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LOWER BOUNDS ON BAYES FACTORS FOR MULTINOMIAL
DISTRIBUTIONS, WITH APPLICATION TO
CHI-SQUARED TESTS OF FIT!

By MoHAN DELAMPADY AND JAMES O. BERGER

University of British Columbia and Purdue University

Lower bounds on Bayes factors in favor of the null hypothesis in
multinomial tests of point null hypotheses are developed. These are then
applied to derive lower bounds on Bayes factors in both exact and asymp-
totic chi-squared testing situations. The general conclusion is that the
lower bounds tend to be substantially larger than P-values, raising serious
questions concerning the routine use of moderately small P-values (e.g.,
0.05) to represent significant evidence against the null hypothesis.

1. Introduction.

1.1. Overview. Lower bounds on Bayes factors (and posterior probabilities)
in favor of point null hypotheses, H,, have been discussed in Edwards,
Lindman and Savage (1963), Dickey (1977), Good (1950, 1958, 1967), Berger
(1985), Berger and Sellke (1987), Casella and Berger (1987), Berger and
Delampady (1987) and Delampady (1986, 1989a, b) among others. The startling
feature of these results is that they establish that the Bayes factor and
posterior probability of H, are generally substantially larger than the P-value.
When such is the case, the interpretation of P-values as measures of evidence
against H, requires great care. (Other references concerning the relationship
between P-values and Bayes factors can be found in the above articles.)

One common rejoinder is that P-values are valuable when there are no
alternatives explicitly specified, as is commonly the case in tests of fit. Without
alternatives, calculation of Bayes factors or posterior probabilities is impossi-
ble. The ultimate goal of this paper is to address this issue for a particularly
common test of fit, the chi-squared test of fit. It will be observed that
alternatives implicitly do exist, which allow for the computation of lower
bounds on Bayes factors in favor of H, and posterior probabilities of H,.
These lower bounds will be seen to be much larger than the corresponding
P-values.

Lower bounds on Bayes factors are also of interest from Bayesian and
likelihood viewpoints. They provide bounds on the amount of evidence for the
null hypothesis, in a Bayes factor or weighted likelihood ratio sense, that
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depend only on the general class of priors being considered, and not on a
specific prior distribution or likelihood ‘ weight function.”

In developing the results for the chi-squared test of fit, it is first necessary
to deal with testing of point null hypotheses in multinomial problems. This is
the subject of Sections 2 and 3; Section 2 deals with lower bounds for Bayes
factors over the class of conjugate priors, and Section 3 with lower bounds over
a large class of transformed symmetric priors. Section 5 discusses the chi-
squared test of fit. Some comments, comparisons and conclusions are pre-
sented in Sections 4 and 6.

1.2. Notation. Let n =(n,,n,,...,n,) be a sample of fixed size N =
L{_i n; from a ¢-category multinomial distribution with unknown cell proba-
bilities p = (py, py,..., p,) € A, the t-dimensional simplex. The probability
density (mass function) of n is

! t
(1) f(nlp) = ——— T1p/".
i=1 =1
The problem of interest is to test the hypothesis:
H,:p=p° versus H,:p + p°,

where p° is a specified interior point of A. The classical multinomial test has
P-value

(2) P =P,_,o(y: f(yIp°) < f(n|p°)).

However, this being difficult to calculate, the most popular approach is to use
the chi-squared approximation, P(y2 , > Sy), where

(3) Sy = Z

and y2 represents a chi-squared random variable with m degrees of freedom.

Approaching the testing problem from the Bayesian viewpoint, assume that
m is a prior distribution on A which assigns mass m, to {p° and 1 — =, to
{p # p° and such that the conditional density with respect to Lebesgue
measure on {p # p° is g(p). Define g(p°) = 0 and

m,(n) = fA f(np)g(p) dp,

which we assume to be positive for all n. The quantities of interest are then
1. the Bayes factor of H, relative to H;:
f(np®)

mg(n) ’

B#é(n) =
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2. the posterior probability of H,:

1-my) 1 -t
o B2(n)

P™(H,n) = |1 +

Bé#(n) is also of interest from the likelihood viewpoint, since it is the ratio of
the likelihood of H|, to the average or weighted likelihood of H,, the averaging
being with respect to the ““weight function’ g.

Of interest is that lower bounds on B#(n) [and hence P™(H,n)] can be
found for important classes of densities g, and that these lower bounds tend to
be surprisingly large. If G is a class of densities g under consideration, we will
consider the lower bounds

Bg(n) = inf B#(n)
geG

and

. - [ (1-m) 1 ]_1
Py(Hyn) = 1nf(;P (Hym) = |1+ .
g<

To Bg

We will only present results in terms of By, since this determines P,(H,|n)
once 7, the prior probability of H,,, has been specified.

1.3. Choice of G. A Bayesian might restrict G to a single distribution, g,.
A robust Bayesian might restrict g to a small class of densities, say, those in a
neighborhood of some g, [cf. Berger and Berliner (1986) and Sivaganesan and
Berger (1989)]. But any such restrictions require specific subjective input. Of
interest to Bayesians and non-Bayesians alike are choices of G which require
only general shape specifications concerning G. Two such possibilities are

(4) G¢y = {g which are conjugate to f(n|p) and such that E¢[p] = p°},
(5) Gys = {unimodal g, symmetric about p°}

(where ““symmetric about p°”’ will be defined in Section 3).

