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Many of the popular nonparametric test statistics for censored survival
data used in two-sample, s-sample trend and single continuous covariate
situations are special cases of a general statistic, differing only in the choice
of covariate-based label and weight function. Formulated in terms of
counting processes and martingales this general statistic, standardized by
the square root of its consistent variance estimator, is shown to be asymp-
totically normal under the null hypothesis and under a sequence of contigu-
ous hazard alternatives that includes both relative and excess risk models.
As an application to some specific cases of the general statistic, the asymp-
totic relative efficiencies of the Brown, Hollander and Korwar modification
of the Kendall rank statistic, the Cox score statistic and the generalized
logrank statistic of Jones and Crowley are investigated under relative and
excess risk models. Finally, an example is given in which the Cox score test
is not as efficient as the generalized logrank test in the presence of outliers
in the covariate space.

1. Introduction. Tarone and Ware (1977) introduced a class of s-sample
statistics for right-censored survival data that includes the logrank test of
Mantel (1966) and the generalized Wilcoxon procedures of Gehan (1965) and
Breslow (1970). Subsequently, this class has been generalized to include the
two-sample statistics of Efron (1967), Peto and Peto (1972) and Harrington
and Fleming (1982), a group of procedures optimal against time-transformed
location alternatives of the survival function developed by Gill (1980, Section
5.3) and the s-sample linear rank statistics of Prentice (1978). More recently,
Jones and Crowley (1989) introduced a more general class of single-covariate
nonparametric tests for right-censored survival data that includes the
Tarone-Ware two-sample class, the Cox (1972) score test, the Tarone (1975)
and Jonckheere (Gehan, 1965) s-sample trend statistics, the Brown, Hollander
and Korwar (1974) modification of the Kendall rank statistic, the linear rank
statistics of Prentice (1978), the logit rank statistic of O’Brien (1978) and
several new procedures. This class can be generalized to include the Tarone-
Ware s-sample class.

Within the last 10 years the theory of martingales applied to counting
processes has found widespread use in the study of asymptotic properties of
survival analysis procedures. Resulting theorems have quite general results
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1204 M. P. JONES AND J. CROWLEY

and their proofs are both intuitive and straightforward. Aalen (1975, 1978)
introduced the use of martingale theory to survival analysis. Gill (1980)
followed up Aalen’s work with an in-depth study of the general class of
two-sample statistics. Since then the s-sample problem [Andersen, Borgan,
Gill and Keiding (1982)] and Cox regression [Andersen and Gill (1982),
Prentice and Self (1983)] have been studied using martingale theory. Andersen
and Borgan (1985) give an excellent review of further applications of counting
processes to life history data. Here, in a similar fashion, we shall study the
large sample properties of the class of single-covariate statistics. In Section 2
we shall introduce the W statistic and its variance estimator. Section 3
contains a theorem concerning the weak convergence of W and the consis-
tency of its variance estimator. In Section 4 we derive the asymptotic distribu-
tion of W under contiguous relative and excess risk alternatives and compare
the asymptotic relative efficiencies (ARE) of the Cox score test, Kendall rank
statistic and generalized logrank test (to be defined in the next section). In
Section 5, the AREs of these tests are compared when there are outliers in the
covariate space.

2. The W statistic; martingale framework. In this section we shall
state the hazard model, give the hypotheses of interest and formulate the
general class of nonparametric tests proposed by Jones and Crowley (1989) in
the framework of martingales and counting processes. The necessary mathe-
matical background can be found in Chapter 2 of Gill (1980). First we must fix
some notation and definitions. Let us assume there is given a sequence of fixed
complete probability spaces (™, & ™, P™) along with a family of right-con-
tinuous, nondecreasing complete sub-o-algebras {%,(™: 0 < t < } which corre-
spond to the history of the survival study up to and including time ¢,
n=1,2,..., where n is the sample size of the study. In this paper we assume
an individual can fail at most once. Let T; and C; represent the times to
failure and censoring, respectively, for the jth individual. The at-risk indicator
Y;(t) is a predictable process which assumes the value 1 when ¢ < T; A C; and
0 otherwise. Define the observed failure counting process N;(t) =1 [T, <t
C; = T;], where I is the indicator function. A dot in place of a subscrlpt W111 be
used to denote summation over that subscript, e.g., N.(¢) = £ N;(#). Through-
out this paper we allow only a single covariate X,(¢), which is assumed to be
an adapted, locally bounded, left-continuous process with right-hand limits.
We shall always be working under the general random censorship model, i.e.,
for any h >0, P[T e[t t+ h),C €[t t+ m\X()] = PIT € [t, ¢t + h)lX(t)]

