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ON A NOTION OF DATA DEPTH BASED ON
RANDOM SIMPLICES!

By REGINA Y. Liu

Rutgers University

To the memory of my teacher and friend John Van Ryzin

For a distribution F on R? and a point x in R”, the simplicial depth
D(x) is introduced, which is the probability that the point x is contained
inside a random simplex whose vertices are p + 1 independent observations
from F. Mathematically and heuristically it is argued that D(x) indeed can
be viewed as a measure of depth of the point x with respect to F. An
empirical version of D(-) gives rise to a natural ordering of the data points
from the center outward. The ordering thus obtained leads to the introduc-
tion of multivariate generalizations of the univariate sample median and
L-statistics. This generalized sample median and L-statistics are affine equiv-
ariant.

1. Introduction. The main goal of this paper is to introduce a new notion of
data depth. This notion emerges naturally out of a fundamental concept under-
lying affine geometry, namely that of a simplex, and it satisfies the requirements
one would expect from a notion of data depth. Thus it leads to an affine
invariant, center-outward ranking of the data points. We now turn to a detailed
description.

Let X,,..., X, be a bivariate data set. Given any three data points X,, X;
and X,, we can form the closed triangle with vertices X;, X; and X, which we
denote by A(X;, X;, X;). From the n data points, we generate in this way (;’ )

triangles. To any point x in R? we can associate then the number of those
triangles which contain x inside. This number should be larger if x is “deep”
inside or near the “center” of the data cloud, and smaller if x is relatively near
its outskirts. This suggests the following notion of depth measure, which we shall
call simplicial depth since it is based on triangles and their p-dimensional
generalizations, which are simplices. Denote by x € A(X;, X;, X;) the event that
x falls inside the closed random triangle A(X;, X, X, ) and by I(A) the indicator
function of an event A, i.e., I(A) = 1if A occurs and I(A) = 0 otherwise. Then

n -1
(1.1) D,(x) = (}) Y, I(xeA(X, X, X,))
1<i<j<k<n
expresses the proportion of triangles containing x. To vis1_1$11ize the situation, we
may imagine placing a layer of clay with thickness (;‘ ) on the region corre-
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sponding to each triangle A(X;, X;, X,), one by one until all '3’ triangles are
exhausted. The resulting solid will represent the exact shape of D (-).
It is clear that D,(x) defined in (1.1) is an empirical version of the probability

(1.2) D(x) = Pp(x € A(X,, X,, X3)),

if X;’s are ii.d. with a common distribution function F. The quantity D(x)
should assume higher values when x is near the center of the distribution and
should tend to 0 as x moves away from the center. We shall refer to D(x) in (1.2)
as the simplicial depth (SD) of x with respect to F in R? and to D,(x) in (1.1) as
the sample simplicial depth of x with respect to the data cloud X, ..., X,
It may be instructive to consider the univariate analog of SD, namely,

(1.3) D(x) = P(x € X, X,).

Here x is in R, X, and X, are two independent observations from a univariate
cdf. F and XX, represents the closed line segment connecting X, and X,.
When F is continuous,

(1.4) D(x) = 2F(x)[1 - F(x)].

It follows immediately that any point which maximizes D(x) is a population
median. The maximum value of D(-) is 1 in this case, and D(x) decreases
monotonically to 0 as x is pulled away from the median.

The above observation suggests that we call a point in R? which maximizes
D(-) a bivariate simplicial median. We denote such a point by p and will also
call it center when geometric understanding is emphasized. The sample version

of the bivariate median is then
(1.5) fi,, = the data point X, attaining highest sample SD.

If the maximum is achieved at more than one data point, we can define i, as the
average of those data points which maximize D,(-). The heuristic motivation for
fi, as the sample median is the following: If D(-) is continuous and p is the
unique maximizer for D(-) in R?, an estimator for p would be a point x, in the
plane which maximizes D,(-). If F has a nonzero density in the neighborhood of
p, we would expect the data point X, which maximizes D,(-) among all the data
points to be close to x, and, hence, to pu. These arguments can actually be made
rigorous, as we shall see in Section 3.

A major task here is to show that D(x) defined in (1.2) can indeed be viewed
as a measure of depth; that is, to show formally that it possesses some kind of
monotonicity property similar to the one that D(-) possesses in the univariate
analog. This is established in Theorem 3 of Section 2. To be more precise, the
theorem asserts that when the underlying distribution is angularly symmetric
(see Section 2 for the definition) about a point p, then D(x) decreases monotoni-
cally as x moves away from p along any fixed ray.