The appeal of these two classes of densities is that they seem to be
somewhat objective classes. They acknowledge the central role of p°, and seek
to spread out the prior mass around p° in ways that are not biased toward
particular alternatives. Many other classes could be considered; a detailed
study of a number of such classes in Berger and Delampady (1987) (for the
binomial case) indicates that G and Gyg are quite representative, and also
satisfactory in terms of being neither too big nor too small. (It might appear
that Gy is too small, typically including only a small dimensional class of
distributions; that similar results are obtained for Gg should allay such
fears.) Further justifications for the use of Gy may be found in Good and
Crook (1974) (and references therein) who cite work by Johnson (1932) in the
special case where p? = 1/t,1 <i < t. Use of Gy is considered in Section 2,
and use of G g in Section 3.
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Additional discussion of the multinomial testing problem with mixtures of
conjugate priors can be found in Good (1965, 1967, 1975). Edwards, Lindman
and Savage (1963) discuss the possibility of finding By for the binomial
problem. Extensive discussion of the binomial problem can be found in
Delampady (1986) and Berger and Delampady (1987).

2. Bounds for conjugate priors in multinomial testing.

2.1. Introduction. For the multinomial distribution, f(n|p) in (1), the
Dirichlet densities form the usual conjugate family. The density of the Dirich-
let distribution with parameters k = (k, k5, ..., k,) is

I‘(Z%_lk,) ¢
—— = L TIpkY, k;>0,i=1,2,....t;p<€A.
o T(ky LLP P

The mean of g, is the vector (‘_, %;,) 'k, which equals p° =
(p?,p3, ..., p) only if k = cp°® for some ¢ > 0. Thus, in testing H,: p = p°

versus H;: p # p°, the class of conjugate densities with mean equal to p° is

8x(pP) =

(6) Goy = {8x: k = cp®, ¢ > 0}.
For convenience, define

Bcy(n) = _B.ch(n) = inf Bé#(m).

g€Gey
2.2. Exact results. For the conjugate priors gy,
m g (n) = [ f(nip)&i(p) dp

(7) N!'  T(Ti k) TI'_,T(n, +&,)
- ITi_; ;! I T(&,) F(N+ Z§=1ki) .

The following result is an immediate consequence.

THEOREM 1. The lower bound on the Bayes factor over Gy is given by

. T(e+ NI {T(ep?)(p2)™)
(8) Bey(n) = cH>1£ I'(e)IT_, F(ni + Cpio)

The minimization in (8) can easily be carried out numerically. This is
because, as Good (1965) conjectured and Levin and Reeds (1977) proved,

T(e)ITis; T(n; + cp?)
I'(c + N)IT:_, T(cp?)
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is unimodal, and has its maximum at a finite ¢ if

¢ N
(9) SN>t—1+ZLp‘———P£—

and at ¢ = « otherwise [where S is as defined in (3)].

For selected values of ¢, p® and n, By is tabulated in Tables 2 and 3 along
with the corresponding P-values. These tables are given in Section 4 to which
we defer discussion of the results.

2.3. Asymptotic results. As N — o, the behavior of Bg(n) is given in the
following theorem. For use in theorem, define Q) NE= {n: 0 < Sy <K}

THEOREM 2. For every K > 0,

llm sup |BCU(11) B(ﬂfU(SNH =0

where

Bg;(v) = inf a'"fexp(—3(1 - a?)v).

1>a>0
Proor. See the Appendix. O

B¢y is the bound obtained from the following normal problem. Let X =
(X, Xy,..., X,_1) ~N,_(0,I), and suppose that it is desired to test H,:
0 =20, versus H;: 0+ 0,  Let G be the class of all unimodal densities,
spherically symmetric about the vector 0,. Then, the lower bound on the
Bayes factor for this problem, over the class G, is precisely B&;(||X|?), as is
proved in Delampady (1986). This lower bound, calculated for a number of
different dimensions, is displayed in Table 1 in Section 3; discussion is deferred
to that section. For Table 1 we have chosen values of || X||? equal to the 1 — P
quantile of a chi-squared random variable with ¢ — 1 degrees of freedom, P
being certain common P-values; for convenience of comparison, the table is
given in terms of these P-values, instead of ||X||2.

3. Bounds for symmetric priors: Multinomial testing

3.1. Introduction. When p°® = (¢t"1,...,¢t71), it is not difficult to define
symmetry for conditional prior densities g. For general p°, a natural way to
obtain a notion of symmetry is to consider symmetry in a suitable transforma-
tion of the parameter p, such as in u(p) defined as follows.

Let D(p®) be the diagonal matrix with ith diagonal element equal to p?,
i < t, and define ¢(p) = (/p,, Vp. Dos--es Vo ;—1)- Then the covariance matrix of
the first ¢ — 1 free coordinates of nis ¥ = ND(p '/2)(I,_, — (p)d(p))D(p'/?),
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where I, is the & X k identity matrix. Define B(p) by

B(p) =

I, + ‘/—+ ¢(p)¢(p))D(p“/2)

Note that NB(p)B(p) = ¥. Finally, denoting the first ¢ — 1 coordinates of
p — p° by [p — p°l., define u(p) as

P "P(1) Dy _pto—l

Lt
\/,ert)(ﬁ,...,\/ﬁ_—l).

The reasons for considering the transformation u(p) are as follows:

u(p) = B(p)([p - p°].) =

1. The range of u(p) is R*" 1.

2. The likelihood function of u(p) is considerably more symmetric than that of
p when T(p? — 1/¢t)? is large. Further, it is approximately normal with
covariance matrix I,_; in a neighborhood of 0 (i.e., for p near p°).

