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NATURAL REAL EXPONENTIAL FAMILIES WITH CUBIC
VARIANCE FUNCTIONS!

BY GERARD LETAC AND MARIANNE MORA
Université Paul Sabatier

Pursuing the classification initiated by Morris (1982), we describe all the
natural exponential families on the real line such that the variance is a
polynomial function of the mean with degree less than or equal to 3. We get
twelve different types; the first six appear in the fundamental paper by
Morris (1982); most of the other six appear as distributions of first passage
times in the literature, the inverse Gaussian type being the most famous
example. An explanation of this occurrence of stopping times is provided by
the introduction of the notion of reciprocity between two measures or
between two natural exponential families, and by classical fluctuation theory.

1. Introduction. If p is a positive measure on the real line R such that
p(K) is finite for all bounded intervals K, we denote

+ o0
L(8) = /_w exp(0x)p(dx) < + o0
its Laplace transform, with 6 in R,

(1.1) D(p) = {6; L(6) < 0}

its existence domain (which is convex, by the Holder inequality), and 6(p) the
interior of D(p). # will denote the set of such measures p such that

1. u is not concentrated in one point.
2. 6(p) is not empty.

If p isin #, we also denote
(1.2) k(6) =log L,(6), 0 0(p),

called the cumulant function of p (although p is not necessarily a probability).
Recall that k, is a strictly convex function on 6(p), from the Hélder inequal-
ity, and that k, is real analytic on f(p), from known properties of Laplace
transforms.
To each p in # and 6 in 6(p), we associate the following probability
distribution on R:

(1.3) P(0,p)(dx) = exp(6x — k,(8))p(dx).
The set:
F=F(p)={P(0,n); 0€6(n)}
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2 G. LETAC AND M. MORA

will be called the natural exponential family (NEF) generated by p. We also say
that u is a basis of F. Note that a basis of F is by no means unique. If p and u’
are in ., then it is easy to check that F(u) = F(p) if and only if there exists
(a,b) in R? such that p'(dx) = exp(ax + b)u(dx). Therefore, if p is in & and
F = F(p),

Bp={w eM; F(w) = F} = {exp(ax + b)u(dx); (a, b) € R?}
is the set of bases of F. Obviously, from (1.3) F C %.

Let us also insist on the fact that F(u) is a set, which is the image of 6(u) in
the set of probability measures on R by the map § — P(0, ), and not the map
itself.

Now it is easy to check, from (1.2) and (1.3), that if p is in #:

(1.4) k((6) = f+:xP(0,u)(dx) i 0 isin 6(n).

Denote by My the image of 6(p) in R by 6 — k(0) if F = F(p); from (1.4), M
will be called the mean domain of F. Note that M}, depends only on F, not on a
particular p in %. Since k, is strictly convex on (u), 8 — k/(8) is a bijection
between 6(p) and Mp and we shall denote by ¢,: Mp— 0(p) its inverse
function, that is,

if m is in Mg, ¢,(m) is the unique element of ()
such that &,(y,(m)) = m.

Therefore m — P(y,(m), p), where P(6, p) is defined by (1.3), is a bijection
between My and F = F(u), and provides a new parametrization of F, sometimes
called “parametrization by the mean.” It is fairly easy to check that if F is a
NEF and if p and p’ are in %y, then P(¢y,(m), n) = P(Y, (m), '). We shall
denote

(1.5)

(1.6) P(m,F)=P(y,(m),p) ifpisin B and m isin M,

and we have F' = {P(m, F); m € M}.
We now come to our main subject: Taking F as an NEF, we denote

(1.7) Vi(m) = f_+:(x — m)*P(m, F)(dx) it me M,.

The map m — Vi (m) defined on M, is called the variance function of F.

There are two main reasons to be interested in the variance function V of a
NEF: First, it characterizes F [i.e, My = My, Vp= Vg implies F = F,; see
Proposition 2.2(ii), or Morris (1982)]. Second, Vj is simple, much simpler than
the generating measures of F, at least for a lot of usual distributions. This second
fact was brought to light by Morris (1982) who classified in six types the NEF
with the following property: V5 is the restriction to My of a polynomial function
of m with degree less than or equal to 2. He obtained the normal, Poisson,
binomial, negative binomial, gamma and a sixth family that we may call
“hyperbolic cosine.”
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However, Morris does not cover the whole set of familiar distributions with
simple variances. As an example, consider the stable distribution with parameter
1/2 and p > 0 defined by

2x

A classical computation shows that 6(p) =] — 0,0[, k,(6) = —pV—26, from
which we deduce, if F = F(p): My =10, + o[, ¥ (m) = —p?/2m?,

(19 plae) = e ()

(1.9) P(m, F)(dx) = Tg_;x“""/zexp - g(—:; - 1)2)1]0‘+°°[(x)dx.

Therefore from (1.9) we see that P(m, F) is a so-called inverse Gaussian
distribution, considered in numerous papers, like Tweedie (1957), Folks and
Chikkara (1978) and Chikkara and Guttman (1982). As is well known, the
variance of P(m, F) defined by (1.9) is Vip(m) = m3/p?% which is a cubic
polynomial. Professor Seshadri called our attention to Morris (1982) and asked
us whether there exist other NEFs with cubic variances or not. The aim of this
paper is to give a detailed answer to this question. We are going to classify the
NEFs such that V; is the restriction to My of a polynomial with degree equal to
3 in six types: Two of them have densities, the inverse Gaussian type and Ressel
type, the four others are concentrated on the set N of nonnegative integers: Abel
type, Takacs type and two arcsine (strict and extended) types. Among the six
types, only the last two do not seem to have been considered in the literature
and still lack a probabilistic or statistical interpretation. The remaining four,
where they have been mentioned before, appear almost invariably as distribution
of first passage times. We shall also provide an explanation of this fact by the
technique of reciprocity (see Section 5). This idea can be traced back to a
one-page paper by Tweedie (1945). Let us mention that in the three notes Letac
and Mora (1986), Mora (1986) and Letac (1986) announcing the results of the
present paper, five types, instead of six, were mentioned, the two arcsine types
being amalgamated into one. We found it convenient (see Section 4) to split the
former arcsine type in two, in order to get simpler statements.

