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This (3) is (1 + r/¢) o?/n when B* = B. The squared error loss (3) and
distribution (2) for B suggest choosing B* to be Stein’s estimator and leads to
risk dominance and Brown’s paradox.

With fixed V, and if B* is Stein’s estimator, the latter term in (1) is obtained
from the component risk for Stein’s rule. The risk (1) may be computed from
component risk formulae of Baranchik (1964) and Efron and Morris (1972). It
is
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and R, is the average risk per component of Stein’s estimator, having
maximum of 1. The maximum of R in (4) and (5) is about (r + 2) /4, occurring
when V and B are collinear (when p = 1), and when 22 is near r. Numerical
values are in Efron and Morris (1972, Section 5).

If p=1/r, (4) is given by Stein’s risk. But for p = 1, the risk (5) starts
above 02/n when B = 0 and increases to a value exceeding (substantially, for
large r) the risk of the MLE & and then diminishes as B — .

Perhaps this risk formula (5) will help us to understand the paradox. We
should advocate these estimators for practical use only if we are sure they are
appropriate. I do not think we know that yet.
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1. Brown recognizes, immediately above Remark 3.4.1, that his estimator 53
can have variance smaller than that of the maximum likelihood estimator
8, by an arbitrarily large factor when r is large compared with n — r and
the multiple correlation is small. It seems to me that this is an adequate
reason for basing confidence intervals and tests on &, rather than on §, if
such intervals and tests are available. In practice there is some difficulty in
studying the approximate distribution of &5 unless both r and n — r are
large, but this does not affect the principle, and the computational diffi-
culty should not be insuperable.

2. In trying to find an appropriate estimator of « it might be better to start
with a Bayes estimator corresponding to a normal prior distribution with
mean 0 for (a, B) with a independent of 8 and 8 having covariance matrix
proportional to the identity, and with the variance of a approaching «. In
order to obtain a usable estimator one might estimate the constant of
proportionality in the prior variance of B (perhaps from the sample
multiple correlation, for simplicity, if n — r is not too small) or choose a
slightly different prior distribution. This will again lead to computational
difficulties. Intuitively it seems clear that the improvement over Brown’s
estimators would be large in some circumstances, especially if n — r is
small or negative.

3. Before taking a stand for (or even against) the principle of conditionality,
for the version of the present problem referring to confidence intervals for
a, it may be reasonable to examine in detail the conditional (and uncondi-
tional) behavior of the maximum likelihood estimator &, and that of an
alternative 8 (which might be Brown’s 385). This study could be carried out
mathematically or by simulation. For the present, a thought experiment
must suffice. i

4. Imagine that we have applied the two confidence interval procedures, say
with probability 0.95, to a particular sample. What can we say about the
resulting picture?

(a) With probability greater than 0.9, the two intervals will be compati-
ble in the sense that their intersection is nonempty. Thus the intervals
based on & will not ordinarily contradict those based on &, but will claim
greater precision. Of course the first sentence is an understatement.
Roughly speaking, the intersection of the two intervals is a conservative
0.9 confidence interval and thus should be at least as large as a good 0.9
confidence interval on the average, though a bit more variable.

(b) Nevertheless it is possible, though improbable, that the two intervals
will be disjoint, even widely separated. In principle, in such a situation it is
appropriate to use the theoretically superior procedure after checking the
validity of the argument. However, in the present case, there is an
additional argument in favor of intervals based on § rather than §,.

5. As I understand it, the problem is to estimate the unconditional expecta-
tion « of the Y;. We observe the V,, because they are readily available, or
because we recognize that they will help us estimate «. Since the condi-
tional expectation of Y; given V; is assumed to be a constant plus a linear
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function of V; and the expectation of V; is assumed to be 0, it follows that
(1) a=E"Y, - BV,

for some B € R". If there is strong disagreement between confidence
intervals based on 8, and those based on §, some doubt is cast on the
assumptions leading to (1). Although both 8, and & use (1), 8, uses it
much more strongly. Also such disagreement is more probable (though
still improbable under the assumptions) when § is likely to be close to Y,
which is a valid estimate without the conditions on the distribution of V.