-P[C e [t,t+ h)]X(t)] where X(#) = {X(u): 0 < u < t}. The hazard of failure

(1) At X(2)] = }Liir(x)h‘lP[T elt,t+ h)|T = ¢t,X(¢)]

under the random censorship model can equivalently be written as

Y(t+)A[t +]X(2)] = ’llirl%h‘lP[N(t +h) = N(t) = 1% ].
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In Section 3.1 the hazard function will be extended to having both continuous
and discrete components. To allow for contiguous hazard alternatives, we shall
allow the hazard A and cumulative hazard A to depend on n. Throughout
we shall assume the covariate has been properly constructed so that
the jth individual’s hazard at time ¢ is a function of X;(2), i.e, dA%(¢) =
dA"#|X ()] = dA"[¢|X;()]. Under the above assumptions and certain regular-
ity conditions it follows from Theorem 2.5.1 of Dolivo (1974) that

(2) My(8) = Ny(2) = ['Y,(5) dN"[5]X,(5)]

are martingales over [0, ©). Furthermore, they are square-integrable martin-
gales and

(3) (M, Myy = I = j] [Y;(s) dA*[s|X;(s)]-

Let X represent the space of potential covariate paths or some subspace of
it and let A, be the cumulative hazard for the path x € X. The null hypothesis
would be written formally as H,: A = A over [0,») for all x € X and all n
and the contiguous hazard alternative as H,,: sup|dA”, — dA| = 0 as n — ,
where the sup is taken over [0,«) and all x € X. The type of alternative
hypothesis considered in this paper is one in which the hazard rate dA, is
monotone in x. One note of caution is necessary here. Internal covariates
X j(s) [as defined by Kalbfleisch and Prentice (1980)] which predict the out-
come Nj(t) for some ¢ > s should be excluded from consideration here, since
M (¢) need not be a martingale.

The test statistic is based on assigning covariate-derived quantitative labels
to each individual study. Define the label process Z;(t) = g(X;(#)| #,_), where
g, is a monotone %, -measurable function such that Z,(¢) is also locally
bounded and left-continuous with right-hand limits. The covariates {X(2), j =
1,...,n} may actually be unobserved at time #, but the labels {Z;(?),j =
1,...,n} must be known. The most obvious choice is Z;(¢) = X;(¢). As another
example, letting r,(¢) be the rank of X;(t) among the covariates at risk {X;(¢):
Y,(#) = 1}, we might select Z,(¢) = r;(¢)/Y.(#). Other candidates for Z(¢)
appear in Jones and Crowley (1989). As a general class of statistics let us
propose

@ W = [u(s)  K6)[Z05) - Z(s)] aN,(s),
j=1

where Z(s) = Y U(s)X Y(s)Z,(s) is the average label in the risk set at time s
and w(s) is a locally bounded, predictable weight function. Note that under
H,, dA;(s) =Y, (s)dA(s) so that by (2), W,(¢) is itself a local martingale,
which is sufficient motivation for basing a test on (4). If there is a single failure
at time ¢, then dW,(¢) is equal to the weight w(¢)n~!/? times the deviation of
the failing individual’s label from the average label of those at risk at ¢. In the
two-sample problem where Z,(¢) = 0 or 1, by using more traditional notation,
W(t) =n"1% Lw,/(0, — E,), where O, is the observed number of failures in
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group 2 at the ith failure time, E; is its expected number and the summation
is over all failure times up to and including ¢. In this setting, W, (¢) is the
logrank test or Cox score test when w =1 but is the Gehan test when
w = Y/n. In the more general covariate setting W, (¢) is the Cox score test
when Z; = X; and w = 1; W,(¢) is the Brown, Hollander and Korwar (1974)
modification of the Kendall rank statistic when Z; =r;/Y. and w = Y,/n. As
proposed by Jones and Crowley (1989), let us define the generalized logrank
test to be W,(¢) when Z; = r;/Y. and w = 1. In the two-sample problem this is
the usual logrank test or Cox score test. However, in the general covariate
setting, it differs from the Cox score test through its use of the ranks of the
covariates at risk. The proposed variance estimator for W,(¢) is
iftoe n _ 2Y(s) —AN(s) dN(s)

(8) V(&) =n" k(o) E V()20 ~ 2O =557 ()

where AN(s) = N(s) — N(s — ). Allowing a discrete component to the hazard
function (cf. Section 3.1) and thereby tied failure times so that AN(s) > 1,
V,(¢) is an unbiased estimator for Var(W,(¢)) under H, for bounded processes
{wY,(Z; - Z)}. This follows from arguments similar to Propositions 3.2.2 and
3.3.1 of Gill (1980).

3. Weak convergence; consistency of the variance estimator. In
this section we shall state sufficient conditions for the weak convergence of a
more general version of W,(¢) to a normal process and for the consistency of
its variance estimator, both under a contiguous sequence of alternative hy-
potheses. This will allow us to calculate asymptotic relative efficiencies in
Section 4. For now the hazard is assumed to be continuous; in Section 3.1
some notes are given for hazards having both continuous and discrete compo-
nents.

