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DATA-DRIVEN BANDWIDTH CHOICE FOR DENSITY
ESTIMATION BASED ON DEPENDENT DATA!

By JEFFREY D. HART AND PHILIPPE VIEU

Texas A & M University and Université Paul Sabatier

The bandwidth selection problem in kernel density estimation is inves-
tigated in situations where the observed data are dependent. The classical
leave-out technique is extended, and thereby a class of cross-validated
bandwidths is defined. These bandwidths are shown to be asymptotically
optimal under a strong mixing condition. The leave-one out, or ordinary,
form of cross-validation remains asymptotically optimal under the depen-
dence model considered. However, a simulation study shows that when the
data are strongly enough correlated, the ordinary version of cross-valida-
tion can be improved upon in finite-sized samples.

1. Introduction. Let X,,..., X, be identically distributed real random
variables, and let f denote their common density function. One of the more
popular nonparametric estimators of f is the Parzen-Rosenblatt kernel esti-
mator. This estimator uses a kernel function K and a smoothing parameter A
(depending on n) and is defined by

fi(x) =n 1Y Ky(x - X)),
i=1

where
K,(u) =h 'K(u/h).

Much of the enormous literature concerned with these estimators [see, e.g.,
the surveys by Devroye and Gyorfi (1984) and Silverman (1986)] points out the
importance of making a reasonable choice of the bandwidth A of f,. In this
paper we shall consider data-driven bandwidths that estimate the minimizer of
the integrated squared error (ISE),

ISE = ISE(R) = [(fu(%) - f(x)) w(x) dx,

where w is some nonnegative weight function. The most often used data-driven
criteria are based on cross-validation ideas [Rudemo (1982) and Bowman
(1984)]. Our aim is to investigate the behavior of cross-validation when the
. observed data are not independent. In other contexts [see, e.g., Hart and
Wehrly (1986)], it has been pointed out that cross-validation can produce much
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874 J.D. HART AND P. VIEU

under-smoothed estimates when the data are positively correlated. By modify-
ing the leave-out technique involved in the cross-validation method, we con-
struct a class of bandwidths that are asymptotically optimal when the data are
a-mixing. An obvious application of our results is to the analysis of time series
data. Estimating the marginal density f of a stationary time series is of
interest since it is reasonable to use f as the predictive density for long-term
forecasting.

The bandwidth of f, will be selected to minimize the cross-validation
criterion,

S

D) k) = [LHow() dr - 207t T LX) w(X,).

The quantity f:g") is the kernel estimator of f based on the observations X;
whose indices j are not too close to i, i.e.,

f&(x) = nit Y Ki(x-X;),

Ij_i|>ln

where {/,} is a sequence of positive integers, called the leave-out sequence, and
n, is such that

nn, = #{(i,j):[i —j|>1,}.

Criterion (1.1) is designed for cases where the dependence between X; and
X; decreases as |i — j| increases. This is often the case, for example, when the
X,’s are indexed by time. If X; and X; are actually independent for |z —j| > [,
then criterion (1.1) is an unbiased estimator of the risk function

R(h) = E[ISE(R)] - [f2(x)w(x) dx.

“ More generally, the difference between R(k) and E[CVln(h)] will be a function
of how highly dependent X; and X; are for |i — j| > [,. The way in which we
shall quantify strength of dependence is through an a-mixing condition (see
Section 2.1).

Our main result is as follows: If the leave-out sequence [,, does not increase
too fast, the bandwidth A(l,) that minimizes Cv,(h)is asymptotlcally optimal
(see Section 2.2). Of partlcular interest is the fact that, as in the independence
case [see Hall (1983), Stone (1984), Hall and Marron (1987) or Marron (1987)],
cross-validation is still asymptotically optimal when we leave out only one
point (i.e., [, = 0). Proofs of these results will be given in Section 4. To obtain
further insight as to the behavior of cross-validation under dependence, we
performed a Monte Carlo experiment in which the dependence was first-order
autoregressive. Our findings in the simulation study (see Section 3) support
the contention that ordinary cross-validation (I, = 0) is robust to moderate
amounts of dependence in the data. However, we also show that some im-
provement in average ISE can be obtained by taking /, > 0 when the data are
sufficiently highly correlated.
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2. Asymptotic optimality under dependence