. If the principle of conditionality is misguided, why do so many people find

it appealing? I can think of a number of reasons:

(a) In a small but conspicuous class of problems concerning confidence
sets, it leads to reasonable answers in situations where unreasonable
answers have been obtained from other principles.

(b) In testing problems it arises from an attempt to attribute a signifi-
cance level to the outcome of an experiment rather than to a test or a
statistic.

(c) It is sometimes justified on the basis of a verbal Bayesian argument.

(d) Rejection of the principle of conditionality is sometimes confused
with rejection of the use of conditional probability.

. Consider the problem of obtaining confidence intervals for the location

parameter of a one-dimensional uniform distribution or a Cauchy distribu-
tion with known scale. Confidence intervals based on the principle of
conditionality coincide with those obtained from a uniform prior distribu-
tion and are reasonable. It is my impression that short unbiased confi-
dence intervals in the sense of Neyman and those with minimum expected
length seem unreasonable. Analogous results may hold for typical one-
parameter problems, but they seem to fail, in varying degrees, for prob-
lems with more than one parameter, including problems with nuisance
parameters.

. In Cox’s example for testing hypotheses, I think the difficulty arises from

confusion of the ordinary meaning of the word ‘‘significance” with its use
as a technical term in statistics. We can assign a level of significance to a
test or even to the observed value of a statistic (a different but related
notion), but not ordinarily to the outcome of an experiment. As indicated
in 7 above, I would be inclined to use the confidence intervals obtained by
the principle of conditionality in this example, but not the test.

. The passage of Savage (1976) that Brown quotes in Section 5 is an

example of a verbal Bayesian argument for the principle of conditionality.
However, I think Savage’s agreement with the principle of conditionality is
not as strong as Brown suggests. Furthermore, in the present situation,
the Bayesian who assumes a and B independent, with uniform prior for «
and a reasonable orthogonally invariant prior distribution for 8, and
conditions on V (and Y) obtains qualitatively the same result as Brown
does by not conditioning on V. Thus a serious Bayesian argument cannot
support the non-Bayesian interpretation of the principle of conditionality.
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10. I regret that I have not had time to do the mathematical work that would,
I believe, support some of the above statements.

11. It should also be remembered that the literature on the principle of
conditionality is extensive.

12. A general principle, like a mathematical assertion beginning with a univer-
sal quantifier, can be refuted by a single counterexample but cannot be
validated or proved by any number of special examples.
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Explanations, etc. Several discussants have offered supplementary ex-
planations for the inadmissibility result of Section 3.3 (Casella, Copas, Efron,
Gleser, Morris). Each of the explanations is somewhat different and each adds
further understanding.

Gleser goes further and gives a useful extension of my results in the style of
my Lemmas 3.3.1 and 3.3.3. Consider the situation discussed in my Section 4.2
where it is desired to estimate the linear function k = aa + b'8 in the
regression setting. Then, if r > 3, Gleser’s Theorem 1 can be applied via his
formula (5) to yield a specific, useful estimator dominating §, = a& + &'B. The
existence of a dominating estimator was already established in my Theorem
4.2, even for r = 2, but no usable formula was given.

Lu demonstrates that the general nature of the inadmissibility phenomena
here is not significantly dependent on the form of the loss function. Insofar as
his results for L, are not directly constructive (analogous to my Theorems
2.2.1 and 3.2.2 for squared error) they point to the important question of
constructing estimators in the regression setting which usefully dominate §,,
under L,.

Limited translation estimators. Morris (explicitly) and Efron (im-
plicitly) each raise the issue of modifying the proposed estimators to limit
maximum coordinatewise risk. (This appears to be the joint occurrence of
conditionally independent but marginally highly correlated events!) Berger
also makes this suggestion. This seems reasonable, particularly in view of the
numerical results Berger mentions. However it is important to understand
the justification for this suggestion before putting it into practice.

To do so consider the usual multiple normal means estimation problem and
the positive-part James—Stein estimator, which is given by d*- of (2.1.7) for
3 =Q=1Iand p =p — 2. For moderate p > 3 this is known to approximate a
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