For convenience let us generalize the W, statistic (4) to

(6) Wi(t) = [T Hy(s) dNj(s),

where H; is a locally bounded predictable process subject to the two con-
straints for ¢ € [0, «): Hj(t) = Yj(t)Hj(t) and H.(#) = 0. H; will often depend
on n. As a variance estimator for W,(¢), let us use

Lt g Y(8) —AN.(s) dN(s)
(7 Vi(t) =n fojngj(s) ORI IOR

Substitution of H; = wY(Z; — Z) into (6) and (7) yields (4) and (5). Using (2),
the statistic can be decomposed as W, (¢) = E,(¢) + U,(¢), where

(8) B ) = n /2 [ T Hy(s) da[sfX,(9)]

®) ,(t) = n7 1 £ Hy(s) db(s).
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Under H,, E,(¢) = 0. Since U,(¢) is a sum of integrals of locally bounded
predictable processes with respect to square-integrable martingales, U,(¢) is
itself a local square-integrable martingale. When the { H;} are bounded, U,(¢) is
a martingale and by the martingale property E[U,(¢)] = 0 for all ¢ and hence
E(W,) = E(E,). E, can be thought of as the trend component and U, as the
error or martingale component of W,.

The following theorem deals with the asymptotic normality of U, and the
consistency of V, under H,,.

THEOREM-3.1. Assume there exists an interval I of the form [0, u) or [0, u]
such that the following conditions hold.

ConpiTiON 3.1.1. (a) A(f) < = forallt 1.
(b) The H,, model holds, i.e.,

sup |dA? —dA|—>,0 asn — o

J,[0,0)
(c) There exists a function y, such that ing y(t) > 0 and for all t € 1,
te
Y.
sup| — —y| 2,0 asn >
(0,e11 ™

(d) There exists a left-continuous, nonnegative function v with right-hand
limits such that for all t € 1,

n
Y'Y H?-v
j=1

sup
[0,¢]

—>p0 asn — ©

and v is bounded over all closed subintervals of I and zero off I.
(e) sup n”?|H;| »,0 asn—owx,tel
J»[0,¢]

ConbpiTioN 3.1.2. Ifu & I, then assume

(a) flyvdA < oo,

(b) lim lim sup P{n‘1 Y. H?dA? > s} =0 foralle>0.

tTu pow (t,u]j:]_

There exists a function v,, bounded on [0, u], such that for all € > 0,

Y'Y H? -,
j=1

(c) sup
[0,u]

-, 0.

n

(d) lim lim sup P{f vl|n_1 Y Y dA:
(¢, ul 1

tTuy pow j=

>£}=O.
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CoNDITION 3.1.3. If u < x, then assume

(a) n! ZszA"—> 0 asn — »,
(u,®) -1

There exists a function v,, bounded on [0, »), such that for all € > 0,

(b) sup Y71 Y H? —vy| =, 0 asn — .
[0,0) Jj=1
i n
(¢) lim sup P{f von”! Y Y dAY > s} =0.
n-—o (u,°°) =1

Then under Condition 3.1.1, U, -, (a zero mean Gaussian process with
independent increments and variance function [ yvdA in D(I)). Further-
more, for eacht €1,

sup
s<[0,¢]

V(s)—fyvdA’—» 0 asn — .

Adding Condition 3.1.2 extends these results to [0, u] and adding Condition
3.1.3 extends them to [0, «).

The proof of this theorem follows in a straightforward manner from well-
known martingale methods, in particular Rebelledo’s martingale limit theorem
[ef. Theorem 2.4.1 of Gill (1980)]. We will briefly comment on the conditions of
the theorem; we consider the special case H; = wY{(Z; — Z). The interval I is
critical to the theorem. Since {¢|v(¢) > 0} c {¢]y(¢) > Oi, it seems reasonable to
consider, as long as limw > 0, I = {¢ju(¢) > 0, A(t) < =}, where A is the
baseline cumulative hazard, i.e., the one associated with the covariable path
X = 0. In the two-sample problem, I reduces to Gill’s [(1980) page 92] interval
{t]y,(t) A y,(t) > 0}, where y,(¢) is the limiting proportion of group i individu-
als still at risk at ¢ The function y(¢) of Condition 3.1.1(c) is just the
proportion of individuals at risk at time ¢. Since Y7 'L H? = w?Y 'LY/(Z; -
Z)?, the function v(¢) of Condition 3.1.1(d) is the limit of the square of the
weight process times the sample variance of the Z labels at risk at time ¢. The
weight function w is typically a uniformly bounded process so that Condition
3.1.1(e) reduces to