3. Since u(p) can be written in closed form, calculations are greatly simplified.

Since u is approximately normal about 0 with range R‘"!, it is natural to
define a class of ‘“‘symmetric, unimodal” priors in u by (letting * denote the
transformed problem)

¥s = {unimodal g*(u) which are spherically symmetric about 0} .

Transforming back to the original parameter yields the class (“TUS” standing
for “transformed unimodal symmetric’)

aJ
Grus = {g(p> =g*(u(p))’—‘@ :

(10)

g% is unimodal and symmetric about 0} .

The term |du(p)/dp| is merely the Jacobian of the transformation. In calcula-
tions it is most convenient to work directly with u and Ggg, however, so
calculation of the Jacobian is not needed.

Note that there were several somewhat arbitrary choices made above, in
arriving at G ryg. The first was the transformation [to u(p)]. Other transfor-
mations to approximate normality could have been chosen, but the above
choice was easy to implement and is sensible. Also, the answers are not likely
to vary much for alternative transformations, as indicated in Delampady
(1986) for the binomial distribution.

In contrast, the second significant choice above, that of spherical symmetry
of the prior for the transformed variable, does matter. Since u is approxi-
mately N,_,(0, I,_,), specification of spherical symmetry in the prior is natu-
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ral, but very different answers can be obtained if, say, elliptical symmetry is
specified instead. Indeed, one could consider choosing g*(u) = A(w'Aw), for A
other than the identity matrix. It can be shown that the choice of A that
minimizes the Bayes factor is the singular choice such that g*(u) is concen-
trated on the line u(N~'n), while the Bayes factor is maximized by any choice
such that g*(u) is concentrated in the perpendicular plane to this line (at 0).
Achieving the absolute minimum, by allowing g* to concentrate on the ‘““least
favorable” (to H,) line, seems unappealing, especially because there is already
a substantial bias against H,, in the calculation of B (namely, the minimiza-
tion over all unimodal g*). Utilization of spherical symmetry in u to construct
the prior is also reminiscent of the classical use of invariance to perform
multivariate testing. [See also Delampady (1989a).]

3.2. Exact results. The following theorem gives the lower bound on the
Bayes factor over all conditional densities g in G pyg.

THEOREM 3.
11) Bius(n) = 1nfBé'n—fn0 su ludu},
(11) Brys(n) = inf BE(n) = f(nlp )/ pV(r)f.,u.,<,()
where V(r) is the volume of a sphere of radius r,
N!
I(u) = l—[p(u)l ;
i= 1 z i=
and p(u) is the inverse function of u(p).
ProoF. A change of variable yields
N!
sup mg(m) = sup fﬁ—l—[p,’“g(p) dp
8€CGqus g€Grys " Alli=1;% i=1

(12)

sup fl(u)h(u) du.
heGyg

The conclusion follows from the standard result that the class of all unimodal
spherically symmetric distributions can be represented as the class of all
convex mixtures of uniform distributions over balls B(r) = {u: ||u| < r}, so
that a linear functional of &, such as the integral in (12), will be maximized
over the uniform distributions on B(r). O

For selected ¢, n and p? = 1/t, Bryg is tabulated in Tables 2 and 3 in
Section 4, along with the corresponding P-values. We defer discussion until
then, but it is useful, for calculating the integral in (11), to record that the
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inverse function p(u) is given by

1/2 2
u; + (u? + 4pPH(p,))

2H(p,) ’

where H(p,) =1 + p?/ ‘/E)/(l + ‘/17,) and p, = p,(u) is the solution to
1 -p) =Xzl pu).

pi(u) =

3.3. Asymptotic results. The calculation in (11) can be difficult if ¢ is large.
Hence an asymptotic approximation for large N is given in Theorem 4. Again,
QN’K={n:O <SNSK}.

THEOREM 4. For every K > 0,

lim sup |BTUS(n) — Bs( SN)l =0,
N-ox QN,K

where
(2m) ¢V 2 exp(-v/2)
sup,(1/V(r))P(Y <r?)’

Y having a noncentral chi-squared distribution with t — 1 degrees of freedom
and noncentrality parameter v.

(13) Bs(v) =

PROOF. See the Appendix. Note that some care is needed in establishing
the result, since Byg involves an infimum over g; this infimum is inside the
limit as N — o, so asymptotics cannot just be applied directly to the individual
B&. 0O

Note that B#(||X||?) in (13) is the lower bound on B# over the unimodal
and spherically symmetric class, G g, of conditional prior densities for 6 that
would be obtained in the multivariate normal problem discussed at the end of
Section 2.3. Table 1 presents values of Bfg for a range of ¢ and |X|2
corresponding to certain common P-values. (For a given P-value, P, the
corresponding value of || X||? is the 1 — P quantile of the chi-squared distribu-
tion with ¢ — 1 degrees of freedom.) As could be expected, the B{g are smaller
than the B, (the Bg corresponding to a quite large nonparametric class of
priors), but they are reassuringly similar. Though the lower bounds decrease
with increasing dimension, the decrease is not dramatic. The main observation
to make, of course, is that the entries are substantially larger than the
corresponding P-values.