To wind up this introduction, let us mention that the family of variance
functions which are polynomials of degree less than or equal to 3 is not the only
set of variance functions interesting to classify. In this respect, let us mention
the “Tweedie scale,” with variance Vy(m) = Am* with A >0, a € R\ ]0,1[
and My =10, + oo (except for a = 0, where My = R), which appears in Tweedie
(1984) and has been frequently rediscovered [Bar-Lev and Enis (1987), Letac
(1987) and Jorgensen (1987)]. One also has to mention the family V= P + @/R,
where P, @ and R are polynomials with degree P < 3, degree @ < 2 and degree
R < 2, which extends to our cubic family, containing numerous useful distribu-
tions and which has still to be classified. Surprisingly enough, it does not seem to
be a reasonable task to try to classify variances which are polynomials with, say,
degree 4: Although a lot of them exist (see Corollary 3.3) only one is known,
corresponding to V(m) = Am* in the Tweedie scale. A reason for the restriction
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to polynomials of degree less than or equal to 3 probably lies in the notion of
reciprocity (see the remark before Section 6). We shall also be silent
about possible extensions to higher dimensions with polynomial covariances [i.e.,
V(m) = ¥m*V,, where m® = m{:... m%] with V, are (d.d) matrices; out of
trivial cases (i.e., affine transformations of products of polynomial families in R)
the Wishart families are an example; but geometry and group theory are
probably better tools to study multivariate NEFs than the variance function.

2. Steepness and operations on NEF. In this section we gather some facts
about NEFs, mainly without proofs. We begin with the steepness property of a
NEF, which is an obscure point in Morris (1982).

Let p be in #; the support S(p) of p is the smallest closed set of R such that
p(R \ S(r)) = 0; the interior of the smallest closed interval of R containing S(p)
is denoted by I(u). Clearly, from (1.4), Mg, C I(p). In most of the cases,
Mg, = I(p), but not always [in the second paragraph after his (2.9), Morris
(1982) is wrong]. A simple example showing that M, F(uy can be smaller than I(p)
can be obtained from Efron (1978): Taking

exp( — |x|) dx

p(dx) = 1+ x*

one gets 6(p) =] —1, +1[; since k£/(0) is odd and increasing on ] —1, +1[, its
limit when 6 11 is

c= f_+°o°°xe"u(dx)/f_+:e"u(dx).

Therefore ] —c, c[= Mg, # R = I(p).
The following theorem is a specialization to R of results of Barndorff-Nielsen
(1978), Theorems 5.27 and 8.2.

THEOREM 2.1. Let p be in M, let F be the NEF generated by p and let
O(p) =]a, b[, with —0 <a<b < + .
Then M, = I(pn) if and only if the following two conditions hold:

(i) Either a & D(p) or limgy , k/)(0) = — 0 and a € D(p).
(ii) Either b & D(u) or limg,, k/(8) = + o0 and b € D(p).

If My = I(p), F will be said to be steep; if D(n) =]a, b[, F will be said to be
regular. Regularity implies steepness. The converse is false: Take u as in (1.8),
D(p) = [0, + oo, Mg = I(n) =10, oo[; F(p) is steep and not regular.

At this point, we should emphasize that we have parted from a traditional
terminology as described in Barndorff-Nielsen (1978) by defining the NEF as we
do after (1.3), and not by {P(8, n); 8 € D(n)}, where D(p) is given in (1.1). Our
definition has many advantages, especially in giving simpler statements.

The second result is a synthesis of simple properties of variance functions.
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PROPOSITION 2.2. Let u be in M, F the NEF generated by u and V, its
variance function [see (1.7)]. Then

(i) Vg(m) > 0 for all m in M.
(1) Vp(m) = k(Y (m)) = (\p,j(m))‘1 for all m in Mg [see (1.5)].
(iii) Vg(m) is real analytic on M.
(iv) Let F| be another NEF such that My N My, contains a nonempty open
interval O and such that Vy(m) = Vg(m) for min O. Then F = F,.

In particular, knowledge of the variance function gives knowledge of the NEF.
PRrROOF. Since it is very much in the spirit of Morris (1982), we omit it. O

The next proposition sometimes gives a way to get back a p in %, when V is
known.

ProposITION 2.3. Let F be a NEF with variance function V, on My. Let v
and Y, be two primitives on My of m — 1/Vi(m) and m — m/Vy(m), respec-
tively. Then there exists a p in %y such that

@1 ewy(m) = [ exp(xy(m)u(ds) for min My.

Furthermore, k,(y(m)) = y,(m) and
P(m, F)(dx) = exp(x4(m) — 4,(m))u(dx) ~for min M.
[See (1.6).]

Proor. Easy. O

This proposition has been basic in our hunt for cubic families, as described in
Theorem 6.2. We shall use it in the proof of Jorgensen’s theorem (Theorem 3.2).

We will now describe the influence of an affine transformation on R. We adopt
the following notation: If (£, =7, p) is a measure space and if ¢ is a measurable
map from (£, &) to another measurable space (£2,, ;) we denote by p; = @ .p
the image measure of u by ¢ in (2,, «,), defined by p,(A,) = p(p '(A))) for 4,
in &,.

PrOPOSITION 2.4. Let ¢p(x) = ax + b with a #+ 0 and b real, and let F be
some NEF, generated by p. Denote p, = @ . Then

(i) By is in A, and O(;) = O(p).
(i) k,(6) = b + k,(af) for 6 in O(p,).
(iii) Let F, = F(p,). Then F, = ¢, F and for all p’ in By, one has @.p’ in
By
(iv) My, = (M) and 9. P(m, F) = P(p(m), F,).
(V) Vi(m) = a®Vg((m — b)/a) for min My,
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Proor. Easy. O

Our next concern about NEFs is division. First, one has to observe that if
and » are in ./ and are such that 6(p) N 6(») is not empty, there exists a p * »
in  called the convolution of u and » such that

(22)  k,.,(0) = k,(8) + k,(6) forall 6in8(usv) = 0(n) N 6(»).