2.1. Dependence structures. Let N denote the set of positive integers, and
for any i and j in N U {«} (i <), define M/ to be the o-algebra spanned by
the variables X;, X; ,,..., X;. The dependence among the observations is
usually modelled by some mixing condition. The most often studied of these is
the so-called ¢-mixing condition. The sequence {X} is said to be ¢-mixing if
there exist coefficients ¢(m) such that

lim ¢(m) =0,

and for positive integers & and m and for any sets A and B that are,
respectively, M{-measurable and My, -measurable,

|P(ANB) — P(A)P(B)| < ¢(m)P(A).

A less restrictive dependence condition is the a-mixing condition due to
Rosenblatt (1956). The sequence {X;} is said to be a-mixing if there exist
mixing coefficients a(m) such that

lim a(m) =0,
m —oo

and for positive integers £ and m and for any sets A and B that are,
respectively, M{-measurable and My, , -measurable,

|P(ANB) — P(A)P(B)| < a(m).
For future reference we introduce the following notation:

&(m) = supa(Jj).
J=zm

The ¢-mixing condition is quite satisfactory for modelling most Markovian
phenomena. [See, e.g., Rosenblatt (1971a) for sufficient conditions under which
a Markov process is ¢-mixing.] However, ¢-mixing is too restrictive to include
many interesting Gaussian processes [Ibragimov and Linnik (1971)]. For these
processes the a-mixing condition is much more appropriate. The reader will
find in the survey by Bradley (1985) more complete discussions of the various
dependence structures. Chapter 5 in Hall and Heyde (1980) is also very useful
for this topic. Consistency results for nonparametric density and regression
estimators are found, e.g., in Collomb and Hirdle (1986) and Sarda and Vieu
(1988) for the ¢-mixing case, and in Robinson (1983) or Roussas (1988) for the
a-mixing case. Castellana and Leadbetter (1986) obtain consistency properties
under another kind of dependence based on joint densities.

The present paper will deal with the a-mixing condition, which is less
restrictive than the ones usually assumed in density estimation.

2.2. Asymptotic optimality. In order to get an asymptotic optimality prop-
erty we make the following assumptions. The kernel function is assumed to be
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such that

(K.1) 3K, 0 <K < o, such that Vx € %, |K(x)|< K;
(K.2) K is Lipschitz continuous, i.e., 3 Cg, 0 < Cx < o, such that

|K(x) - K(y)| <Cxlx =yl Vx,y€Z;

(K.3) K is compactly supported,;
(K.4) K is symmetric;

(K.5) fK(x)dx =1, 0< fx”K(x)dx < o,

and kaK(x)dx=O, E=1,...,v—1,;
(K.6) The Fourier transform of K is absolutely integrable.
The selected bandwidth is
(2.1) h(1,) = arg min CV, (h),
heH, "

where

(H1) H,=[An"%,Bn7?], 0<b<l1l/(2v+1)<a<2/(1+4v),

and A and B are finite positive constants. The weight function w is such that
(W.1) w is bounded by 1 and S = support(w) is compact.

The leave-out sequence (/,,), and the mixing coefficients satisfy

(L.1) I, <l*=n" forsome0 <7, <(2-a(l+4vr))/2,

and

(L.2) a(l*)=o0o(n""2) forr,=U+V+ (2a +4va)(2+U/V),

where

(22) U=1+2a+2va—-b and V=2-a(l+4v)-27,.

The nonparametric model is defined by the following assumptions on the
density function:

(F.1) f has v continuous derivatives, v € N, v > 1;

(F.2) max(f(x), f(—x)) > 0 as x — o;

(F.3) 3M,, 0 <M, < », such that Vx € #, f(x) < M;

(F.4) For any j, (X;, X, ) has a density f; with respect to Lebesgue measure.