4. Comparisons and conclusions. Tables 2 and 3 tabulate the exact
bounds, B.y and Byyg, for ¢t = 3 and ¢ = 4, respectively, with p? = 1/¢ and
various choices of N,n. Here P denotes the P-value, with ‘“Exact-P”’ refer-
ring to the exact P-value from (2), and “x2 — P” referring to the approximate
P-value obtained from the chi-squared approximation.
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TaBLE 1

Asymptotic lower bounds

1303

P =0.001

P =0.01

P = 0.05

P =0.10

Dimension =t -1  Bdy

Bs

*
By

E 3
Bis

By

Bis

Béy

*
I_;US

O T U W

0.0244
0.0198
0.0165
0.0156
0.0133
0.0129
0.0126
0.0124
0.0121
0.0119
0.0113
0.0109
0.0105

0.0182
0.0143
0.0119
0.0114
0.0099
0.0097
0.0096
0.0095
0.0094
0.0094
0.0093
0.0093
0.0092

0.1538
0.1247
0.1142
0.1064
0.1020
0.0988
0.0964
0.0945
0.0929
0.0916
0.0859
0.0833
0.0803

0.1227
0.0978
0.0902
0.0850
0.0824
0.0807
0.0797
0.0789
0.0782
0.0777
0.0752
0.0743
0.0735

0.4734
0.4067
0.3784
0.3615
0.3503
0.3419
0.3356
0.3305
0.3261
0.3228
0.3108
0.3036
0.2950

0.4092
0.3481
0.3259
0.3141
0.3072
0.3023
0.2990
0.2963
0.2942
0.2927
0.2875
0.2844
0.2809

0.7001
0.6263
0.5818
0.5713
0.5576
0.5473
0.5392
0.5330
0.5277
0.5230
0.5078
0.4988
0.4879

0.6437
0.5699
0.5396
0.5232
0.5131
0.5058
0.5004
0.4966
0.4932
0.4908
0.4826
0.4782
0.4725

TABLE 2
Lower bounds for conjugate and transformed symmetric densities, t = 3

Exact-P x*-P N ny ng Bcy Brys
0.001 0.00 12 10 1 0.0285 0.0077
0.008 0.00 13 10 2 0.0565 0.0236
0.017 0.01 14 10 3 0.0995 0.0517
0.024 0.02 9 7 1 0.2010 0.0999
0.033 0.03 14 9 4 0.2378 0.1405
0.060 0.04 12 8 3 0.3163 0.1895
0.062 0.06 13 8 4 0.3833 0.2064
0.056 0.07 14 8 5 0.4053 0.2877
0.080 0.09 15 7 7 0.4345 0.3101
0.166 0.10 9 6 2 0.6086 0.3899
0.100 0.12 13 7 5 0.5733 0.4366

The first fact to be noted is that By and Bryyg differ more here than in the
asymptotic normal situation of Table 1. (Comparisons between these tables
and Table 1 are best made by comparing entries corresponding to approxi-
mately equal P-values.) However, most of the cases in Tables 2 and 3 are
extreme, with likelihoods concentrated near the boundary of A, and hence
these differences are probably about as large as one would expect to find.
Whether one uses Byy or Bpyg is somewhat a matter of taste: By is
probably more representative of typical Bayes factors, while Bryg is perhaps
more convincing to non-Bayesians since it is based on such a large class of
priors. Note that the Table 1 asymptotic bounds seem fairly reasonable as
approximations to By even for these small N, but can be rather poor as
approximations to Bryg for small N.
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TABLE 3
Lower bounds for conjugate and transformed symmetric densities, t = 4

Exact-P x> -P N n, ny ng Bey Brus
0.001 0.00 15 11 2 1 0.0124 0.0032
0.003 0.00 12 9 1 1 0.0356 0.0116
0.005 0.00 15 10 3 1 0.0454 0.0171
0.007 0.00 15 10 2 2 0.0660 0.0254
0.008 0.01 14 9 3 1 0.0987 0.0351
0.013 0.01 15 9 4 1 0.1101 0.0465
0.057 . 0.02 13 8 2 2 0.2749 0.1464
0.025 0.03 15 8 5 1 0.1919 0.0909
0.053 0.03 11 7 2 1 0.3098 0.1644
0.044 0.04 15 7 6 1 0.2506 0.1563
0.045 0.05 14 7 5 1 0.3235 0.2038
0.066 0.05 13 7 4 1 0.3712 0.2269

Finally, we come to the major point, reflected here as well as in Table 1: The
“objective” lower bounds on B# are substantially larger than the P-value. For
instance, when ¢ =4, N = 14 and n = (7,5, 1, 1), the exact P-value is 0.045
(“significant at the 0.05 level”), yet By = 0.328 and By = 0.2038. Thus

the data support H;: p # (3, ;,1,3) at most 3 and 5 times, respectively, as

much as it supports Hy: p = (4, 1, 1, 3). This would appear to be at most mild
evidence against H,, yet standard practice using P-values would consider the

data to be significant evidence against H,.

5. The chi-squared test of fit. Consider a statistical experiment in
which a random sample of size N is observed from a distribution F. The
problem is to test the hypothesis

Hy:F=F, versus H;:F +F,,

where F, is a specified distribution. The standard test procedure for this
problem is the chi-squared test of fit, which first finds the vector n =
(ny,...,n,) of frequencies of the N observations in a partition of the sample
space consisting of|, say, ¢ cells, and then computes the P-value as

P = P(th—l = SN),

where Sy is as in (3), with p? being the probability under F, of the ith cell in
the partition. Reducing the observations to the vector n of cell frequencies
implicitly implies that one is testing H,: p = p° versus H;: p # p°, where n
has a Multinomial(N, p) distribution. Thus we can apply the results of the
previous sections to obtain ‘“‘objective” lower bounds on the Bayes factors.