Note that this is true even if p and » are unbounded. Now, if p, is in ., we
consider [with Jorgensen (1987)] the set A(p,) of positive numbers p such that
there exists a p, in # with 8(p,) = 6(p,) and

(2.3) k“p(0) = pkul(ﬂ) for all 6 in 8(p,).
Clearly, from (2.2), if p and p’ are in A(p,) then p + p’ is in A(y,) and

(2'4) p’p+p' = uup*p‘p"

We call p, the “pth power of p,.” Since 1 is in A(p,), (2.4) shows that
N*C A(py). If A(py) =10, + o[, p, will be said to be infinitely divisible.
The next proposition gives the link between the pp and the NEF F(p ).

PROPOSITION 2.5. Let p, and p| in M and their pth powers p p and p’, with p
in A(p,) and A(p}), respectively. Assume that F(p,) = F(u}). Then

(1) A(py) = A(p}) (denoted by A) and F(p,) = F(u,) (denoted by F,) for p
in A.
(ii) For 6 in 6(u,), the pth power of P(0, p,) [see (1.3)] is P(#, Bp)-
(iii) For p in A, one has MFp = pMp.
(iv) Forpin A and min M Fy

Vi, (m) =pVF,(;—)-

Proor. Easy. O

From this proposition, we can talk about A(F) and about infinite divisibility for
a NEF F.

We now complete these generalities by stating without proof a specialization
to R of a theorem of the second author, about limit variance functions. It just
makes the first six lines of Section 10 of Morris (1982) more precise. This theorem
will not be used in the sequel, except for one example (see Section 5.)

THEOREM 2.6 [Mora (1987)]. Let (F,)>_, be a sequence of NEFs with mean
domains M,, and variance functions V,. Assume that there exists a nonempty
open interval J contained in NX_, M, and a strictly positive function V-on J with
lim,_,  V,(m) = V(m) uniformly on all compact subintervals of J. Then

() There exists a natural exponential family F such that My > J and such
that Vy restricted to J is equal to V.
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(i) For all m in J, lim, _, , P(m, F,) = P(m, F) in the weak convergence
sense.

3. Properties of variance functions. In this section we prove a simple and
basic theorem about the variance functions. We complete it by a theorem due to
Jorgensen, which is not essential to the classification of cubic variances, but will
throw some light on the results of Sections 4 and 5.

THEOREM 3.1. Let F be a NEF, with M, =]a, b[ with variance function
V. Assume that there exists Ja,, b,[ containing la,b[ and a function
Vi: la,, b;[ =10, + oo such that

(i) V] is real analytic.
(ii) V; restricted to la, b[ is equal to V.

Then ]a,, b,[ =]a, bl[.

For instance, one can check using this result that there is no NEF with a
variance function defined by My =]a, b[=]1, + co[ and V(m) = m. Applying
Theorem 3.1 to ]a,, b,[ =10, + co[, one gets the contradiction. We have found
that Theorem 3.1 is necessary in order to prove the statements at the end of
Section 4, in Morris (1982).

PrOOF OF THEOREM 3.1. Let p in M be such that F = F(p). Consider a
primitive y of 1/V on ]a, b[, and a primitive ¢, of 1/V, on ]a,, b,[ such that v,
restricted to Ja, b is ; ¢ and ¥, are strictly increasing and we denote by
JA, B[ and ]A,, B[ their images, and by %’ and k] their reciprocal functions.
Let & be a primitive of 2’ on JA, B[, and k, a primitive of %/ on ]A,, B,[ such
that &, restricted to ]A, B[ is k.

Since V, is analytic on Ja,, b,[, ¥, is analytic on ]a,, b,[. Since V; is nonzero
on Ja,, b,[, k{ is analytic on ]A,, B,[. Hence

(i) k() = log [*Zexp(Ox)u(dx) if a < 0 < B.
(ii) k, is analytic on 1A,, B[.
(iii) [*Zexp(fx)u(dx) = + oo if 6 & [A, B].

These three properties will show that A = A, and B = B,. It is enough to
show that A = A,. Without loss of generality assume that A, < A = 0.
Property (ii) implies that there exists R > 0 and a sequence (c,)*_, such that

n

expk,(0) = ) Cn oy if —-R <6 <R.
n=0 :

We show by induction that ¢, = [*Zx"u(dx). For n =0 and from (i), ¢, =
lim,  jexp k,(0) = [*2u(dx) is clear by monotone convergence. Assume that
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¢, = [*Zx*u(dx) for k < n; then from (i):

1 = gk 1 no xk
Chi1 = hné 0n+1 i §+1 k—!ck = Llilé W exp(kl(ﬂ)) - kgockﬁ .
Hence, using the induction hypothesis,
+ 00 1 o Qhyk
=li — dx),
Cnrr = lim | (0,,“ k=§+1 i )M( )

and, by monotone convergence, the induction hypothesis is extended to n + 1.
Thus
e n + o0
Y ¢,— = exp(0x)u(dx) if —-R <86 <R,
n=0 n! -

and this gives the contradiction with the fact [implied by (iii)] that

f+°oexp(0x)p,(dx)= +00 if—-R<86<0. O

We now describe an unpublished result of Jorgensen, mentioned by Bar-Lev in
the discussion of Jorgensen (1987). Our thanks goes to Professor Jorgensen, who
has shown us a preprint of Professor Bar-Lev’s contribution to the above-men-
tioned discussion, and who has authorized us to reproduce his statement here.