THEOREM 1. Assume that the sequence (X,)y is a-mixing and that condi-
tions (H.1), (W.1), (L.1), (L.2), (K.1)-(K.6) and (F.1)-(F.4) hold. Then the
cross-validated bandwidth defined by (1.1) and (2.1) is asymptotically optimal
in the sense that, as n — o,

ISE(ﬁ(zn))/(hig; ISE(h)) > 1 a.s.

REMARK 2.1. We first note that condition (H.1) is reasonable since A and
B can be chosen to insure that the set H, contains the optimal bandwidth
(i.e., the global minimizer of ISE), which is of order n~/®*D, To clarify the
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conditions (H.1), (L.1) and (L.2), consider the particular case where f has two
continuous derivatives (i.e., when v = 2). In this case it is reasonable to choose
a=b= 3, and 7, can be taken, for example, to be =. Conditions (L.1) and
(L.2) become, respectively,

l,<l*=n'"? and a(l*) =o(n™%").

Although these conditions may appear somewhat restrictive, they do allow the
process to have algebraically decreasing mixing coefficients of the form

a(m) =sm™" fort > 922.

This is at least a small improvement upon an assumption of geometrically
decaying a(m).

REMARK 2.2. Theorem 1 could be stated similarly for ¢-mixing data just by
changing a(n) to ¢(n) in condition (L.2).

REMARK 2.3 (Choice of the leave-out sequence). Theorem 1 states that
there exists a class of asymptotically optimal data-driven bandwidths indexed
by the leave-out sequence (/,),. Although it seems clear that the problem of
choosing [, is less important than the initial bandwidth selection problem, the
simulation study in Section 3 shows that the number of data points left out
does have some influence on the behavior of the cross-validated kernel esti-
mate. An interesting problem would be to try to find a method of determining
a good choice for /,,. While this problem is not theoretically addressed here, the
results of our simulation yield some insight as to the effect of /,,.

REMARK 2.4 (Extensions). In order to make the presentation clearer, this
paper deals only with univariate X;. It is easy to see, by following the proofs,
that all the results stated herein apply also in the setting of %#7-valued X;. For
this it suffices to change @ and b to ga and g¢b in conditions (L.1) and (L.2)
and in formulas (C.1) (of Section 4) and (2.2). Another possible extension
would be to use location-adaptive bandwidth selectors by letting w depend on
n and on the location x, exactly as described for independent data in Miel-
niczuk, Sarda and Vieu (1989).

3. A simulation study. To investigate the finite sample behavior of
cross-validation with dependent data, we performed a small-scale Monte Carlo
study. The process {X;} we considered was first-order autoregressive and
Gaussian, i.e.,

X, =pX;, ,+2Z, JEN,

where |p| <1 and the Z;’s are independent random variables all having the
same normal distribution. As shown by Godoretskii (1977), this process is
a-mixing with coefficients

a(m) =CY jlol = O(mlpl™),

j=m

and thus satisfies the conditions of Theorem 1.
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Each set of data in our simulation was obtained by generating a random
sample Y}, ..., Y, from the N(0, 1) distribution and then taking X, = Y; and

1/2 .

This produces X’s that each have a N(0, 1) distribution. We considered two
sample sizes, n = 50 and 200, and four values for p (0, 0.3, 0.6 and 0.8). One
hundred independent replications were performed for each of the eight combi-
nations of n and p. Taking K to be a standard normal density, we computed
the cross-validation curves CV, (h), I, = 0,1,.. ., 10, for each replication. [Our
choice of a normal kernel is concordant with assumption (K.3) since for
computational reasons K(x) must be set equal to 0 for |x| sufficiently large.]
For each [,, the minimizer A(l,) of CV,(h) for h € H, was determined,
where Hy, = {0.05 + 1.95G — 1)/49: i=1,...,50} and Hyy, = {0.02 +
1.48(i — 1)/49: i = 1,...,50}. Finally, for each set of data, we obtained 4, the
minimizer of ISE(k) over H,, and we recorded ISE(%) and ISE(A(I,)), I, =
0,1,...,10. For convenience, we took the weight function w in the ISE to be
identical to 1.