(10) n~'2 sup Y}|Z;| =, 0,

J,[0,¢]
which is equivalent to the Lindeberg-type condition of Andersen and Gill
[(1982), Section 4(c)]. As they point out (10) is easily verified for (a) bounded
{Z 3, (b) {Z .} which are bounded by random variables having a bounded rth
moment some r > 2, and (c) i.id. {Z;} with the bounded second moment
condition E sup YZ?2 < «, where the supremum is taken over [0, ¢].
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Several choices for the label Z; were introduced by Jones and Crowley
(1989), many of which lead to tests which are in common use. When Z, =X,
the raw covariate, (10) follows if (a), (b) or (c) is true. Labels based on ranked
covariates are dealt with easily. Let r;(¢) be the rank of X;(¢) among those at
risk at ¢, i.e, {X,(¢)|Y,(¢) = 1}). The rank label Zt)=r; (t)/Y(t) <1 and so
satisfies (10). If {Z;} represent the expected or approx1mate order statistics
from a distribution G,, then (10) is satlsﬁed by choosing G, such that (a), (b)
or (c) is satisfied; e.g., Z;(2) = @ Y(r;(¥) — 3)/Y.(¢)} and Z; (t) logit{(r;(¢) —
1)/Y(t)}, where ® is the normal dlstrlbutlon function [cf O’Brien (1978)]
Finally, if Z,(¢) = ¥(X;(¢) - X(t)), where ¥ downweights outlier as is done in
M-estimation procedures, then ¥ must be chosen so that (10) is satisfied.

Conditions 3.1.2 and 3.1.3 state that contributions to W, and V, from the
complement of I are asymptotically negligible. The condition H.= 0 is not
used in Theorem 3.1. Note that under H,, E, = 0 so that W (¢)/ \/ V.(t) is
asymptotically a N(0, 1) random variable for ¢ € I, [0, u] or [0, «) depending on
which set of conditions holds.

3.1. Mixed hazard functions. So far the hazard of failure has been as-
sumed to be continuous. It is of some interest, albeit theoretical, that the
martingale framework of Section 2 and the theorem of Section 3 can be
extended to a more general hazard. In particular, consider a mixed hazard
characterized by d A*[¢|X(¢)] = X[¢|X(#)] dt + A%[¢|X(%)], where the continuous
component A7 is defined by (1) and the discrete component A%[¢X(¢)] by
P[T = t|T > t, X(¢)]. Under the general random censorship model this is
equivalent to

Y(¢)AL[¢)X(¢)] = P[AN(t) = 1|7,_].

Although A7 as given by (1) is totally general, complete generality of A" is not
easy to deal with. Let us consider the special model

(11) a;(8) = AA4(2) + AA5(2)CP,

where A; and A% are both increasing, positive step functions independent of
n, AA,; = Cj* = 0 whenever AAY = 0, A% < » whenever A, <  and sup C;* -

0 as., where the sup is over j and t € [0, »]. Under the mixed hazard us1ng
1), M (t) as defined by (2) is still a martingale; however, the covariation
process (M i» M;) needs correction by substituting (1 — AA"%) dA” for dA% in
(3). Theorem 3. 1 now holds for this more general hazard model 1f one makes
the same (1 — AA)dA substitution into Conditions 3.1.2 and 3.1.3 and the
resulting variance function of the theorem. The proof is now more complex
than before and involves defining all our processes on a transformed time axis,
establishing asymptotic normality on the new axis and then using a Skorohod-
type construction to get normality on the original time axis. The details of the
proof are given in a technical report [Jones and Crowley (1988)] which is
patterned after Theorem 4.2.1 of Gill (1980).
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4. Asymptotic relative efficiencies under relative and excess risk
models. In this section we shall study the Pitman asymptotic relative effi-
ciencies of several members of the W, class of procedures under a contiguous
sequence of hazard alternatives. For simplicity, failure hazards are assumed to
be continuous. Let us consider the following model for contiguous hazard
alternatives:

(12) H: Xi(t) = A(t)[a(t) + Bn~12X,(¢) + O(n™Y)].

The baseline hazard is A(#)a(¢). When a(#) = 1, X}(¢) defines a relative risk
(RR) model as linear when the O(n~1!) term is zero and as exponential when
O(n™") is the remainder of the Taylor series expansion of exp[Bn~'/2X (¢)].
When A(¢) = 1, A}(¢) defines an excess risk (ER) model.

We next need to find the limiting distribution of W,(#)//V,(¢) under (12).
Recall that W (¢) = E (¢) + U, (t), where from (8), (12) and the constraint
H = O’

n

E(t) =n~2 ['T Hy(w)[Xj(x) = Mu)a(u)] du

-

b

t
= Bn_lj; Y Hj(u)X;(u)M(u)du +o0,(1).