THEOREM 3.2 (Jorgensen, unpublished). Let Ja, b[C]0, + o[ and
V: Ja, b[ =10, + o[ of class C*. Consider the sequence (L,)%_, of functions on
la, b[ defined by

(3.1) Ly(m) =1, Ly (m) = V(m)Li(m) + mL,(m).

Then there exists a NEF F concentrated on [0, + o[ such that My =]a, b'[,
witha < b < b < + o0 and such that Vy(m) = V(m) when a < m < b, if and
only if the two following conditions hold:

(i) For mg in ]a, b[, [ (1/V(m))dm = + oo.
(ii) L, (m) > 0 for all integers n > 0 anda < m < b.

The following corollary is essentially due to Bar-Lev in the discussion of
Jorgensen (1987), although his statement, is slightly more informal:

COROLLARY 3.3. Let V(m)=X%_,a,m"” be the sum of a nonzero entire
series with nonnegative coefficients, positive radius of convergence R and
V(0) = 0. Then there exists a NEF F such that My =10, R[ and Vp(m) V(m)
if 0 < m < R. Furthermore, F is infinitely divisible.

PrOOF. Theorem 3.2 is applied to ]a, b[=]0, R[. The C*® condition is
fulfilled since V is analytic. Condition (i) is fulfilled since 1/V has a pole at 0.
Condition (ii) is fulfilled since the L, are analytic functions on ] — R, R[ with
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nonnegative coefficients. M, =10, [ implies ' = R, since ' > R would imply
analyticity of Von R and would contradict the definition of R. To check that F
is infinitely divisible, observe that for any p > 0, the function V, defined by
V,(m) = pV(m/p) satisfies the same hypothesis as V in Corollary 3.3, and use
Proposition 2.5. O

PROOF OF THEOREM 3.2. Consider two primitives ¢ and ¢, of the
functions m — 1/V(m) and m —» m/V(m) on la, b[. From Proposition 2.3,
there exists p in %y such that

exp ¢,(m) = /0‘” exp(xy(m))u(dx) if a <m<b.

Since p is concentrated on [0, +oo[, 8(p) contains some half-line ] — oo, ¢[.
Furthermore, M =]a, b'[, from the hypothesis. Therefore lim,, ¢y, = —
[see (1.5)], with y, restricted to ]a, b[ equal to ¢. Hence y(Ja, b[) =] — oo, T[
for some T < + co. Without loss of generality, by changing p in exp(Tx)u(dx),
one may assume T > 0 (this only involves a change of primitive ). Hence

(3.2) exp ¥,(kL(8)) = f0°° exp(0x)p(dx) if 8 < T.

It is now easy to show from (3.2) by induction on n that

d n
(3.3) (ﬁ) exp ¥,(k(0)) = exp(y,(k(6))L,(k,(8)) if8<T,
where L, is defined by (3.1). Since &, when restricted to ] — oo, T[ is a bijection
onto Ja, b[, property (ii) is shown by (3.3) since from (3.2) the first mem-
ber of (3.3) is greater than or equal to 0. Property (i) is a reformulation of
lim,, ,¢(m) = —oo.

We define y(m) = [ dx/V(x) and ¢ (m) = [7xdx/V(x), for fixed m,
in ]Ja,b[ and m in ]Ja, b[. From (i) there exists T < 4+ o0 such that
Y(Ja, b[) =] — oo, T[. Note that T > 0. Consider the inverse function &’ of .
Hence if f(8) = exp(¢,°k’)(0), f is in the C* class on ] — oo, T'[, and its
derivatives satisfy

F™(8) = H(8)L,(K(8)), VE<T.

Hence f™(8) >0 on ] — oo, T[, V,f is absolutely monotone and [see Feller
(1966), page 416] there exists a positive measure on [0, + oo[ such that

1o = [ “ exp(6x)u(dx).

From here it is easy to conclude that V(m) = Vp,(m) if a <m < b. Clearly, if
Mg, =]a’, b, with @’ < a < b < V', a’ < a is impossible since (i) implies that
liminf, ., , V(m)g,, = 0. O

4. NEF concentrated on N. The case where yu, in .#, is concentrated on
the set ‘N of nonnegative integers is quite important for our classification
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problem. After recalling the Lagrange formula, we adapt Proposition 2.2 to the
case where p is concentrated on N, when the information on p is the generating
function:

(41) f(2) = iu where u(dx) = iouns,,(dx),

rather than the familiar cumulant function k,, of (1.2) (recall that §, is the Dirac
mass on n). After three fundamental examples, we build a technique (Theorem
4.5.) for constructing new variance functions on N from old ones, and from the
fundamental examples, we get three cubic types concentrated on N.

THEOREM 4.1 (Lagrange’s formula). Let g be analytic in a disc D(0, r),
r > 0, with g(0) # 0. Then there exists an R > 0 and an analytic function h on
D(0, R) such that

(4.2) h(w) — wg(h(w)) =0 for win D(0, R).
Furthermore, if F is analytic on D(0, r), then for all w in D0, R) one has

(43)  F(a(w)=FO) + ¥ %[(%) (F’(z)(g(z))"]

n=1 2=0

PRroOF. See, for example, Dieudonné (1971) [where g(0) # 0 is inadvertently
omitted]. O

COROLLARY 4.2. With the same hypothesis and notation, for p + 0,

(s(h(w)" = £ w,

with
d\" ol
(4.4) un=pfn%[(£) (g(2))" ] ifn# —p,
P d\""'g'(2) i
(4.5) bn ™ n =) [(d) ('g(z))Lo fn=-p.

