) can be obtained. One such
example is the U statistics. For the simplicity of presentation, we will study in
detail the special case of degree 2 with the symmetric kernel ¢,

(3.6) i@ =(3) T #xm)

l1<j<k=<n

For the extension to any general degree, see Remark 2 after Theorem 3. Under
EF|¢(X1, X,)| < », where X, and X, are independent with distribution F, 6
is a strongly con81stent estlmator for the parameter 0 = Ep¢(X;, X,). Define
G(X,)) = Ex(¢(X,, X,)|X,;). We assume

(3.7 0 < ¢} = Varg(G(X;)) and Epé*(X;, X;) <=,
so that Vn (8 — 6) -, N(0,4¢3). Let (Y,,...,Y,) denote the random vector of
r distinct elements selected randomly from the population {x,,...,x,}, d =

n — r. Define

g(Yy) = E*(¢(Y1, Y2)|Y1)’

gj(x) =E*(¢(Y1,Y2)|Y1 =xj) Z ¢(xj’xk)

(3.8) n =1,

1 A\2
= Var.(g(r) = L (8,0 - 9)’

where E, g(Y,) = 6.
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Under (3.7), we will show that

(3.9) 62— £ as.asn > o,
From (3.8),
1 -1
52 = 5 Y 6% %)
¢ n_1(2) 1<j<k=<n 7k

—_ 2 -1 n
+ - (g) Z d’(xj,xk)‘f’(xj:Xz) - 6*

l<j<k<lzn

(3.10)
o (ST PPN
= Xiy Xp
n—112 1<j<k=<n ’
n-—2 -1 A
+ (,31;) Z \If(xj’xk:xl) - 02:
n-—1 1<j<k<lszn
where

V(xy, %p, %3) = %{d)(xl,xz)d)(xl,x?,) + ¢(xy, x3)P( x4, x3)
+é(x;, x3) (%2, x3)}

is a symmetric function in x;, x, and x;. From the strong law of large
numbers for U statistics, the first, second and third terms of (3.10) converge,
respectively, to

lim EF(¢2( Xy, Xz)) =0,
noon —1

EF\P( X5, Xy, X3) = EF(Gz( Xl))

and 6%, which establishes 62 — £7 = Vary(G(X),)) a.s.

Using this 4, as an estimate of ¢;, the jackknife histogram J(¢), (1.4), takes

the form

3.11 J p, (XL Va0, t
. = <

(311) 0 =r.|(T) T =t|

where

-1 '
0s=(;) Z d’(xkl’xkj)’ S=(k1,...,kr).

l<i<j=<r

For 6 and J(¢) given in (3.6) and (3.11), we have the following result.

THEOREM 3. (i) Under (3.7), r > « and d — » imply
(3.12) sup|J(¢) — ®(¢)] > 0 a.s.
t
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(i) Under ¢2>0 and Eg|¢(X;, X)) <o, r> o and r/n<A <1 for
some constant A imply

(3.13) SI:pIJ(t) - ®(t) < TCr—A(X),

where C is a constant solely dependent on A and A(x) converges a.s. to a finite
constant.

Proor. (i) From Theorem 2.1 of Zhao and Chen (1990), (3.12) holds under
the following conditions:
(a) For any 7 > 0,

'}l_f)n _Agz 21 (gj(x) ) (lg,0-81=ro,0rd /nyiy = 0 .8
J

() lim,, |, (d/rn)é; E [¢(Y,,Y,) — 612 = 0 as.
The expression in (b) is bounded above by

o d 1 p\-1
lim "—A_z(z) Z ¢2(xj’xk):
n—ox Il Oy 1<j<k=<n

which converges to zero a.s. because of r — «, “gz - ¢ as. and Ep¢%X,, X,)
< oo,

To prove (a), we note that g;(x) are not 1ndependent since each g;(x)
depends on all the x; except x;. From 6 — 60 and 62 — ¢2 1> 0, (a) follows from

n

1
(3.14) lim - Y (g;(x) - ) (g, ®)—0] > 7(rd /)% = 0 forany 7> 0a.s.

Since min(r, d) — « implies rd /n — « [see (2.12)], (3.14) is bounded above by

(3.15) hm sup— Z (g;(x) — ) {lg,@—6]>24) for any constant A > 0.
mj-

Define the three functions

0, ifjx| <24,
A -
(%) {xz, if x| > 24,

0, if x| <A,
hy(x) = { interpolating linear functions, if A < |x| < 24,
x2, if |x| > 2A,

0, ifjx| <A,
h —
3(%) {x2, if x| > A.