The results of the simulation are summarized in Figures 1-3 and Tables 1
and 2. Figures 1 and 2 provide evidence that ordinary cross-validation is
reasonably robust to moderate amounts of correlation. Apparently, when
0 < p < 0.6, one obtains at best a very small improvement in average ISE by
choosing [, > 0. However, for p = 0.8, a statistically significant improvement
results from using [, > 0 rather than /, = 0. We reached this conclusion by
performing Friedman’s rank test, where each of the 100 replications was
regarded as a block, and the responses within a block were ISE(A(})), j =
0,1,...,10. For n = 50, the P-value for the test of no differences among the
11 methods was 0.0001, while the P-value for a direct comparison of 7, = 0
and [, =2 was (4.7)107° At n =200 and p = 0.8, the P-values for both
. Friedman’s test comparing the 11 methods and a direct comparison of 7, = 0
with [, = 4 were 0.0002. ‘

Some information concerning the behavior of the cross-validated band-
widths is given in Tables 1 and 2. A notable aspect of these tables is that when
p = 0.8, h(0)’s distribution is shifted to the left of A’s. This is an indication of
the undersmoothing phenomenon we mentioned in the introduction. Taking
I, > 0 (for p = 0.8) makes the difference between E(A(I,)) and E(%) smaller.
Also of interest is the strong positive correlation between £(0) and the other
h(j), and the negative correlation between A and each h(j). The discouraging
negative correlation has been pointed out by Scott and Terrell (1987) in the
setting of independent data.

Figure 3 reinforces the last few comments and shows why taking 7, > 0
does not yield any more of an improvement in ISE than it does. One can see
that the regression of A(4) on A is shifted above that of A(0) on. 4. This
indicates that 4(4) tends to be the better estimate of h for large h, while £(0)
tends to be better for small 4. The fact that taking I, > 0 yields some
improvement in ISE is undoubtedly due to the fact that undersmoothing
usually results in a larger ISE than does oversmoothing.
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F16. 1. Average ISE as a function of |, + 1 (n = 50). From top to bottom, the curves correspond
to p = 0.8, 0.6, 0.3 and 0. Each curve is an average over 100 independent sets of data.

Before concluding this section, some comments are in order concerning the
choice of /. At this stage of our investigation we cannot give a definitive rule
for choosing [,,. However, our simulation provides evidence that if the depen-
dence among the data is not substantial, taking I, = 1 or 2 will, on the
average, not increase ISE by any important amount and may decrease it. On
the other hand, if there is strong positive dependence among the data we
definitely advise taking [, > 0. A reasonable data analytic approach would be
to examine the density estimates corresponding to £(0) and to the first few
h(j), j > 0. One way of inferring the strength of dependence among the data
would be to estimate the autocorrelation function of the observed process.

4. Proofs

4.1. Proof of Theorem 1. The asymptotic optimality property will follow
[see Marron (1987)] from

(4.1) sup ICT,”(h)I ISE(h) - 0 as.
heH,
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F1G. 2. Average ISE as a function of I,, + 1 (n = 200). From top to bottom, the curves correspond
to p = 0.8, 0.6, 0.3 and 0. Each curve is an average over 100 independent sets of data.

where

CT,(h) =1 ¥ FO(X)w(X) — [(2) fu(x)w(x) dx
i=1

n

-2t Y A(X)w(X) + [FA(x)w(x) dx.
1

j=

Because of the following lemma it is enough to prove (4.1) for I, = [}.

LEmMA 1. Under the conditions of Theorem 1 we have

sup |CT, (k) - CTl;.:(h)|/ISE(h) -0 a.s.
heH,

Now denote by H, a finite subset of H, composed of equally spaced
elements, and such that

(C.1) #H, = n2e*2a~b+{ forsome0 < ¢ < V.