Proor. Apply (4.3) to F(z) = (g(z))?, with an r small enough such that F
is analytic in D(0, r). If n # —p, observe that

b
p+n

(%)n_l[(g(z»"%(g(z))”)] = (d%)n(g(z))””,\

to get (4.4). Equality (4.5) is straightforward from (4.3). O
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Consider now a positive measure p on N defined by
0
(4.6) plde) = 3 p,8,(dx)
n=0

and its generating function f, as in (4.1); denote by R(p) the radius of conver-
gence of the entire series (4.1). Clearly, p is in ./ if and only if R(p) > 0; in this
case:

(4.7) 8(p) =1-o0, R(p)[,  k,(6) = log f,(e’),

(4.8) P(log z, p)(dx) = 20 7'(5; 8,(dx) if0<z<R(p)

[see (1.3)]. Note that the family F(p) is not necessarily steep For a counterexam-
ple, take p, = (n + 1)73 Then I(p) =10, + oo, R(p) = 1, M, =10, b[, with

0 2

b= gon(n+1)_3 Z(n+1) 6{(3)

The next proposition enables us to compute Vj,, from f,, under the mild
condition (4.9).

ProrosITION 4.3. Consider p. defined by (4.6) with R = R(p) > 0. Assume
that

(49) Ko >0 and By > 0:
and consider the NEF F = F(p). Then My =10, b[ with 0 < b < + o0.

Furthermore, there exists an open subset U of the complex disc D(0, R)
containing the real segment [0, R[ and on which [,'(z) # 0. Defining

f(2)
git()_ (2)

there exists an open subset O of the complex plane containing the real segment
[0, b[ and an analytic function

forzin U,

h,:0->U
such that '
(4.10) h(m) — mg,(h,(m)) =0, VmeO.
With this notation, one has

(4.11) P(m, F)(dx) = i %Sn(dx),

h,(m)
hi(m)

(4.12) Vi(m) =

for0 <m < b.
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Proor. Define U = {z € D(0, R); f,/(z) # 0}. Condition (4.9) implies 0 is in
U and g,(0) = po/p, # 0. From (4.7),

g.(e%)

for all @ in 6(p). Hence M, =10, b[, with b = lim, ; r(2/8,(2)).

Consider now y,(m), defined by (1.5), for 0 < m < b, and A u(m) = exp y,(m).
Then from (4.13) h satisfies (4.10) for 0 < m < b, and is a real analytic functlon
on |0, b[. Now, smce 8,(0) # 0, Theorem 4.1 can be applied and there exists
r > 0 and an analytic function h, on D(0, r) such that (4.10) is also fulfilled on
D(0, r). Since D0, r) N 10, b[ is not empty, the two A, coincide on it and there
exists an open subset O of the complex plane contalmng D, r) U 10, b[ and an
analytic function h,: O — U such that (4.10) is true on O.

Formulas (4.11) and (4. 12) are easy consequences of (1.6), of Vi(y/(m))~"
(Proposition 2.2) and of 4.10.

(4.13) k1(6) =

p =m,

We illustrate the previous proposition by three fundamental examples. We
keep the notation of Proposition 4.3.

ExAMPLE A (The Poisson type).
0

plr) = ¥ —5,(d),

n=0

R(p) = +oo,  f(2) =expz, g(z)=1, Mp=]0,+oo[,

U=0=¢C, h(m)=m, Vy(m)=

ExaMPLE B (The negative binomial type). Let a > 0 be a fixed number.

p(dx) = ia(a+1) (a+n-1) (dx)

n=0

R(p) =1, fp,(z) =(1- Z)_l’ U= D(Orl)r MF=]Or +°°[:

1 a
g(2)=—(1-2), O= {m € C; Rem > —5},

h,(m) =

,  Ve(m) = m(l + %)

m+a
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ExXAMPLE C (The strict arcsine type). Let a > 0 be fixed. p is defined by
f(z) = exp(aarcsin z) with R(p) = 1.
It is an advanced calculus exercise to check that

1) - i pn(a)zn’

n=0

n!
where the p,(a) are polynomials with respect to a defined by

pon(a) = T1 (a® + 4k7),
(4.14) k=0

n—1
Donii(@) = akljo(a2 + (2k + 1)2).
To check it, one has to use the differential equation
a

1/(2) = ——=751.2).

* (1- 22)1/2 g
Clearly, from (4.14) p,, = p,(a)/n! will define a positive measure on N.

Now U = D(0,1), g,(2) = (1/a)1 — 2*)"?, Mp =10, + oo,
0= {mecC;|m?®=<|m*+a?)

and h,(m)=m/ Vm® + a®. This gives the following variance function:

2

m
(4.15) Ve(m) =m|1 + o for 0 < m.

[Note that (4.15) gives a cubic variance, and (4.15) falls in the scope of Corollary
3.3.]

It is worth mentioning here a criterion for the following problem: Given the
variance function V of some NEF F on R, how does one decide whether F is
concentrated on N [with condition (4.9)] or not? Here is a precise answer.

ProposITION 4.4. Let F be a NEF on R with variance function V defined on
M. Then F is concentrated on N such that (4.9) holds if and only if

(1) M, =10, b[ for some 0 < b < + co.

(i) There exists an open subset O of the complex plane containing [0, b[, and
an analytic function ¢} on O such that y{(m) =m/V(m) if 0 <m < b and
such that /(0) = 1.

In this case, if ¥, is a primitive of Y} in O, if G is an analytic function in O
such that

= (1= yi(m) and G(0) =1
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and if
Bo = €xp t1’1(0))

(4.16) ~ i[(%) (exp(r(m))wi(m)(G(m))"|

nTo
n! I

then p(dx) = X2 o1.0,(dx) generates F.

PROOF. Using Proposition 4.3, (i) is obvious. Taking p in %, ¢} can
be defined by yi(m) = mh/(m)/h,(m). To check that ¢(0) =1, recall that,
from the Lagrange formula (4.3) applied to F(z) = z and g = g,, one gets

, Mo
B(0) = £,0) = °.

1

We now prove both [ < ] and the last part of the proposition. Since ¥{(0) = 1,
there exists an analytic function G in O satisfying (4.10). Since

G'(m) 1 1
G(m) ~m V(m)’
there exists a primitive ¢ of 1/V on ]0, b[ such that
(4.17) G(m) = mexp(—y¢(m)) for0 <m < b.