It is clear that h; <h, <hj and h, is convex. From (3.8), the expression
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(3.15) equals 7
(3.16) ,}i_r)r:osup E.h(g(Y)) —0) < ,}i_lgosup E. h,(g(Y;) —90).
From the Jensen inequality,
ho(g(Yy) — 0) = hy(E,{¢(Y,, Y;) — 6]Yy))
< E,{hy(¢(Y,Y,) — 0)|Y:}.
Thereforé, the right-hand expression of (3.16) is bounded above by

lim sup E, h,(¢(Y,,Y,) — 6)

IA

lim sup E, h3(#(Y,, Y,) — 6)

-1
= lim sup(g) Z (¢(xj1 x) — 0)2I(|¢(xj,xk)—0|2A)

n—® 1<j<k=<n

= EF(‘f’( X, X,) - 0)21([¢(X1,X2)—02A) a.s.

The last expression can be made arbitrarily small by choosing a large A since
Ep¢%(X,, X,) < ». This proves (a).
(ii) Using Theorem 3.1 of Zhao and Chen (1990),

A3 A\2
C [E.|g(Y,) -6 E. (6(Y,Y,) — 6
(3.17) suplJ(¢) — ®(¢)| < — *lg(j,,,) | + (9 ﬂj) ) ,
¢ Vr Og Og

where C is a constant solely dependent on A. Since 6 — 6, 67 — ¢7 and
E, %Y, Y,) > Ep(¢*(X,, X,)) < », what remains is the term

3
E,|g(Y,) - 0|3 = E*lE*(d’(YhYz) - 0|Y1)|

-1
<E oY, Y) -0 = (5] L [(x,x) -6,

1<j<k<n

which converges a.s. to En|¢(X,, X,) — 8]® < « from the strong law of large
numbers for U statistics. This proves (3.13). O

ReEMARK 1. Extension to a general variance estimate 6-6,2. As long as &gz -

£2> 0 a.s., Theorem 3(i) holds if G, in J(¢) is replaced by such G,. This
follows easily from Corollary 2.2 of Zhao and Chen (1990). For Theorem 3(ii)
to hold, an additional condition on &, is required. From Corollary 3.2 of Zhao
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and Chen (1990), a sufficient condition on g, is

E,|g(Y,) - é|3 + E,($(Y,Y;) - 9)2)}

!

2

A3 A2
Og

1- 0{

R

l<j<k<n Og

onq.:,|on

Og

=0(r 12),

REMARK 2. Extension to U statistics of any fixed degree. This extension is
straightforward but tedious. Note that the proof of Theorem 3 is based on
Theorems 2.1 and 3.1 of Zhao and Chen (1990), which hold for U statistics of
any degree. Verification of the corresponding conditions is more cumbersome.

4. A higher order consideration. In the previous sections, no or weak
condition on the growth rate of r is required for the first order asymptotics. A
natural question is how to choose r to ensure a better approximation of J(¢)
to the distribution of 6? First we recall the Edgeworth expansion for the
distribution of x:

(4.1) H(t) = PF{E(—i_—“)— < t}

Vn

Better approximation of J(¢) to H(t) obtains if the n~'/2 term of J(¢)
converges to the n~'/2 term of H(¢) as n — ». Using the Edgeworth expan-
sion for srs without replacement [rigorous justification in Babu and Singh
(1985); Bickel and van Zwet (1978); Robinson (1978)], J(#) in the form (2.2)
can be expanded as

= o(¢) +(1—t2)¢(t)%f—) +0( . )

1
(4.2) J(t) =o(t) + (1 - t2)P(t)

-2f nlZi(x;-%)° 1
6/f(-f)  Vno® +°( y

=

where f=r/n. Since n™'L(x; — ¥)® > Ep(X — w)® and & - o, by compar-
ing (4.1) and (4.2),

(4.3) MU)—HUM={£})
iff
1-2f

JFa-p
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iff

r 5—v5
f=eo
n 10

That is, in order to achieve a higher order approximation of the jackknife
histogram J(#) to the true distribution H(#), one should retain about 27.64%
of the data in computing 6, = ¥,.