1
Using the usual form, H, = wY,(Z; — Z), note that n 'L H, X, = w[Y,/n]Cy,
and n”'LH? = w2[Y/n]CZZ, where Cx,(¢) is the sample covariance of the
covariate X with the label Z at time ¢ among those at risk. Cy,(¢) uses the
weight 1/Y.(¢) rather than 1/(Y.(¢) — 1). We will assume enough regularity
conditions about the distributions of X and Z among those at risk at time ¢
that the sample covariances converge in probability to bounded functions, viz.
Cxz = ox; and C,; — 0,,. We will also assume w — w,, in probablhty Then
assuming Condition 3.1.1 of Theorem 3.1 and noting v = w30,, in Condition
3.1.1(d), it follows from (13) and (14) that W, (¢)/ ‘/V (¢) =4 Nlp@®)/o@®),1],
where

(13) u(t) =ﬁfo‘wo(u)y(u)axz(un(u)du,

(14) o2(t) = f{)‘w%(u)y(u)lozz(u)A(u)a(u)du,

for all ¢ € I. Conditions 3.1.2 and 3.1.3 extend this range to [0, z] and [0, «),
respectively.

Let R}(t) = Y '(¢)r;(t), where r;(¢t) = rank of X(¢#) among the risk set
{: Y,(¢) = 1}. The three versions of W, to be cons1dered here are the Cox
(1972) score test (COX) (Z; = X;,w = 1) the generalized logrank test (GL)
recently proposed by Jones and Crowley (1989) (Z; =R¥,w = 1) and the
Brown, Hollander and Korwar (1974) modification of the Kendall rank correla-
tion (K) (Z; = R}, w = Y,/n). By way of definition the efficacy of the GL test is
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uzi () /0l (¢). The ARE of the GL test to the COX test is the ratio of their
efficacies.

From now on let us assume that the covariates are fixed and at time zero
represent an i.i.d. sample from some distribution. The submodels of (12) to be
considered here for A(¢) are

Model A:  A(1 +BX;/Vn),
Model B:  2At(1 + BX;/Vn ),
Model C:  2At + ABX,/Vn .

Model A is both a RR and an ER model. Its background component A(¢)a(t) = A
and its covariate component ABX;/ Vn are constant over time. Model B is a
RR model in which both the background and covariate components of the
hazard are increasing in ¢. Model C is an ER model in which the background
increases in ¢ while the covariate component is constant in ¢. We shall model
the censoring distribution through the continuous hazard ¢;(¢) = y(¢ + vX)),
which can be viewed either as a RR or ER model. If y > 0, individuals with
large X values are at greater risk of being censored.

In order to calculate w(¢) and o %(¢) from (13) and (14), we need to derive y,
Oxx, Oxgp+ and og«g«. From (A.18) of Lehmann (1975), og.g« = 1/12 for
continuous covariates. Since A*(#|X) = A(t)a(t) + Bn~1/2X) - Mt)a(t), we
may for the computations of oyxy and oxg~ consider the distribution P,(x) of
the covariates at risk at time ¢ in a model with hazard A(¢)a(t). Loosely
speaking,

dP(x) =P(X=xat¢{{T >¢C>1t)
P(T>¢,C>tX=xat0)dPy(x)
(15) /P(T>t,C=>tX=uat0)dP,(u)
Sr(tlx) Sc(tlx) dPy(x)
/S7(tlu)Sc(tju) dPo(u)’
assuming a general random censorship model. S, and S are the conditional

survival functions for T and C. Define {(¢) = exp{— [¢A(v)a(u) du — Yt} and

n(t) = yit.
Then S;(¢|x)S-(¢x) = {(#)exp(—n(¢)x) and hence from (15),

16 dp,(x) = < dPo(x)
( ) t(x) - j-e_»,,(t)u dPO(u) .

Using (16) we can derive the variance function oyy(#). The asymptotic
proportion y(¢) of individuals still at risk at ¢ is equal to the denominator of
(15), i.e.,

y(8) = £(2) [e"* dPy(x).
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Note that P/(x) is independent of a(¢) and ¢. If y = 0, then n(¢) = 0 and
y(@) = {(#) and P(x) = Py(x).

Derivation of oygs«(t) is a little more involved. Let X?(¢),...,X2(¢) repre-
sent the covariates at risk at ¢, indexed arbitrarily, and let r2(¢),...,r2(¢) be
the corresponding ranks. Let X},(), ... ,X(OY.)(t) be the order statistics. Then
for continuous covariates

Y.(2)

C..(¢) = Y7'(2) ;1 [XP(2) = X)) [r)(8) = 7(2)]

Y.(2)
= Y70 L UXG(0) = 3[Y(0) +1]X°(),
j=1

which contains the form of an L-estimate. From page 368 of Lehmann (1983)
concerning the limit of an L-estimate, it follows that

C..(t) PrYD) .
Y.(0) =, oxgp:(t) = fpt_l(o)yPt(y) dP,(y) — 1E,X,

where E,X is the expectation of P,(x).

We are finally able to investigate the AREs for the COX, GL and K tests for
models A, B and C and we do so for binary, uniform and exponential covari-
ates. The appropriate values of y, oxx, oxg+ and ogz.«g- for use in (13) and (14)
can be found in the Appendix for these three covariate distributions.