ExampLE. Thirty observations were made on the arrival times of a certain
process. It is desired to test the hypothesis that the distribution of the arrival
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TABLE 4
Cells and data
i Cell n; Np?
1 [0, 0.40) 16 10
2 [0.40,1.01) 9 10
3 [1.01,) 5 10
TABLE 5
P-values and lower bounds
Exact-P x> -P By Bs Bcu Brys
0.058 0.05 0.4489 0.3881 0.3750 0.2922

time, X, is exponential with mean 1, i.e., to test
Hy: Fy(x) =1 — exp(—x), x> 0.

Suppose that it is decided to use a partition with three cells, the cells being
chosen so as to have equal probability under H,. The cells, the observed cell
counts and the expected cell counts under H, are given in Table 4.

The chi-squared test statistic is Sy = 6.20 with two degrees of freedom. The
exact P-value [computed by (2) for the multinomial model], the P-value using
the chi-squared approximation, the exact lower bounds (B, and Bpys) on the
Bayes factor from Theorems 1 and 3, and the asymptotic lower bounds (B
and B{g) from Theorems 2 and 4, are all given in Table 5.

The chi-squared approximation is quite reasonable here and the lower
bounds over Gy and G yg are quite similar. But the differences between the
P-value and the lower bounds on the Bayes factors are substantial. The lower
bounds on the Bayes factor indicate that the data support H, by at most a
factor of 3 to 1.

6. Comments. General discussion and debate concerning the implica-
tions of the discrepancy between Bayes factors and P-values can be found in
Berger and Sellke (1987), Casella and Berger (1987), Berger and Delampady
(1987) and many references therein. We feel obliged to again raise, however,
within the context of this paper, the important qualification that, although the
lower bounds By and Bpyg seem much more useful than P-values, they are
just lower bounds. If B = 0.5, then we can be quite assured that there is no
strong reason to reject H, but if B = 0.05 what should be done? After all, this
implies only that the Bayes factor is somewhere between 0.05 and « [which
Good (1975) shows can be attained if no n, is equal to N], depending on the
choice of g. Furthermore, it has been observed [cf. Jeffreys (1961), Lindley
(1957), Good (1967) and Good and Crook (1974)] that actual Bayes factors tend
to increase as VN (when the P-value is fixed), while our various B do not so
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depend on N. (The minimizing g* varies as N varies, in such a way that the
dependence on N is removed). To avoid this inappropriate behavior and /or
obtain a precise Bayes factor, at least partial specification of a subjective g is
required. Reasonable results might often be obtained by fairly crude devices,
such as considering only the conjugate g, in Section 2.1, with k = ¢p°. Then
only ¢ needs to be specified to determine the Bayes factor, and this could be
done from a subjective estimate of the variability of p conditional on H, being
false. Furthermore, one could graph the Bayes factor as a function of ¢
[following the ideas of Dickey (1973)], allowing a wide range of users (with
different c) to interpret the data. For the multinomial distribution under
consideration, we refer to Good (1975) for related graphs.

APPENDIX

In this Appendix the basic steps of the proofs are given. For details see
Delampady and Berger (1989). First we shall prove three technical results
before establishing a basic result in Lemma 4. Define p = N~ !n. Let h(p) =
Xi_in;log(p;/p?). Assume that Sy < K for some K > 0 in each of the
following three lemmas.

LemMA 1. For each B > 0 and 0 < 6 < 1/3, there exists Ny = Ny(B, 8, K)
such that whenever N > N, and p satisfies |p — p°||> < BN~ 1*?,

N ¢t (p;,—p)°
Y —

1
(14) h(p) = v 5 z + R%(p),

where R}(p) is bounded by C(B,8, K)YN~1-39/2 (C(B,5,K)> 0 being a
constant.

Proor. The Taylor expansion of the log(-) function yields

1 N ¢ (p; - p)°
_ — —_ —_ *
(D) = 58y - El o +Ri(P),

i

where R }(p) is the remainder,

N ¢ . —p? .03 N Ai_ lo ;= i02
R;s(p)=—2ﬁ.[(p‘ pi)/pi] -3 (6 —p?)(p: — P?)

3.7 1+ xi*]3 i=1 (Pzp)2
0 < |x* <|p; — p{|/p. From Sy <K and ||p — p°|> < BN1*? it can be
shown that R3}(p) is bounded by C(B, §, K)N-1-39/2 C(B, §, K) > 0 being
a constant. O

)

Fix K> 0 and, for each A>0, D> 0, 0 <8 <1/3 and integer N > 1,
define

Qv x = {p: | P~ 2°| 2 2(K + 4)/N}),

- o2 -
AM,N,K,D,5={P3DN o>\ p - pl° = MKN 1}~
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LeMMA 2. There exists A = A(K) > 0 such that, for each (N,n) for which
Sy <K,

(15) h(p°)=0>h(p) ifPEQ, Nk

Further, there exists Ny(D, 8, K) such that whenever N > N, and for each
M > 2 such that 2(M + 2)K < DN?,

(16) h(p) < —(M -15)K/2 if pE€E Ay Nk D5

Proor. To establish (15) note, first of all, that A(p) is strictly concave in p
with unique maximum at p = p. Second, from (14), |R%(p)| = |h(p) — Sy/2
+ (N/2)Xi_(p, — p,)%/p?| can be made arbitrarily small for fixed B > 0
and |p — p°||2 < B/N and N sufficiently large. Noting that Sy < K implies
1B — p°lI* < K/N, we get

(17) Ip-p°|°<2|p-p|°+2K/N.