All the concepts introduced so far can be easily extended to higher dimen-
sions. For a distribution F on R?, a random triangle in the definition of SD is
now replaced by a random simplex whose vertices are p + 1 independent
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observations from F. Consequently, we define:

1. the simplicial depth (SD) function D(-) on R” with respect to F to be

(1.6) D(x) = Pe(x € S[X,,..., X,.4]),
where X,..., X, are 1ndependent observations from Fand S[X,..., X, 1]
is the simplex w1th vertices X,..., X, ., (in other words, S[X;,.. p +1] is
the set of all points in R” which are convex combinations of Xl, » +1)

2. a (multivariate) simplicial median of F, p, to be a point which max1m1zes
D(-);
3. the sample simplicial depth function D,(-) to be

I

1.7) Dn(x)E(p+1) T (x<eS[X,... X, )
<H< - <ip<n

if X,,..., X, is a random sample from F;

4. the (multivariate) sample simplicial median fi, to be the sample point which
maximizes D,(-), or the average of such points if there are many.

We observe that it is straightforward to check whether or not a point x in R?
is inside the simplex S[x,,..., x,,,]. It actually amounts to solving the follow-
ing system of linear equations:

(1.8) x = o) + Xy + - a1 X,,; o +agt s ta,,, =1

For a nondegenerate simplex, this system of p + 1 equations with p + 1 un-

knowns a;, a,,..., a,,, has a unique solution, and x is inside the simplex if and
only if ay, ay,..., a,,, are all positive.

Let A be a p X p matrix and b € R”. Then (1.8) immediately implies that
(1.9) D, ,(Ax + b) = D(x),

where D, () is the probability that y(€ R”) is contained inside the s1mp1ex
with vertices AX,+ b, i=1,..., p + 1. In other words, the function D(-) is
invariant under aﬂine transformatlons Such invariance property clearly holds
for the sample SD D,(+) as well. This property of D,(-) is sufficient to assert the
affine equivariance property of all location estimators proposed in this article.

Some applications of simplicial depth.

(A) Multivariate L-statistics. In addition to giving the above generalized
median, the notion of SD leads to a new way of ordering data points and,
consequently, a generahzatlon of the so-called L-statistics (linear combinations
of order statistics) in the multivariate setting. Let X[;; be the data point
associated with the ith highest sample SD value. Then Xi;, Xpy,..., X{,; are
the order statistics of X;’s with an ordering from the center outward Let w(-)
be a nonincreasing welght function of [0,1]. We define a class of multivariate
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L-statistics as

M

(1.10) L,=

1

X[i]w(i/n)/ Z w(j/n).
1 j=

1

When w(t) = I(t < 1/n), L, is the same as the sample median fi, if D,(-) is
uniquely maximized among the sample points.

When w(t) = I(t < 1 — a), L, isa100a% trimmed mean. In practice, « = 0.05
or 0.1 are the commonly used values. We would like to mention that the trimmed
mean with a = 0.95 (or so) should be an appealing alternative to i, when the
population SD is not uniquely maximized.

(B) Directional data and simplicial depth. A direction in the plane can be
viewed as a point on a unit circle, while a direction in three-dimensional space
can be similarly viewed as a point on a unit sphere. The study of directional data
leads to situations where the ambient space is not a p-dimensional Euclidean
space, but rather a sphere in (p — 1) dimensions. The notion of simplicial depth
can be adapted by using geodesic simplices instead of simplices. For example, in
the case of a circle, the short arc connecting two observations is to replace the
random line segment used to define SD in R!. This is investigated in Liu and
Singh (1988).

(C) Testing the center of (angular) symmetry. We are often required to
determine the center of a symmetric population. A class of distributions some-
what broader than the usual symmetric distributions is the class of angularly
symmetric distributions. Roughly speaking, a distribution is angularly symmet-
ric about a point x if every hyperplane passing through x divides the whole
space into two half-spaces with equal probabilities. (For the precise definition
and further discussions, see Section 2.) In the present paper, it is shown (cf.
Theorems 3 and 4) that the SD is maximized at the center of angular symmetry
and takes there the value 277 in R”. Thus, if b, is a hypothesized center of
angular symmetry, then a large value of (277 — D,(b,)) is an indication of the
null hypothesis being false. The observation in Remark B of Section 2 says that
the test statistic (277 — D,(b,)) is a degenerate U-statistic. This fact leads us to
conclude that n(27® — D,(b,)) has as its weak limit a linear combination of
x 2-distributions [cf. Gregory (1977)]. A detailed study of this testing procedure
will appear separately.