First let us consider binary covariates. Substituting the values from the
Appendix into (13) and (14), we find that the COX and GL tests have the same
efficacy; since these tests are equivalent in the two-sample problem, this serves
as a partial check on our calculations. In Model A if we let A = 8 = 1 and let
¢ =1,y = 0in ¢;(¢) (i.e., two-sample problem with equal censoring) and then
compute the efficacies of COX, GL and K for ¢ = 0, 1, 2, 2.5, 3 and 4, we arrive
at Figure 5.2.1 of Gill (1980), but off by a scale factor of p(1 — p). This scale
factor is explained by Gill’s use of a different standardizing constant from
ours.

Next let us consider covariates which are U(a, b) random variables at ¢ = 0.
The integrand terms of (13) and (14) are given in the Appendix. In the special
case that n(¢) = 0, which happens when ¢ = 0 (no censoring) or y = 0 (censor-
ing independent of X), the efficacies of the COX and GL tests are equal. Hence
in this setup for uniform covariates, the generalized logrank is asymptotically
as efficient as the COX score test under H_, given in (12). The reason for this
is that when n(¢) = 0, P,(x) is constant over time, i.e., U(a, b); hence the
expected order statistic is (Y(¢) + 1)~! times its rank so that the efficacies are
equal. ‘

For initially U(0, 3) covariates and parameters ¢, ¢, v and « set to 1, the
efficacies of the three tests are plotted in Figure 1 for Models A and C. The
efficacy of each test is a function of time, with the interpretation that at time ¢
all of the individuals still at risk are censored. The efficacies for Model B were
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Model A : Model C )
AIX)= (1407 72X) A(tIX)=2 A t+ A 072X
W (tIX)=1+X Y(tIX)=1+X
=0. A=0.5
’(‘: O°X5 45
A2t
K
35}
= .08} =
w w
04} -25¢ -
[ GL
] — 15 : L
0 time 2 0 time 2
A=2

1.6}
147}

Eff(t)

1.2

Eff(t)

Eff(t)

0 A .J N " 20 " A "
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F1c. 1. Efficacies for the Cox score (COX), generalized logrank (GL) and Kendall (K) statistics.
M¢|X) is the failure hazard, y(¢|X) is the censoring hazard and X is a uniform(0, 3) covariate.

nearly identical in character to those of Model A and were therefore omitted.
Although B was set to 1 for the efficacy plots, its value is irrelevant since it
cancels out in the ARE of two tests. In either model when the parameter A is
increased, the failure hazard increases relative to the censoring hazard so that
more individuals fail. This increases the effective sample size and hence the
power of each test. This can be seen in Figure 1, where increasing A results in
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increasing efficacy. The left column of Figure 1 reflects the fact that the COX
test was designed for proportional hazards models, such as Model A. The GL
test is nearly as efficient. In the right column of Figure 1, K is the most
powerful test for Model C whereas the efficacies of COX and GL are monotone
decreasing. The reason for this is as follows. When ¢ is near zero, the
background component 2A¢ of Model C is small relative to the covariate

Model A Model C
A@IX)A (1407 72X) A(tIX)=2 A t+ A 72X
Y(tIX)=1+X Y(tIX)=1+X
A=0.5 A=0.5
S coxX
I GL 4
= .08} =
= K = .3 K
w w
04 B 2 L GL
0 1 1 ‘] 1 a2 2
0 time 2 0 time 2

Eff(t)
Eff(t)

=5 A=5
6 A
45} COX
GL
4 K
= = 35
w w
2 25}
.0 " " s 1.5 a s 2 L
0 time 2 0 time 2

Fic. 2. Efficacies for the Cox score (COX), generalized logrank (GL) and Kendall (K) statistics.
A¢t|X) is the failure hazard, y(¢|X) is the censoring hazard and X is an exponential(1) covariate.
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component ABX/vVn of the hazard so that the hazard—covariate association is
strong for small ¢ But as ¢ increases, the background component
begins to dominate the covariate component, so that the hazard-covariate
association gets weaker as ¢ increases. The COX and GL tests, which weight
failures equally over time, are affected by this decreasing association over time
whereas K, which weights the early failure times, has a better chance of
detecting the association.

Finally, let us consider covariates which are initially exponential with
parameter §. The integrands of (13) and (14) are again calculated from values
in the Appendix. If n(¢) = 0, as in cases of no censoring or censoring indepen-
dent of X, then the ARE of GL is 75% that of COX. For initially exponential
(@ = 1) covariates and parameters «, ¢, ¢ and y set to 1, the efficacies of the
three tests are plotted in Figure 2 for Models A and C. The comments above
for uniform covariates are applicable here as well. There is however one real
difference for Model C; namely for exponential covariates the COX efficacy
dominates that of K for awhile, but then the relationship is reversed. We
explain this reversal by analogy with the initially uniform covariate situation.
As discussed above, the covariate information is completely contained in the
ranks when the covariates are uniformly distributed through time, i.e., when
n(t) = 0. As n(¢) increases, the covariate distribution at time ¢, (A.1) gets
further and further from uniform so that the ranks contain less and less of the
covariate information. In fact what one sees in efficacy plots for initially
uniform covariates similar to Figure 1 if one increases either ¢, y or ¢ of
n(t) = yyt is a decrease in the ARE of GL to COX.