Therefore, choosing B = 8 K, we obtain
2 A
R, ={p:|p-p°| <8K/N} 2R, = {p: Ip-b|° < 3K/N}

for each N. Fix 0 <e < K/4. We can find N; = N(K, ¢) large such that
IR¥(p)| <& for all N> N, and p <€ R,. For p<{p: 2K/N<|p - P|® <
3K/N}, from (14) of Lemma 1,

SN N ) b; K
h(p)————g (p ) +Ry(p) < -

Since h(p) is strictly concave h(p) < —K/4if |p — p||* > 3K/N and N > N,.
(17) now shows that A = 3K is a possible choice for A in (15) for N > N;. To
establish (15) for N < N, = N(K), one may choose a still larger A. Very
similar arguments establish (16). O

LEMMA 3. There exist A5(K) > A¥(K) > 0, which satisfy A¥(K) <
2 2+ E+2/(¢-Dloe@N gqnd N,(K) such' that whenever N > N; and 0 < ¢, <
A¥N < A3N <c < 2A}N,

I'(e) n5=1r(ni +CP?)
M, N(f)  T(N+0)

(18)
I'(ey) lgll“(n +clp,)
I, F(clpio) (N +¢;)

>
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Proor. Fix 0 < @, < a, and consider, for each N, ¢ > a,N and ¢; < a,N.
To proceed further, we shall require the following Stirling’s approximation:

(19) I'(y) = V2my*~2exp(-y + D(y) /y),

where D(y) is a bounded function as y — « [Feller (1957), page 52]. As N
increases, we shall apply this approximation to all the I" terms that involve n;,
N or ¢ and, also to those terms which involve ¢, whenever a; log(N) < ¢;. We
shall now establish (18) by showing that

I'(c) i-1T(n; + cp?)
I_, l"(cpio) I'(N +¢)

LOG(¢,¢;,n,N) = log(

3 log( I'(ey) i_1T(n; +¢.p?) )
i F(clpio) (N +¢)
> 0.
We need to consider two different cases.

CaseE 1. Assume a, log(N) < ¢; < a;N. Then, for N large, (19), together
with Taylor expansions of the log terms involving n,; and algebra, yield

& (¢/N —¢,/N)
2 (1+¢/N)(1+¢,/N)

t—l[ (c/N
+ log

LOG(c,cy,n, N) = —

~ log| ——£—
2 c/N| ~BlT+e /N
+ R*(C,Cl, ﬁ’ N),

where |R*(c,c,, P, N)| < C{(K,p°®)/log(N), for some C, > 0 and large N.
Therefore, there exists N3(K) such that for N > Nj, |[R*| < 1. Hence,

Ka2 t_].
+
1+e, 2

1+c/N )]

a
LOG(¢c,c;,n,N) > — {log(a—z) — log(1 + 2a2)} - 1.
1

Choose a, =1, a; =27 and x > (K + 2)/[(¢ — Dlog(2)] + 2. Then
LOG(c,c;,n, N) > 3{(t — 1)log(2)(x — 2) — (K + 2)} > 0.

Case 2. 0 < ¢y < a; log(N): "Since T(cy)/ITi_, T(ep?) =
(JTTi_, pf*i =1 dp)~! (integration over the simplex, {p: 0 <p, <1, 1<i <
t—1,0<Xizlp <1, TIi, T(c;p?)/T(c,)~! is an increasing function of

¢;- Therefore,

o M(e) _ T(aylog(N))
0<c;<a; log(N) I, F(clpio) ITi_, I-‘(a1 log(N)p?) '

Hence, replacing all the ¢, that appear in LOG(c, ¢;, n, N) unaccompanied by
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either n; or N by a, log(N), and using (19), we get
t—-1
2

LOG(¢,¢;,n,N) > [log(C) — log(a, log(N))]

¢
+(a1 log(N) - c1) Z Pio log(pio)
i=1

Sy (¢/N—c/N)

2 (1+¢/N)(1+¢/N)

t—1
2

[log(1 +c/N) —log(1l +¢;/N)| — 1

t—1 d
> log(N){T -a; 2 p} log(l/p?)}

i=1

9 P lia1 42 1
— — + —
T7a, 2 o8l*2e)-1
for N large enough and log (log(N)) < log(N)/2. Choose

t—1
< .
8L!_, plog(1/p?)
Now choose N,(K) such that for all N> N,, 3(K + (¢ — Dlog(3) + 2) <
(¢ — Dlog(N)/8. Then LOG(c, c;,n, N) > 0, whenever N > N, and 0 < ¢; <

a;log(N) <a;N <a,N < ¢ < 2ay4N. The result follows by choosing A¥ =1
and A¥ to be the minimum of the a; chosen in Cases 1 and 2. O

a,=1 and a,

Now we shall prove the following key lemma (this version of which was
suggested by the editor and a referee) which proves that only contiguous
alternatives need be considered.

LEMMA 4. For each K > 0 there exist constants B > 0 and Qf > 0, Q%/
1+ @p) < ( — 1) /K, such that, whenever Sy < K, the following hold:
() sup, c g, M () is attained at g* for which P#*(|u(p)||® < BE/N) = 1;

(i) sup, c gy, M (M) is attained at g.., where c* > Q¢ N.