The following lemmas complete the proof.
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TaBLE 1
Summary statistics for cross-validated bandwidths (n = 50).

1, Mean of A(l,,) SD of A(l,) p(h, k) p(h, h(0))
p = 0.3, mean(k) = 0.512, SD(%) = 0.101

0 0.516 0.168 —0.544 1

1 0.529 0.176 —0.482 0.912

2 0.513 0.196 —0.450 0.804

3 0.516 0.197 —0.429 0.788

4 0.518 0.197 —0.449 0.845

5 0.508 0.212 —0.444 0.770
p = 0.8, mean() = 0.701, SD(%) = 0.209

0 0.411 0.186 —0.157 1

1 0.532 0.250 —0.199 0.782

2 0.625 0.289 —-0.135 0.641

3 0.656 0.334 —-0.116 0.578

4 0.683 0.363 —-0.115 0.510

5 0.703 0.387 —0.093 0.484

Note: /5 denotes Pearson’s correlation coefficient calculated from the 100 independent replications
of an experiment, and SD means standard deviation.

TABLE 2
Summary statistics for cross-validated bandwidths (n = 200).

1, Mean of A(l,,) SD of A(l,) p(h, k) p(h, h(0))
p = 0.3, mean(h) = 0.371, SD(h) = 0.070

0 0.386 0.097 —0.517 1

1 0.400 0.090 -0.608 0.854

2 0.400 0.090 —-0.670 0.813

3 0.404 0.089 —0.620 0.809

4 0.400 0.094 —-0.616 0.849

5 0.394 0.104 —-0.553 0.872
p = 0.8, mean(#) = 0.469, SD(%) = 0.122

0 0.341 0.102 —0.461 1

1 0.387 0.120 —-0.522 0.931

2 0.412 0.127 —0.582 0.843

3 0.433 0.130 —0.597 0.773

4 0.444 0.133 —-0.595 0.734

5 0.453 0.136 —0.602 0.711

Note: /5 denotes Pearson’s correlation coefficient calculated from the 100 independent replications
of an experiment, and SD means standard deviation.
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Fic. 8. Estimated regression of h(j), j =0 and 4, on the optimal bandwidth R (n = 200,
p = 0.3 and 0.8). Each of the four curves is a smoothed scatter plot of h(j) vs. h. In each plot, the
top (bottom) curve is the estimated regression of h(4) (A(0)) on k. The upper (lower) plot is based
on p = 0.3 (0.8).

‘

LeEMMA 2. Under the conditions of Theorem 1 we have
sup |CT;x(h)|/ISE(h) >0 a.s.
heH)

LeMMA 3. Under the conditions of Theorem 1 we have
sup |CTy.(h) — CT,’,:(h*)|/ISE(h) -0 a.s.,
heH,

where, for each h in H,, h* denotes the element of H, that is closest to h.
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An important tool in proving these results is inequality (4.2) below. The ISE
is essentially the sum of two positive components [see, e.g., Rosenblatt (1971b)],
a variance component and a squared bias component. The squared bias
component,

b(h) = [(Bfy(x) - f(x))’w(x) dx,

does not depend on the multidimensional distribution of X;,..., X,,, and is
therefore the same as for independent samples. Following the techniques
previously described by Parzen (1962) in the case v = 2, one can show by
Taylor expansion of f that under the conditions (F.1), (W.1) and (K.5), b(h) is
asymptotically of the order ~A?. It now follows from Theorem 2.1 in Vieu
(1989) that there exists a finite positive constant C, such that for n large
enough we have for any & in H,,

(4.2) ISE(h) > C,h%.

4.2. Main mathematical tool. Asymptotic optimality properties are usu-
ally obtained in the case of independent data [see, e.g., Hall (1983), Stone
(1984) or Marron (1987)] by using certain bounds on moments of sums of i.i.d.
variables. To deal with the dependence structure described above we need to
have some “equivalent” tool, namely the following proposition.