Note that lim,, | o ¢(m) = —co, from (ii). Denote R = lim ,,,,log y(m) < +co.
Since G is analytic in O, one applies Theorem 4.1 to g = G. Therefore there
exists r > 0 and A analytic in D(0, r) valued in O such that

(4.18) h(w) — wG(h(w)) =0 if we D(0,r).

Similar considerations to the proof of Proposition 4.3 allow us to claim the
existence of an open set U of C containing D(0, r) such that there exists an
analytic function h: U — O which still satisfies (4.18) for w in U.

Introduce a primitive ¥, of ¢ in O and apply the Lagrange formula (4.3) to
F(m) = exp y,(m). One gets

(4.19) exp ¢,(A(w)) = i pw forwe U,

n=0

where p,, is defined by (4.16). Using (4.17) and (4.18), the formula (4.19) becomes

(4.20) exp ¢,(m) = i p,exp(ny(m)) for minO.

n=0

Now we use Proposition 2.3 to claim that there exists p in . such that (2.1)
holds. Using the uniqueness of Laplace transforms and comparing with (4.20),
one gets

[><]
p‘ = Z p‘nsn‘

n=0
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The last thing to verify is condition (4.6). Actually,
po=expyy(0) >0 and p, =1,
since G(0) = 1. O

Actually, Proposition 4.4 is an interesting theoretical result to identify a
variance function on integers, and we shall use it in Proposition 6.1. However, we
have found the explicit formula (4.16) rather deceptive when one has to apply it
to concrete examples in order to compute p,. For instance, we know from
Corollary 3.3 and Proposition 4.4 that there exists a NEF F on N such that

Mp=]0,+0[ and Vp(m)= m(l + Ln—)

1

m
)
Dy
with p,,..., p, > 0. But (4.16) is not really helpful in computing p,; through
Corollary 3.3, p,, is positive and (4.16) provides only an inequality for which it is
generally difficult to get a direct proof. Similar considerations hold with
m

(1-m/p))...(1 — m/p,)

We shall now explain a basic trick to obtain new variance functions on N from
the old ones.

Ve(m) = on My =10, + oo|.

THEOREM 4.5. Let p >0, g(z) = X¥_,8,2" with radius of convergence
R(g) > 0. Assume

(1) 8,20 forallnin N, g,> 0 and g, > 0.
(i) p, =p/(p + n)-1/nl(d/dz)"(g(2))"**],_ = 0 for all nin N.

Let F and F, be the NEF generated by p = Yp.,8, and v = ¥.g,8,, respectively.
Then, if

MF1 =]07 bl[ and MF =]O’ b[:
one has b=+ if by >1and b= b,p/(1 — b)) if 0 < b, < 1. Furthermore,

(m +p)° m .
(4.21) Velm) = 7 VFl(m+p) if 0<m<b.

Proor. From Corollary 4.2, R(n) > 0, p isin 4 and F exists. Now p fulfills
condition (4.9), since
Bo=8§>0 and p, =pgle > 0.

Hence from Proposition 4.3 M =10, b[ for some b in ]0, + co].
Let ¢ and ¢, be primitives of m — 1/Vy(m) and m — m/V,(m) on 10, b[
such that

exp y,(m) = i pnexp(ny(m)) for0<m<b

n=0
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(see Proposition 2.3). Hence if w = exp y(m) is in 0, R(p)[ and if A is defined
by (4.2) from g in D(0, R(p)), one gets from Corollary 4.2 and formula (4.2):

h(w) ¥1(m)
= exp :
p

(4.22) g(h(w)) =

¥y(m)
(4.23) h(w) = exp| ¢y(m) + 5 for0 < w < R(p).
The aim of the following lengthy and obscure calculations is to eliminate v,

between (4.22) and (4.23), in order to have an explicit expression of { and get
Ve(m) = (¢'(m))~". Formulas (4.22) and (4.23) together give

(4.24) exp( (m)) (exp(¢<m)+‘“(p’")

We take the derivative in (4.24) in m, cancel the V,(m) and get

)) for0 < m < b.

(4.25)

mpexp(—\lz(m))= (exp(\p(m)+ (m ))) for0 < m < b.

Since g has positive coefficients, g is increasing on ]0, R(g)[ and its inverse g~ !
is defined on

(4.26) I=]1g(0), g(R(2))[.
Hence from (4.24):

(4.27) exp(¢(m) + ‘P_lg"_)) =g‘1(exp \Plfvm)

Carrying (4.27) to (4.25),
mp exp(—y(m)) = (g’°g“)(eXP

Multiply (4.28) by exp(—y,(m)/p) and use (4.27) again:

m 1

m +p g~ '(exp ¥,(m)/p)
_ exp(— Yy(m) )(g’og_l)(exp‘lll(m) )
p | p )

Now we introduce ¢: I —» R, where I is (4.26):

) for0 <m < b.

Yi(m)
(4.28) >

) for0 < m < b.

(4.29)

‘l(z)
(4.30) ¢(2) = (g'°&7")(2)
(4.29) can be written in a simpler way:
(4.31) m? > (p(exp ¥a(m) ) for0 < m < b.
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Now we observe that ¢(I) = My =]0, b,[ (recall that F, is the NEF gener-
ated by » = ¥%_,g,6,): This comes from the easy formula (4.13). Furthermore, ¢
is a bijection between I and M, F,» 88 the composition of two injective functions

w— g'(w)w/g(w) and z — g~ (z). Denote by G: 10, b;[ > I the reciprocal
function of ¢. Then we have

G'(m) m
G(m) ~ Vg(m)
To check (4.32), use (¢ ° g)(e?) = m if e < R(g), get 8 = log((g~'° G)(m)) and
take the derivative to obtain
1 1 1
Ve(m) ~ (g77G)(m) g(g "+ G)(m)
Since the denominator of the second member of (4.33) is
¢(G(m))G(m) = mG(m),

(4.32) for m in Mp,.