Other applications of SD include deriving a class of multivariate scales and a
multivariate classification rule. In fact, a measure of scale can be derived by
considering how far away one has to move from the center (i.e., the maximum
point of the sample SD) in order to reduce the SD value to a fraction of its
maximum. As for classification, the idea there is roughly the following [see Gross
and Liu (1988)]: Suppose that two training samples from two different popula-
tions are given. A classification rule is a way of assigning any new data point Z
to one of these two populations. Such a rule can be obtained by comparing the
relative center-outward ranks of Z w.r.t. the training samples. Z should be
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assigned to the population whose training sample leads to a smaller relative rank
for Z.

General remarks. An earlier concept of data depth was introduced by Tukey
(1975). Tukey’s data depth and the related sample median studied in Stahel
(1981), Donoho (1982), and Donoho and Gasko (1988) are based on the inspection
of “every” one-dimensional projection of the sample data. In a different direc-
tion, Oja (1983) defined a sample median in R? as a point x which yields the
minimum total volume of all simplices formed by x and p of the data points. As
far as the “generalized” multivariate median is concerned, there is an extensive
literature and a thorough coverage can be found in Rousseeuw and Leroy (1987).

2. Main properties of the simplicial depth function D(:). The main
properties of D(-) are summarized in Theorems 1-4.

THEOREM 1. Forany Fon R? andx € R?,sup ;> » D(x) > 0 as M — co.

THEOREM 2 [Continuity of D(-)]. If F is an absolutely continuous distribu-
tion on R?, then D(-) is continuous.

The next two theorems are stated for angularly symmetric distributions. The
reason we focus on these distributions is that they form a large class of
distributions possessing an obvious center, and we shall show that this center
agrees with the one predicted by the simplicial depth function.

DEFINITION. A random variable X in R P or its distribution F is said to be
angularly symmetric about the point b (in RP) if and only if the random
variables (X — b)/||X — b|| and —(X — b)/||X — b|| are identically dis-
tributed, where || - || stands for the Euclidean norm.

For p = 2, F is angularly symmetric about b simply means a,(0) = a,(8 + =)
for all 4, 0 < @ < m, where a,(-) is the angular density around the point b
induced by F provided that such angular density exists. It is easy to see that if F
is symmetric about b, then F is angularly symmetric about b. It is also easy to
see that if F is angularly symmetric about b, then any hyperplane passing
through b will divide R ? into two open half-spaces with equal probabilities. This
probability is 1 if the distribution is absolutely continuous. Thus the center of
angular symmetry is what one would want as a (multivariate) median. In view of
this and Theorem 3, it is only natural to define a median by the maximal point
of D(-). Finally, we note that the center of angular symmetry is unique when it
exists, except in the case when the distribution F has its whole probability mass
concentrated on a line and its probability distribution along that line has more
than one median. In fact, if b, and b, are two different centers of angular
symmetry, then the region between any two parallel hyperplanes passing through
b, and b,, respectively, would have zero probability. Rotating these two hyper-
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planes, it follows that the entire R” except for the line passing through b, and
b, has zero probability.

THEOREM 3 [Monotonicity of D(:)]. If F is absolutely continuous and
angularly symmetric about the origin, then D(ax) is a monotone nonincreasing
ina>0 forallx € R”.

THEOREM 4. If F is an absolutely continuous distribution on RP and it is
angularly symmetric about b € R?, then D(b) = 27P.

In particular, Theorems 3 and 4 imply that for any point a in R?, D(a) < 277
if F is an angularly symmetric distribution.
Before discussing the proofs of Theorems 1-4, we pause to make two remarks.

REMARK A. Theorem 3 is equivalent to saying that the contours defined by
{x € RP: D(x) = c} for positive numbers ¢ < 272 are nested within one an-
other. As c decreases, they move further and further away from the center. Their
geometry should contain useful information about the distribution F. In the
special case when F is spherical, each contour is a circle and D(x) is a monotonic
function of ||x||. In the case of an elliptical distribution, i.e., when the density at
x is a function of (x — p)V~!(x — p), it is not hard to show that D(x) is also a
function of (x — p)V~x — p). In other words, the contours of D(-) resemble
the contours of the underlying density in the elliptical case. This observation
again confirms that D(-) indeed provides us with an appropriate notion of
ordering.