ProposiTION 1. Let K be a kernel function satisfying the conditions
(K.1)-(K.6) and assume that the sequence (X,)y is a-mixing. Let j(1),..., j(p)
be p distinct positive integers, and define

q q p
Brs
(43) &(Xjys s Xjiy) = ,I=—I1 l-_-llKh(Xj(") — Xjis)) iUlgj(i)(Xja))’

s
S#r

where the g, ;, are real-valued functions such that |g;;(-)| < M; <, the B, ,
are nonnegative integers and q <p. Let A, ...,A, be a partition of
{jQ1), ..., j(p)}. Then, there exists a finite positive constant G such that

where
d=infld(A;, A) i, j=1,...,v,i <j},
d(A;,A)) - inf{lu —u'|,u €A, u €4y},
and

q
B= 1 Zlﬁr,s.

r=1s=
S#r

Proor. Such a result already exists for functions g of the form
guy,...,u,) =T1%_, g(u,) [Hall and Heyde (1980), Theorem A5, page 277].
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Here, the main idea behind the proof is to express our g as

q Br,s

g(Xj(l)"" Xipy) = ﬂ [ ff(hy)exp{ 1y (X — j(s))}dy

1L

X n gj(l)( (z))

where ¢ is the Fourier transform of K. It is now clear that g may be written
as a multiple integral whose integrand (as a function of X, ity -+ Xjpy) is of
the form I12_, h (X, )). An induction argument and Theorem A5 of Hall and
Heyde (1980) can now be used to obtain the result. For the sake of brevity the
details are omitted. O

4.3. Proof of Lemma 1. Defining K,(X, — X,) to be 0 when r or s is not
in {1,...,n}, we can write

|CT, (k) — CT,x(h)| <|Ry(R)| +|Ry(R)|,

where

Ry(h) = (nn,)™" ln<>|;_2jlsl:Kh(X,~ - X))w(X,),
and

Ry(h) = ((nn, )" - (nn,ﬁ)“)lglglixh(xi - X)w(X;).
Writing

Iz

R(h) = (nn)™" Y T KX - X )w(X._,),

|kl=1,+1i=1
we get by using (W.1), (K.1) and (K.3)
|Ry(R)| < 2(L% = 1,)(n,,)” fIK(u)Idusugf(u)

where f is the kernel estimate of f constructed with the kernel function
|K|/[|K(u)| du. Proposition 4.1 in Roussas (1988) gives, together with (F.3),
an almost sure finite bound for sup, . g f,(x) which is uniform over h € H,,.
Therefore, using the fact that n = O(n, ),

sup [Ry(h)|=0(n"1¥*) as.
heH,

Similarly, we have

|Ry(R)] < ((nyg) ™ = (ny) " )(n - 21:)]|K(u)|dusugf‘,,<u),
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and, as before, this leads to
sup |Ry(h)| = O(n~1*) as.
heH,
Finally, Lemma 1 follows from these two results together with (L.1) and (4.2).

4.4. Proof of Lemma 2. We first write
CTI,’:(h) = (nnl:)_l XY I(,J),

li—jI>1¥
where
I(i,j) = Ku(X; = X)w(X;) = [£(x) K,(x = X)w(x) dx
— F(X)w(X)) + [FH(x)w(x) dx.
Now define

r*(j) = [Ku(u ~ X;)w(X;) f(u) du ~ [[Ky(x — u) f(x)w(x) f(u) duds

~ f(X)w(X;) + [FA(x)w(x) dx,
w(i,j) =T(i,j) —T*(j) and T(h) = LY ().

li=ji>z

Noting that n;, ~ n and using (4.2), all we have to prove is that

(4.4) sup n 2h~*|T(h)| > 0 as.
heH),
and
n
(4.5) sup n A2 Y. T*(j)| > 0 as.
heH) j=1

The proof of (4.5) is given in Marron [(1987), Formula 7.3] when the data
are independent. The proof in our case proceeds over the same steps by using
the exponential inequality for a-mixing variables given by Roussas [(1988),
Theorem A.2] in place of Bernstein’s classical one.