(4.33) G'(m).

(4.32) is proved.
Coming back to (4.31), we compose with G to get

exp¢1(m)=G( m )
p m+p

or

(4.34) #i(m) =pG(

), 0<m<b.
m+p

Taking derivatives in m of (4.34) gives
m  p° G'(m/(m+Dp))
Ve(m) — (m+p)* G(m/(m+p))’
and finally from (4.32), (4.21) is proven. O

0<m<b,

We now give three basic applications of the previous theorem, corresponding
to our Examples A, B and C.

ExaMPLE D (The Abel type). We apply Theorem 4.5 to g(z) = exp z. Hence,
from Example A, F, belongs to the Poi§son type, Vg(m) =m and b, = + 0.
The computation of ., gives

n+p)*
(4.35) un=p(—'5)— for nin N.

Since p,, > 0, Theorem 4.5 is applicable for any p > 0, and the corresponding
exponential family F' has a variance function described by

(4.36) Mp=10,+w[, Vi(m) = m(l + %)2
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from (4.32). We have chosen to call this set of families the Abel type instead of
“generalized Poisson” as in Consul and Jain (1973). This alludes to a famous
formula due to Abel; see, for instance, Comtet (1974), Theorem C; page 130,
which should be applied to f(¢) = exptz, t = p, u = —1, to get the generating
function f(z) of (4.25). Recall that from Theorem 4.5 and Corollary 4.2 the
generating function f, of p is
f.(2) = exp(ph(z)), where h(z)exp(—h(z)) = .

Note that this family has already appeared in the literature. Notable references
are Pyke (1958), Theorem 2, Note 3, and Consul and Jain (1973) [suitably
corrected by Nelson (1975)]. Abel’s type also appears in Consul and Shenton

(1972), entry 6 and (up to an affinity) entry 5, Table 6.1. We understand that
Consul is currently preparing a book on the subject.

ExaMPLE E (The Takacs type). We apply Theorem 4.5 to g(2) = (1 — 2)7¢,
with a > 0. Hence, from Example B, F, belongs to the negative binomial type,
Vg(m) = m(1 + m/a) and b, = + co. The computation of u, gives

D 1
e —a(n+p)la(n +p) +1]

X[la(n+p)+2]...[a(n+p) +n-1].

Since p, > 0, Theorem 4.5 is applicable for any p > 0, and the corresponding
exponential family F' has a variance function described by
a+1 m)

(4.37) i

a p

We have chosen, somewhat arbitrarily, to give to this set of families the name
of an illustrious probabilist among other people who have been”considering
various subsets of our Takacs type; some authors call this set “generalized
negative binomial distributions” [Nelson (1975)].

Actually, the members of the family F generated by (4.37) appear in the
literature for various values of the parameters a and p. We find that
Charalambides (1986) provides a good bibliography on the subject, including
Takacs (1962) and Jain and Consul (1971). Up to affinities, Takacs type appears
in entries 1, 2, 9 and 12 of Table 6.1 of Consul and Shenton (1972). The most
famous particular case probably corresponds to @ = p = 1. In this case (4.37)
becomes the Catalan number

(4.38) Mp=10,+0[, Vi.(m)-= m(l + %)(1 +

(2n)!

Hn = n!(n+ 1)

Therefore

i (2n)t  1-V1-4z
f(2) = o nl(n+ 1)! =T 2z ’

The distributions generated by this p or its images by affinities appear in
fluctuation theory [see, for instance, Feller (1966), page 396, (79)]. For this
reason, Example E was previously called the “fluctuation type” [Mora (1986)].
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B A
Takacs
Negative
Binomial Abel
Extended Arcsine
Poisson >
0 2
Strict Arcsine A
Fic. 1.
TABLE 1
0=A=B Poisson
0=A<B Negative binomial
0=B<A Strict arcsine
0<A=8B Abel
0<A<B Takacs
0<B<A Extended arcsine

ExXAMPLE F (The extended arcsine type). We apply Theorem 4.5 to g(z) =
exp(a arcsin z) with a > 0. Hence, from Example C, F, belongs to the strict
arcsine type, Vp(m)=m(1 + m?2/a?) and b, = + co. The computation of p,
gives

D 1
p+n ;Tpn(a(n +p))r

(4.39) Bn =
where the polynomials ( p,)%_, are defined by (4.14).

Again p, is positive, Theorem 4.5 is applicable for any p >0 and the
corresponding exponential family F has a variance function described by

2 m 1+¢;tz(m)2
> I

4.40 Mg =10, + =m|l+——+
( ) F ]O, 00[’ Ve(m) =m ap a?

Examples C and G do not seem to appear anywhere in the literature.
We have summarized Examples A, B, C, D, E and F in Figure 1. These
examples are all concentrated on N with a cubic variance of the following form:

M, =]10,+x[, Vi(m)=m@+2Bm + A’m?),

where B > 0 and A > 0. Therefore we have Table 1.
Of course, there is a seventh type of cubic on N which is simply the binomial
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type: For each integer N > 0, one has the family F described by

m
(4.41) My=10,N[, V.= m(l - N)’
corresponding to A =0 and B = —1/N. Application of Theorem 4.5 to this
would give again a Takacs family. We shall see (Theorem 6.2) that these seven
types are the only cubic ones concentrated on N (up to an affinity).

5. Ressel families: The reciprocity of two exponential families.

A. Reciprocity. Up to now, the variance functions which are polynomials in
m with degree equal to 3 that we have considered are, for Mj =10, + co[,
Vp(m) = m®/p? (inverse Gaussian) and Vip(m) = m(1 + 2Bm + A2m?) with
B>0and A > 0.

All of them can be proved to be variance functions by means of Corollary 3.3,
but Theorem 4.5 was devised in order to describe explicitly the distributions
corresponding to m(1 + 2Bm + A%m?).