5. Study of robustness of W,. In this section we shall study the effect
that outliers in the measured covariate have on the AREs of various versions
of the W, statistic. Suppose that the hazard function is again given by (12), but
that X is observed with some contamination, i.e., X, = X + §J is observed in
place of X, where at time t =0, P(J=0)=1—-P(J=1)=1—¢ and J is
independent of X. The bulk of the measured covariates is generated from a
Py(x) distribution; however, 100¢% of the X_'s arise from a contaminating
distribution Py(x — §) for which the true hazard given by (12) is less than
expected for X, 6 > 0. These mismeasured covariates are therefore outliers
for 6 # 0.

For W, based on the true covariate X, W,(¢)//V,(t) =, N(u(?)/o(2), 1),
where u(¢) and o%(t) are defined in (13) and (14). Replacing u(¢) and o*(t) by
w(t) and o2(t), the same results holds for W, based on the measured
covariate X,. When the label function Z = X, u(¢) = u(¢) and

ag2(t) = a%(t) + 5zj:wgy0'JJ)\a.

When the label functicn Z(¢) = R*(¢) = Y (¢)r(¢), where r(¢) is the rank of
X, among those at risk at ¢,

t
pe(t) = 3[03"00{‘7&, rr — 007 paJA
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TaBLE 1
ARE:s of various versions of W,, under H,, for contaminated uniform covariates (¢ = 0.05).

ARE (% of COX)
3 COoX GL K SCOoX SGL
Constant Hazard Model
0 100 100 75 89 89
1 100 129 96 89 114
2 100 269 201 89 239
3 100 502 377 89 446
Excess Risk Model
0 100 100 182 138 138
1 100 129 234 138 178
2 100 269 488 138 371
3 100 502 912 138 693

and 0(¢) = 0%(t), where oy p. and oy, g are the asymptotic covariances of
X, and J with R*.

We consider the special case in which Py(X) = U(0, 1). Two failure hazard
models are used: a constant failure hazard model in which A(#|X) =1 +
Bn~'/2X and an ER model A(¢|X) = ¢ + Bn~'/2X. A constant censoring haz-
ard ¢(¢|X) =1 is assumed which is independent of both X and J. The
components of u.(¢) and o2(¢) are not given here but can be easily computed.
Table 1 contains the asymptotic relative efficiencies (at ¢ = ») for the constant
and ER models for the COX, GL, K and the survival-weighted procedures
SCOX [wy(t) = S(¢), Z = X_] and SGL [w(¢) = S(¢), Z = R*] tests when ¢ =
0.05 and & varies.

For uniform covariates the GL test is 100% as efficient as the COX test
when 6 = 0 and ¢(¢|X) is independent of X. For § > 1 and ¢ > 0, the Pitman
efficacies of the tests based on Z = R* remain unchanged as § varies, whereas
the efficacies of COX and SCOX based on Z = X, decrease as & increases.
Hence, the greater the deviation § from the true covariate, the greater the
increase in efficiency of the rank-based procedures relative to the covariate-
based procedures. Not surprisingly, the survival-weighted procedures SCOX
and SGL perform better under the ER model. Neither do quite as well as K in
this particular setting. '

6. Discussion. By various choices of the weight process w and label
process Z, the statistic W, represents a broad class of nonparametric testing
procedures, many of which are reported in the literature [cf. Jones and
Crowley (1989)]. The advantages of having such a broad class are threefold:
First, the already well studied two-sample procedures may suggest statistics to
be used in more general settings, e.g., the generalized logrank. Second, there is
a single central limit theorem for the entire class; asymptotic normality for a
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particular version of W, is a corollary to the main theorem. Third, the ARE of
any pair of tests (applicable to the same setting) in this class can be calculated.