REMARK B. The Proof of Theorem 4 will further imply the following fact:
Under the assumption of angular symmetry at a center b,, the conditional SD
value at b, given one of the random vertices is the same as the unconditional
one. In other words,

(2.1) P(by € S[X,,..., X, ,,]IX;) =277

foreach i = 1,..., p + 1. Evidently, (2.1) implies that (277 — D,(b,)) is a degen-
erate U-statistic, that is E[(D,(b,) — 277)|X;]=0forall i,1 <i < n.

ProoF oF THEOREM 1. Given x in R”, we observe that the event {x €
S[X,,..., X,,1]} is contained in the event UF'Y{||X,|| > ||x||}. The theorem
follows. O

PRrROOF OF THEOREM 2. Let p = 2 for simplicity. Let x and y be two distinct
points. A random triangle can contribute to the difference D(x) — D(y) only if it
contains one point but not the other. This however implies that there must be a
line segment joining two data points which intersects the line segment xy. It
follows that if x, is a sequence in R? which converges to x, then

ID(x) = D(x,)| < 3P(4,),
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where A, = {(X), X,): X, X, intersects xx,}. Note that limsup,_, P(4,) <
P(limsup, ,,, A,). Note also that limsup,_ ., A, = {(X}, X,;): z € X, X,}.
Since P(limsup,_,, A,) = 0, the theorem follows. O

Proor oF THEOREM 3. Let p = 2 for simplicity. The idea is to examine two
different events which contribute to the difference D(x) — D(ax), a« > 1. They
are the events that the arrow from x to ax enters or leaves the random triangle
A(X,, X,, X;). We shall call them A, and A_,,, respectively.

To make the argument precise, we need some notation. For any two distinct
points a, b, the line which contains ab divides the plane into two half-planes. If
that line does not contain the origin, we call the half-plane which contains the
origin the “inner side” I(a, b). Let x,a > 1 be fixed and C = {(a, b): ab
Nx,ax# @) be the set of all segments which intersect with x, ax. Then,
neglecting null sets, A;, = A2 U A2 U A, where A!2 = ((X,, X,) € C} N (X,
& I(X,, X,)} and the three events A!/ are disjoint and equally probable. Similar
remarks hold for A .

If B, = {ax € A(X,, X,, X;)}, then, according to the definition of D(-),
D(x) — D(ax) = P(B,\ B,) — P(B,\ B,;). Now,

Bl\Ba=Aout\A Ba\Bl=Ain\Aout

in?

and
D(x) - D(ax) = P(Ay) — P(Ag NAy,) — [P(Ain) - P(A;, N Aout)]
= 3P(A,) — 3P(AR)
(2.2)

=3/ [P(XBEI(xl’x2))
(xl’xZ)eC

_P(Xa & I(x,, xz))] dF(x,) dF(x,).

Because of the angular symmetry, P(X; € I(x,, x,)) > ; and the integrand is
nonnegative. This proves the assertion. O

REMARK C. From (2.2) in the Proof of Theorem 3, we may deduce that
D(x) — D(ax) > 0 for any a > 1 if the following two additional conditions hold:
(i) f is positive in a neighborhood of the origin, and (ii) f is positive in a
neighborhood of Bx for some 8 such that 1 < 8 < a, where f denotes the density
of F. Clearly, (i) implies that the integrand in (2.2) is positive almost surely, and
(ii) implies that the domain of the integral in (2.2) has positive probability. In
particular, D(-) is uniquely maximized at the origin under condition (i).

Proor oF THEOREM 4. W.l.o.g. we may assume that F is angularly symmet-
ric about the origin 0. In this case X;* = X,/||X||| and (—X;*) are identically
distributed, and the following four events are equivalent except for a null set:

G (Xpeor X, X0 ): 0 € S[Xyy .oy X, X, 010
(i) {(Xpeees X, Xpp1): 0 € SIXF,..., X5, X201
(i) {(Xpr--es X Xpi1): 0 € Sl e[ X, XFT17 X5, 1), where e,
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is the ith unit vector in R”? and [[X}*,..., X;*]] is the matrix with columns
X X5

(iv) {((Xy5.-05 Xpy Xp00): Wy <0,..., W, <0}, where W, is the ith compo-
nent of the vector [ X*,..., X }1]17'X % .

By exchanging X* with —X*, we can show that the random vector
[[X*,..., X}]]7'X}, is coordinatewise symmetric about the origin. This im-
plies that each “orthant” determined by (W,,..., W,)" has an equal probability,
which must be 277. Therefore the event (iv) has the probability 277 and
Theorem 4 follows. O

3. Consistency of the sample simplicial depth D,(-).

THEOREM 5. Let F be an absolutely continuous distribution on R? with
bounded density f. Then:
(a) The uniform consistency of D,() holds, i.e.,
sup |D(x) — D(x)] > 0 a.s.asn — oo.

x€RP

(b) Furthermore, if f does not vanish in a neighborhood of p. and if D(-) is
uniquely maximized at p, then i, - p a.s. as n - co.