All that remains is to prove (4.4). For this, decompose the term T'(%) in the
following way:

(4.6) T(h) =T*(h) + T (h),
where

T*(h)= XX #(i,j) and T7(k)= Y¥ ¥(i,)).

i+l¥<j<n l<j<i—l

We just give the details concerning T*; the same argument can be applied to
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T~. Define ¢(i, j) = 0 when (i, j) is not in the set {(i, j):i + I* <j < n}. The
first step is to rewrite T* in the following way:

1 1x X n,y
T*(h) = Z XX Z ) Z ¥(k +2(m — 1)1F + sl¥,
s=0t=0j=1k=1g=1m=1
J+ (29— 1)I* +t¥),

where n, is the greatest integer less than or equal to n/(21*). We will now
bound for some integer p the moments of order 2p of T*. By Minkowski’s
inequality,

(4.7  E[T*(R)*] < (20%)* sup E

Jik,s,t

(E qu y(m', q)) ]

g=1m=1

where for j, k, s and ¢ fixed we use the simplified notation,
m' =k +2(m—1)l}+sl} and q' =j+ (29 — 1)IF + tl*.

ReEMARK 4.1.  The following facts are important in the sequel. If m, differs
from m,, then |m} — m}| > 1. Similarly, if ¢, differs from q,, then |q] — ¢4
> 1. Finally, whenever m differs from ¢ and from q + 1, [m’' — q'| > I*.

We now consider the moments [which exist by (F.1)-(F.3)]

E(§ ‘5 w(m’,q’)) ]= f § : Zl qz” E[Hw(m:,q,]

g=1m=1 g,1=1m;=1 Q2p=1my,=1 i=1

Now define
I= {J= (ml,ql,...,m2p,q2p):1 <m;<q;<n;i= 1,...,2p},
and consider the subset I, of I composed of the 4p-tuples J =

(my, qy, ..., my,, q,,) for which at least one index among (m ,, Qur- s Moy, q2p)
differs from all other indices by at least 2. An important point is that
(4.8) #I, = O(n'?) and #(I-1I,) =0(n%

We now investigate

(49) E (Z‘i Zq: t//(m',Q’)) }= Y. EZ(J)+ Y EZ(J),

g=1m=1 Jer, Jel-I,

where for J = (my, q,,..., Mgy, q,,), Z(J) is defined by

2p
2(J) = Tv(m, ).

First, consider J = (m, q,, .. » Maps q3,) in I, and assume that m,, is an
index which differs from all others in J by at least 2. (The proof would be
similar if this index were some ¢;.) One can write Z(J) as a finite sum of
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terms each of the form (4.3). Proposition 1 can then be applied to each of these
terms by taking (using the notation introduced in the proposition)

v=3, B=2p,

Al = {l € {m'l’ qis-- - m,2p’ QQp}ai < mli(O)}’
A, = {m'i(O)}
A, ={ie {mi,qi,...,m5,,q5,},0 > m'i(o)}.

Note that by Remark 4.1 we have d > [}. By Proposition 1 there is a finite
positive constant C; for which

|EZ(J)| < C,h~%Pa(ly) + ‘ / [ / [ Jz() dpxmko)] dP(theAl)] dPix, i< ay

b

and, by definition of (i, j), the second term on the right-hand side of this
inequality is 0. Along with (4.8) this leads to

(4.10) Y EZ(J)| = 0(n%h=%Pa(1})).
Jel,

Now consider indices J in the set I — I, and define the partition of I — I,

4p
I-1,= UI",

y=1

where I ={J =(my,qy,...,my,,q5,) €I — I:#{my,qy, ..., myp, @) = ¥}

Let J =(my,qy,..., My, qz,) be in the set I”, and denote by
Maqiy -+ > Magyy Maty+1p > Matygy Doty - +> Doy Doty +1 - - Doy (Where
¥ + ¥3 = v) the y distinct elements of {m,,q,,..., my,,qy,}, classified in

such a way that
forr=1,...,vq Mury = qpery T 1,
forr=9y,+1,...,v3 Myp #qp, + 1, Jj=1,...,7s,

and
forr=vy,+1,...,73, Qppry * Mg,y — 1, J=1...,7s.