ProOF. It is convenient to divide m ,(n) by f(n|p°) in the above supre-
mum. Now

t
sup m4(n) /f(n|p°) = sup fexp( L n log(pi/p?))g(p) dp.
g€G g€G i=1 )

ProoF OF PART (1). We want to maximize [exp(h(p))g(p)dp over g €
G1us- From (15) of Lemma 2 and the fact that |p — p°||® < 2(K + A(K))/N
implies ||u(p)||? < B(K)/N, for some B(K) > 0, it can be shown that there
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exists B(K) > 0 for which
h(p) <0 whenever |u(p)|®> > B(K)/N.

Now, note that any g that gives mass to the region {p: ||u(p)||? = B(K)/N}
obtains a smaller value for [ exp(%(p))g(p)dp than its unnormalized restric-
tion to {p: ||u(p)||> < B(K)/N} with the remaining mass assigned to the point
p°. Since, for every g € Gpyg, its unnormalized restriction to {p: |Ju(p)|? <
B/N} belongs to Gpys and u(p®) = 0 we need only consider those g that
assign all their mass to this set.

Proor oF PART (11). Note that

/exp(h(p))g.(p) dp
/exp(h(p))g.(p) dp

_ I(c) TLT(n;+cp?)
B {Uir(cp?) T(N +c) }

I(c;) TII,T(n; +c,p?)
{ I, T(c;p?) T(N+cp) }

From (18) of Lemma 3, there exist constants A*(K) < A%¥(K) and N,(K) such
that whenever N > N, and 0 < ¢; < A¥N < A%N < ¢ < 2A%N, the ratio above
is larger than 1. Thus, given any ¢, < A¥N, one can choose a ¢ between A¥N
and 2A}N such that

Jexp(h(p))g.(p) dp > [exp(h(p))g.(P) dp.

It follows that we can restrict attention to g,, ¢ > A*N. Lemma 4 proves, in
addition, that Ajf < 2 B+E+2/(¢-Dle@l from which it follows that A%/
(1 + A¥) < (¢t — /K. The result follows if we choose Q% = A*. O

PrOOF OF THEOREM 2. From (8),

[B ]-1 I'(a) I1;_, I(n; + ap?)
B = sup e
Gou a>0 IT5_; F(ap?) I'(N + a)l—[§=1(p?)

Since we need only consider a > Q% N, from (ii) of Lemma 4, we can apply
Stirling’s approximation (19) to all the T terms. Let n; = Np? + b,, £:_, b, =
0. Then

-1 a ¢-1/2 l_[ ) (N+a)p?+b;—1/2
B = sup ( ) 14—t
[—ch] a>@iN\N +a ic1 (N +a)p?

e L+ 2,

where, D*(a, N, n), from (19), is a bounded function as N increases.
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Step 1. Using the Taylor expansion of the log function, it can be shown
that

b. (N+a)p2+b,-1/2
logn (m) = 5(1—02)3N+C(N,a,n),
where ¢ = yJa/(N + a),
1 b,
CNam = =N ay B2t
R b3

+4(N+a)2i=1 (p?)2 zgl 2[(N+a)p?]2

: b3 b3 (b, — 1/2) 5
+ 3 + 3 (1 +xi*) ’
iz=:1 3[(N+a)p?] 3[(N+a)p?] }/

and 0 < |x*| < |b;,/{(N + a)p}|.

Step 2. For a > 0, |[C(N,a,n)| < C(K)*N~1/2, 0 < C(K)* < » indepen-
dent of a,n.

ProoF oF STEP 2. It follows from Y%_, b2/(Np?) = S ~ < K that, for each
J = 1, there exists K, > 0 depending only on K and p° such that ©¢_,|b,) <
KJNJ/2 Therefore, notmg that |x*| < |b;/{(N + a)p?}| < K’Nl/z/(N +a)<
K'N~12 for some K' > 0, the result follows in a straightforward way.

Step 3. Now, we show that

< G(K)N-2,

VRE/(1+Qp)

where 0 < G(K) < « is a constant.

[QGCU]_I/{ N sup ¢! lexp((1 - cz)SN/2)} -1

ProOF OF STEP 3. Recalling that ¢2 = a/(N + a) we have, from Step 1
above and (ii) of Lemma 4, for large N,

[Boo) ' = sup  {c'"lexp((1 - c2)Sy/2)

1>c>‘/Q;§/(1+Q;E)
X exp[C(N, Nc?/(1 — c?),n)

+D*(Ne?/(1 — ¢?), N,n) /(Nc?)]},
where both C and D* are bounded, C by C(K)*N~'/2, from Step 2, and D*
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by, say, D'(K). Let

B(K,N) =|C(K)*N"'/? + D'(K)(1 + Q¢)(Q%) 'N7!|.
Then since, for large N,

sup C(N, Nc?/(1 - c?),n) + D*(Nc2/(1 — ¢?), N,n)/( Nc?)

VRE/1+QF) <c<1

<B(K,N),

VQE/1+ Q%)
= max{lexp( _B(K’N)) - 1|’ |exp(B(K, N)) - ]-I}

[_B_GCU]_ /{ sup ¢ Lexp((1 - c2)SN/2)} -1

<B(K,N)exp(B(K,N)) < G(K)N~12,

noting that B(K, N) = O(N~1/?),
STEP 4. We show here that

’[QGCU]_l - { sup ¢’ lexp((1 - cz)SN/2)}’ <G(K)N~12

1>¢>0

where 0 < G,(K) < » is a constant.