The proof of Theorem 5 is based on the following three lemmas.

LEMMA 1. For any Fon R? andx € R?,

sup D(x) >0 a.s.asM > .
llxll =M

LEMMA 2. Suppose that F is absolutely continuous. Let 8 and c be arbitrary
but fixed positive constants. Then, for any positive e, we have

sup |ID,(x) — D,(y)l <v(e) +8 + R,
{x, yeBall(y, ¢), llx—yl<e}

where y(¢) is nonrandom, y(¢) > 0 as ¢ > 0 and R,, = 0 a.s. as n = .

LEMMA 3. Let F be a distribution on R? and X,,..., X, be a random

sample from F. Let U, = (”)_ Yici< o <ip<nl(Xi,..., X; ) be a U-statistic

m

with the kernel h(-) of degree m. If h is bounded, say by c, then for any r > 2,

E(U,- EU) <

/2’
where K depends on c.
Note that Lemmas 1 and 2 are close in spirit to Theorems 1 and 2, respec-

tively. Since Lemma 2 concerns the sample version of D(-), we need to invoke
the crucial fact that the class of all convex Borel measurable sets in R? form a
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Glivenko—Cantelli class if F has a density w.r.t. Lebesgue measure [cf. Gaenssler
and Stute (1979)]. In other words,

sup|F,(A) — F(A)] » 0 as.,

Aew
where % is the class of all convex Borel measurable sets. We refer to Liu (1987)
for the details. Lemma 3 is needed because D,(x) is a U-statistic. In fact, Lemma
3 is essentially Lemma A on page 185 of Serfling (1980).

Finally, we come to the Proof of Theorem 5.

PrOOF OoF THEOREM 5. By Theorem 1 and Lemma 1, part (a) will follow if
we can show that, for a chosen M > 0,
(3.1) sup |D,(x)—D(x) >0 as.asn — oo,
XEQ(p, M)
where Q(u, M) is the hypercube with p as its center and M as the length of its
sides.

Divide each side of Q(p, M) into N equal pieces to form NP subhypercubess.
In view of Theorem 2 and Lemma 2, since N can be arbitrarily large, we only
need to show that

3.2 ax |D -D -0 as. ,
(3:2) pax - 1D,(x) = D(x)] as.asn > oo
where C(p, M) is the set of all corner points of the subhypercubes.

Using Lemma 3 with m = p + 1, r = 4 and ¢ = 1, we obtain

P(xelai},(M)an(x) — D(x)| > E)

< NP max P(D,(x) - D(x)| >¢)=0(n"?).
xeC(p, M)
The claim (3.2) therefore follows from the Borel-Cantelli lemma.

The idea of the proof of part (b) can be outlined as follows: We begin with two
balls, each centered at p. The radius of the bigger ball is arbitrarily small but
fixed. Then it is shown that the D, value at any point inside the inner ball is
larger than that at any point outside the bigger ball, for all large n. Since, for all
large n, at least one data point will fall inside the inner ball, the possibility of fi,
lying outside the bigger ball is ruled out.

Assuming that D(-) is uniquely maximized at p, we see that, for any ¢ > 0,
there exists a § > 0 such that D(x) < D(p) — 8 for all x & Ball(g, €). By the
continuity of D(-) (cf. Theorem 2), we may choose g < € such that |D(y) —
D(pn)| <é/2 for all y € Ball(p, &). Thus, D(x) < D(y) —8/2 for all x &
Ball(u, ) and y € Ball(g, ¢,). The uniform convergence of D, to D given in part
(a) of Theorem 5 guarantees that, starting from a certain n, D(x) < D, (y) — 8/4
for all x & Ball(y, ¢) and y € Ball(p, ¢)).

Now we claim that there is at least one sample point inside the smaller ball
Ball(y, ¢,) for all large n, almost surely. Since f does not vanish in a neighbor-
hood of p, we have

p = P(X, € Ball(p, ¢,)) > 0.
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Consequently,
P(Ball(p, ¢,) does not contain any of X,,..., X,) = (1 — p)".

Therefore, almost surely, after certain n, there exists some sample point, say X,
inside Ball(y, ¢). By the definition of 4,, D,(i,) = D,(X,) and, hence, i, €
Ball(g, ). Since ¢ can be chosen arbitrarily small, part (b) follows. O
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