In general, choosing the r value alone will not achieve the second order
approximation (4.3). Take, for example, the ¢ statistic (¥ — u)/é, & given in
(2.1). Its Edgeworth expansion is

= 0.2764.

Vn (% — p) Ep(X - p)° 1
(44) PF{—O'_— } =CI>(t)+(2t2+ 1)¢(t)—m— +O("/-7—'),
while J(¢) admits the expansion [Babu and Singh (1985)]
Vr(%, — %) }
J(t) =P, {—— <t
[ - a2
(4.5) - 000 + (a0t - 2 L e - -
nTlEn(x; - %)° (1
6Vr 6 +°(W)’
where 62 = (r — )7L, (x; — X,)% It is obvious that, no matter how f is

chosen in (4.5), the difference between (4.5) and (4.4) cannot be of the order
o(n~1/%), This should not be too surprising since (4.4) is for sampling with
replacement and (4.5) is for sampling without replacement. Because of the
difference in the probability mechanisms, the polynomials in the second order
terms of the Edgeworth expansions are in general different.

If the original data come from i.i.d. sampling, jackknife resampling, which
does not mimic i.i.d. sampling, will not in general give a histogram that
approximates the original distribution to the second order. On the other hand,
if the data are obtained from simple random sampling without replacement
from a finite population, the bootstrap histogram does not approximate the
original distribution to the second order since bootstrap resampling does not
mimic without-replacement sampling. A method that accomplishes the desired
second order approximation first replicates the observed sample to the size of
the population and then resamples from this enlarged sample using without-
replacement sampling [Gross (1980); Babu and Singh (1985)]. So the relative
advantage of the two methods in terms of second order approximation depends
on the nature of the original sampling plan.

5. Concluding remarks. As discussed in Section 1, it is of considerable
theoretical importance to study the asymptotic properties of the jackknife
histogram. Our results show that the jackknife histogram has desirable first
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order asymptotic properties for a variety of statistics. In particular, Theorem
2(iii) ensures its consistency for a very general class of 6 satisfying (3.1) and
(3.2) if d, the number of deleted observations, is of the order O(n) and
r =n — d — «. This resampling can be easily implemented by deleting a fixed
fraction of the sample. On the other hand, there is no result available on the
bootstrap histogram that covers such a broad class of statistics. Our study
opens up the possibility of using the jackknife histogram J(¢) as an optional
method for resampling inference. Although for i.i.d. samples the jackknife does
not do as well as the bootstrap in terms of second order approximation, we do
not think a method can be solely judged by this criterion.

Regarding the choice of d, our asymptotic normality results suggest that d
be chosen to be An, 0 < A < 1, but cannot specify the value of A. As shown in
Section 4, use of a second order approximation succeeds in finding such a A
value only in a special case. Because of the success in using the balanced
half-samples method for variance estimation in complex surveys [Kish and
Frankel (1974)], we think A = 1 deserves special attention. In general one can
consider choosing A between + and 2, but the best choice of A seems to depend
on the particular problem. In this regard, the jackknife is not alone. For
example, for the bootstrap method in complex surveys, the best resample size
depends on the sampling design [Rao and Wu (1988)].

There is no question on the versatility of the bootstrap for statistical
estimation and inference. Its theoretical properties have been studied by many
investigators. Due to the problems mentioned before, the jackknife has not
been received with the same degree of interests. We think the significance of
the jackknife as a resampling method may have been overlooked. In some
situations such as the following, the jackknife may even be a preferred method.

1. Unlike the bootstrap, the jackknife either retains or omits an observation in
its resamples. This take-or-not-take feature of the jackknife makes it more
robust than the bootstrap against heteroscedasticity [Wu (1986); Shao and
Wu (1987)].

2. As the counterexample of Ghosh, Parr, Singh and Babu (1984) demon-
strated, the bootstrap variance estimator for the sample quantile is incon-
sistent if the underlying distribution F has very heavy tails. Recently Shi
(1988) proved the consistency of the delete-d jackknife variance estimator
for the sample quantile without any conditions on the tails or moments of
F if d/n is bounded away from 0 and 1. This can be explained by the fact
that the jackknife point estimate 0 does not take extreme order statistics
while the bootstrap does so, albeit w1th small probability.

3. The jackknife employs a more systematic method of sampling than the
bootstrap. Intuitively, it may be a more efficient method for Monte Carlo
approximation, but no theory is available yet.
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