Since W, is the Cox score test when the covariate X is chosen as the label
Z, it seems reasonable to compare the present work with that of Andersen and
Gill (1982) and to ask the question of whether the statistic W, and its large
sample properties fall out of the Cox model. Under the null hypothesis W, is a
local martingale. Furthermore, it is consistent under the general alternative of
ordered hazards under certain regularity conditions [Jones (1986)]. (By ordered
hazards we mean that if individual j has a larger covariate than individual i,
then he also has a greater hazard.) The hazard function is quite general. The
Cox model, on the other hand, assumes a RR form to the hazard. In order to
derive W, from the Cox model, one would first assume the hazard to be

Ao(D)exp(Bw(t)Z(t)). Equation (4) arises from differentiating the log partial
likelihood with respect to B and then setting B = 0. If Z(¢) is the covariate
X,(¢) or even a grouping of the covariate, all works well However, many
ch01ces of the label Z are not covered. For example, if Z(¢) is based on the
rank of X,(¢) among the covariates at risk, then the Cox model would be
forced to model the jth individual’s hazard A;(¢) as a function of his ranking
within the risk set in order to motivate W,; i. e a person’s hazard of failure is
determined by factors totally 1ndependent of h1m This Ay(Hexp(Bw(t)Z(t)) is
obviously not a hazard and therefore cannot be used to make up a likelihood,
not even an approximate one. M(¢) based on such a function need not be a
martingale either, e.g.,, M(¢) given by equation (2.2) of Andersen and Gill
(1982). The same is also true for labels such as Z(t) =w(X, () - X(¢)), for
some function V.

The standardized statistic W,(¢)//V,(¢) is asymptotically normal under
conditions stated in Theorem 3.1. This theorem holds quite generally, includ-
ing the case of mixed hazard functions as pointed out in Section 3.1. Theorem
3.1 serves as a necessary foundation for the ARE studies of Sections 4 and 5.
In Section 4 the AREs of three versions of W, (COX, GL and K) under both
RR and ER failure hazard models are calculated. As expected, the COX test
performs the best when the true hazard is of RR form. When the true hazard
is of the ER form with a(¢) increasing in ¢, K is frequently more powerful than
the COX test. The superiority of the K test under the ER model is due to its
early weighting of failure times when the hazard-covariate association is the
strongest as a(t) is increasing in ¢ If the background component were
decreasing in time, e.g., a(t) = /(1 + t),'then a set of weights which empha-
sizes later failure times should be used, e.g., w(¢) =1 — Y.(t)/n or 1 — F(2).
The performance of the COX test could be enhanced by using such weights as
well. Using the method of Lemma 5.2.1 of Gill (1980), it can be shown that the
optimal weight for W,(¢) based on Z(¢) = X(¢) is w(t) o 1/a(t). Unfortu-
nately, a(¢) is unknown. Weights that depend on Y.(t), such as K, are quite
sensitive to the censoring distribution and should be avoided when there is
much censoring. A good choice of weight function can be made from the
Harrington and Fleming (1982) G*” class in which w(?) = [1 — FQ)IP[F@®)).
Choice of p and y depends upon the general trend in a(¢).
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Compared with the COX test, the GL test has reasonably similar behavior
for uniform covariates (Figure 1), is less efficient for exponential covariates
(Figure 2) and is more efficient and of particular practical value in those cases
where covariate outliers are present (Section 5).

APPENDIX

In this Appendix the values of dP,(x) of (16) and of the functions y(2),
oxx(t) and oxp.(t) and og«g«(?), defined in the text just after (16), are given
for binary, uniform and gamma covariates.

Initial binary covariates. Suppose p,(x) = Bernoulli(p). Then
y(8) = {(8)q(2),
p(i) =g () [pe ™)' (1 -p)',  i=0,1,

oxx(t) = p,(0)p,(1),
where ¢(¢) = 1 — p + p exp(—n(#)). It is straightforward to show that

oxp+(t) = 50,(0)p,(1),
oger(t) = §0,(0)p,(1).

Initial gamma covariates. Suppose py(x) = I'(a, #), the gamma density.
Note that exponential(§) = I'(1, 6). Then

90 =40 55|
pix) = T, 0 4 (1)),

rxxlt) = a0+ (0],
oxre(t) = [4(6 + n(£))] 7,
Opepe(£) = 1/12.

Initial uniform covariates. Suppose py(x) = (b —a) 'la <x <b]. Let
p(t) = exp(—n(t)a) — exp(—n(¢)b). Then

(1) = {i(t)p(t)/n(t)(b —a), ifn(t)#0,

(A1) g £@2), if n(t) = 0,
_ [n(®)e ™) I[a <x <b], if n(t) #0,
p(x) {po(JC), £ n(t) = 0

p,(x) is the truncated exponential density over (a, b), where —® < a < b < .
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Also,
n73(t) + (b = a)’p 2(t)e NN, if y(t) # 0,
(b-a)?/12, if n(¢) =0,
Opepe(t) = 1/12.
For n(¢) = 0, oxg«(¢) = (b — a)/12. For n(t) # 0,
e 2an®) _ p—2bm(t) _ Zn(t)(b _ a)e—n(t)(a+b)
4n(t)[e=am® — g=tn®)]?

If we let @ = 0 and b = » and replace 7n(¢) by 6 + 7n(t), then the truncated
exponential p,(x) becomes I'(1,6 + n(¢)) and (A.2) becomes [4(8 + n(¢))] !
corresponding to oxp«(¢) given above for initial gamma(a = 1) covariates.

oxx(t) =

(A2)  oxpe(t) =
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