Now apply Proposition 1 with
v=y-v, B=2p,
A, ={myuy, @by} forr=1,...,7,,
A, ={mp,} forr=y,+1,...,7,,
A, = {Qhrygiyyt FOrr=va+1,...,v =7y,

and note that Remark 4.1 implies that d > /*. Hence, for some finite positive
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constant C,

v
|EZ(J)| < Coh~%a(13) +|[2() [TdPx, cca,)|-
r=1

By using (F.4) and integration by substitution, one gets

' JZ2() TTdPix, cca,

A result much like the last one is given by Marron and Héardle [(1986),
Formula 3.4). [See also Mielniczuk, Sarda and Vieu (1989).] In our case the
proof would be the same.

The last two results lead to

(4.11) |EZ(J)| = O(h~%Pa(l¥)) + O(h~2*?/%) forany J € I".

Noting that #I” = O(nY), and, because of (4.8), #I” = O(n%"), we have for
some finite positive constant Cj

= O(h=2P*7/2),

Y EZ(J)
JeI-I,
(4.12) 2p ) 4p i
< Cy|n?Ph=2Pa(1¥) + ¥ nYh=2%*/2 4+ Y piPpm2tv/2
y=1 y=2p+1

= 0(n%h~%G(1¥)) + O(n2Ph7P).

To get (4.12) we have used the fact that the two sums to the right of the last
inequality sign are geometric sums.

It follows from (4.7), (4.9), (4.10), (4.12) and the fact that n, is of the same
order as n/l%*, that

E[T*(h)*]| = O(n*?h=2Pa(1})) + O(n®(13)* h7P).
Now, using Chebyshev’s and Boole’s inequalities, we have

< #H/e P sup E[(n_2h_2”T+(h))2p].

P[ sup n"2h~%|T*(h)| > ¢
heH)

heH)

By taking p to be the integer such that 1 + U/V <p < 2 + U/V, and using
(L.1), (L.2), (H.1) and (C.1) together with the last two expressions, the
Borel-Cantelli lemma implies that

sup n"2h"%|T*(h)| > 0 aus.
heH)

Using (4.6) and exactly the same proof as above for T (h) yields (4.4).

4.5. Proof of Lemma 3. We can write
(4.13) CTyx(h) — CTy)x(h*) =T+ I + IIT + 1V,
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where
= (nnl;i;)_l IEZZ (1/h - 1/h*)K((Xi _Xj)/h)w(Xi)’
i—j|>1
I = (nng;) " » (1/k*)[K((X; - X,)/h)
li—jI>1%

~K((X; - X;)/h*)|w(X,),
M=n'Y f(l/h* —1/h)K((x — X;)/h) f(x)w(x) dx
and l
IV=n"! Z J/r9)[E((x - X)) /k*) = K((x = X,) /R)] f(0)w(x) dax.

Because the points in H, are equally spaced, we have by (H.1),

(4.14) 1/h — 1/h* = O((#H}) ~'n*7?).
Therefore, because K and w are bounded,
(4.15) 1| +|III| = O((#H;) 'n?*7?).

Since K is Lipschitz continuous and compactly supported,
(4.16) |K((X; - X;)/h) - K((X; - X;)/h*)| = O(h*|1/h — 1/h*|).

Obviously, (4.16) remains valid with x — X; in place of X; — X;, and so by
(4.14), (4.16) and (H.1),

(4.17) |II| +|IV| = O((#H;) ~'n?*~?).
It follows from (4.2), (H.1), (C.1), (4.13), (4.15) and (4.17) that
— CTy(h*) |/ISE(h) = 0(n~%).

heH,
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