Proor oF STEP 4. Let ap(c) = ¢ 'exp((1 — ¢2)Sy/2). Note that

ay = ‘/ e — exp( (1 - —— |Sn/2],
sup ay(c) = S Sn Sw
0<e<1 ift—1<8y

any(1) =1, ift—-1>8,.
Further, Sy < K implies that

Vi -1)/8y =2 /(t-1)/K > /Qz/(1 + QF) .

Hence,

sup ay(c) = sup ay(c).

1>¢>0 1>¢>1/Q%/(1+Qp)
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Together with Step 3 this implies that

[BGCU] - SUp; .50 @n(c)

[_GCU] B
— 1 =
supl>(:>0 aN(c)

SUP; ¢ 0 an(c)

1 <G(K)N~12,

Now note that (¢t — 1)/K)*~! < sup,...;an(c) <exp(K/2) if Sy=>t—1,
and sup, ...y ay(c) = 1if Sy < ¢ — 1. Therefore,

[QGCU] '~ sup ¢ lexp((1 - c2)SN/2)‘ < G(K)max{exp(K/2),1}N~1/2,

1>¢>0
This proves Step 4. The theorem is proved by observing that
-1
Bs,, — ( sup ¢ lexp((1 - cz)SN/Z))
1>¢>0

where K; = min{((¢ — 1)/K)“~Y,1} and K, = G(K)max{exp(K/2),1}. O

< Bg, Ki'K,N7'/2,

ReEMARK. Note that when the sequence (N, n) satisfies Sy <t — 1, for
each N, Theorem 2 is very easy to obtain and does not require the above proof.
This is simply due to the fact that in that case B&;(Sy) = 1 and since, for
large N, |Li_(n;/N — p?)/p?| = O(N~1/2), condition (9) of Levin and Reeds
(1977) implies that B;_(n) = 1.

Proor oF THEOREM 4. We want to maximize
m g (n) t ( p; )
—— = |exp n;log| — p)d
Fraip®) ~ J P T nilog| || (e) d
over g € Goys. If |[p — P°I2 < A,/N, A, > 0, from (14) of Lemma 1, we get
N & (p;— ﬁi)z

1
h(p) = ESN_ TR + R%(p),

where R} is bounded by C,(A;, K)/ VN, C(A,, K) > 0 is a constant.

Noting that u,(p) = (p; — p2)/ ‘/E + 1/171'(}7: —p,?)/(‘/;); + p,), it can be
shown that

! (p; _ﬁi)z =1 .
NZ p? =NZ [ui(P) _ai]2+LN(p’p),
i=1 i i=1

where
b; _Pio \/pTO(P? _ﬁt)
Vp? Vol +p?

so that Y!_1a?=Sy/N, and the remainder, L,(p,p), is bounded by
Cy(A,, K)/ VN, Cy(A,, K) > 0, is a constant.
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From (i) of Lemma 4, u = u(p) = (1, u,,...,u,_;) has a unimodal sym-
metric density with support in ||u||> < B#/N, and the extreme points of this
class are uniform distributions on ||u|| < r/ VN for r < VB# . Therefore [from
(10)],

sup ™
g€Gryus f(nlpo)

l d
. [ et WE(W du
gEGI’:US f(l‘l|p0)

N(t—l)/2

1 Nt 1
max ——— exp
r<yBE V(1) Jmisr/yN (

— ———Z(u—a)+L (u))du

1¢t- 1
- s = o) e ( Sv- 5 L (4 - oV +LN(¢NV)) av,

where V(r) is the volume of a sphere of radius r and L N(u) = Ly(p(n),p) is
bounded by D(B#)/ VN, D, > 0 depending on Bj and p° only. Since (i) of
Lemma 4 holds with Bj replaced by any B,” B > Bj, we have, for any
B > B},

m 4(n)

sup —F/———v
g€Gys f(anO)

= max

1 t—1 9
<VB V(r) '/I|v||<r ( 2 Z (vi - ai‘/ﬁ) " L}'(\](WV)) v

2.5
Since
1¢-1
V(r) /;vllsr (_ 2 Z (U -a \/—) + LKI(\/NV)) dv
_ I(v)
- V(") '/|'|v||<r f(n|p°)]
- V(r) [, e(h(@)) dv,

from Lemma 2, for each fixed ¢ > 0, we can find R = R(e) > B such that
whenever r > VR, .

v(r) flvusrexp( Sv=3 Z (v: - ‘/—) +L§(VNv)|dv <e.
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Now, note that

1 t—1 2
r>0 V(r) -/|'|v“<, ( ) Z (vi - ai\/lv) )dv

i=1
exp(—rK/2)P(T < r?)
e
12 &5B(~K?)P(T < 1)
) V(D)

where T has a central chi-squared distribution with ¢ — 1 degrees of freedom.
Fix any ¢ < LOB/2. Then, for each B > R = R(¢),

m ,(n)

> (277)“_1)/2 max
r>0

> (27 = LOB,

sup ————v
g€Grys f(anO)

1t-1 9
= max{r<‘/_ V(r) 4VII<r ( - X_: (Ui - ai\/IV)

+L;‘,(\/1Vv)) dv,s}.

Noting that max"v“s‘/mL}"v(\/leN < C4(R)/ VN, for some C,; > 0, we con-
clude that

sup m,(n)/f(n|p°)

8€Grys

= exp(Sy/2)(2m)¢ V2 mfé({P(Y <r2)/V(r)}(1 + O(N-V2)),

where Y is a noncentral chi-squared random variable with ¢ — 1 degrees of
freedom and noncentrality parameter S,. O
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