Now we have to consider the same question for the following variance:

(5.1) My=10,+[, Vi(m)= %(1+ %), p>0.

Again, from Corollary 3.3, we can claim that (5.1) is the variance function of a
steep natural exponential family F. We decided to call it the Ressel family of
power p. Actually, Ressel (private communication) has shown us a proof of the
fact that (5.1) defines a variance function; this proof is described in Mora (1986).
It turns out that this proof, when generalized, yields nothing but Corollary 3.3.
One should also mention that another proof of the same result can be
obtained from Theorem 2.5 applied to the sequence of variance functions:

My =10, +0[, Vi (m) = %(% + m)(l ; %)

[Note that F, is the image by x — x/pn of a Takacs family with variance
m(1 + m/p)(1 + m/np?): Use Proposition 2.4(v).]

One can use the approach of Theorem 2.5 to obtain, by a tedious limiting
process, an explicit distribution generating the Ressel family of power p [see
Letac (1986)]. But the concept of reciprocity that we are going to introduce,
together with known results about Lévy processes, will enable us to get the
Ressel distributions (i.e., generating Ressel families) in a natural and straightfor-
ward way (see Proposition 5.5).

DEFINITION 5.1. If p is in .#, we denote

f(p) = {6; 6 € 6(p) and &.(6) > 0}.
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A pair (u, p,) of elements in .# will be said to be reciprocal if

@) f(p) and 67(,u1) are nonempty.
(ii) The image of O(p) by 6 —» —k W(0) is 0(p1), and the image of f(p,) by
60— —k,(0)is 0(p).
(i) — &,(—k,(0)) =6 for all § in 0(p).

The most famous example of a reciprocal pair is probably

& x| dx
”‘( ) = €xp 2p ‘/2Tp ’

(5.2) p>0,

11 1
py(dx) = %WGXP(—W)l]o,m[(x)dx,

for which 6(p) =R, k,(0) = p6%/2, 6(p) =10, +co[ and O(u,) = O(p,) =

1 —00,0[, k/(6) = — /- 20/p. We shall later see other examples.
We indicate some simple facts about reciprocity in the next proposition.

PROPOSITION 5.1. Let (p, p,) be a reciprocal pair. Then

(1) The two subsets of R2, equipped with its Euclidean structure:

{(x,9); € 8(p), y=k(x)} and {(x,); x € b(n,), y = k,(x))

are symmetrical with respect to the liney + x = 0.
(ii) If (a, b) is in R?,

w(dx) = exp(ax + b)u(dr) and pi(dx) = exp(bx + a)p(dx)

deﬁned a reciprocal pair (W, ui). Furthermore, if F = F(p) and F, = F(u,), the
map p’ - i is a bijection between %y and B

(iii) One has equivalence between the three facts (a) p and p, are probabili-
ties; (b) O(n) and 6(p,) contain 0 in their closure; () 0(n) or (p,) contain 0 in
their closure.

ProOF. (i) and (ii) are obvious, as for (iii) (b) = (c) and (b) = (a); now
(c) = (b) comes from (i). Let us prove that (a) = (c).

From (a), 0 belongs to the closure of 8(p) and 8(u,). If (c) is false, there exists
an interval Ja, B[= {6; k/(8) < 0} with —c0 < a <0 < B < + 0. Now, since p
is a probablhty, hmuok () < 0. Hence k,(B) =0 and k;(B) = 0. A parallel
reasoning with By shows the existence of B; > 0 such that k,(B;) <0 and

k.(B) =0, with 0(,u1) C]1B;, +o[. Now use (i): H(ul) must be contained in
] — o0, k(B) C]— 0,0 a contradiction. O

A consequence of Proposition 5.1 for NEFs is the following: Assume that
(m, 1) is a reciprocal pair and denote F = F(u) and F, = F(p,). Since each
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element » of %y has a reciprocal », in %y, and since » — », is a bijection
between % and Bp,, this leads us to the followmg definition.

DEFINITION 5.2. Let F and F, be two NEFs on R. Then (F, F)) is a
reciprocal pair if there exists a reciprocal pair (g, p,) in Zp X B

We shall characterize reciprocal pairs (F, F,) by the variance functions by
means of the following theorem.

THEOREM 5.2. Let F and F, be two NEFs on R, and denote My = M, N
10, +oo[andM = Mg N 10, +oo[ Then

(A) (F, F,) is a reciprocal pair if and only if the three following conditions
hold.:

(i) My and MF are nonempty.
(ii) m — 1/m is a bijective mapping from M, onto M
(il)) Ve(m) = m*V(1/m) for all m in M.
(B) Furthermore, if (F, F) is a reciprocal pair of NEFs, then (u,p,) in
F X F, is a reciprocal pair if and only if there exists m in My such that

1
p=P(m,F) and p, =P(;,Fl).

PROOF. (A) [= ] Let (u, uy) in % X By, be a reciprocal pair of M.

(i) (p) is not empty; hence its image M, by 0 — k,(0) is not empty. The
same is true for F,.

(ii) Let m in MF, and 6 in 6(n) be such that m = k,(8). From Definition
5.1(iii):

~ki(0) = (~h(~R,(0)) "
Hence
k;:l(_k#(o)) =

and there exists y = —k,(0) in 0(p,) such that &’ .(¥)=1/m, and 1/m is in
M,,. Interchanging F and F completes the proof of (11)
(111) Differentiating with respect to 8 in §(u) both sides of

ki (0)k(—k,(0)) =1
we get
(53) ky(0)kL,(= R,(0)) = (£(0)) "Ry (~ R(0)).
If m isin M, and 0 = ¥, (m), then k,;'(0) = Vp(m) [see Proposition 1.2(ii)]; if
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Yy =4,(1/m), then k/(y) = Vi(1/m). Using (5.1) and these remarks, (5.3) be-
comes

1 1 ~
VF(m); = m2V1~;(;) for m in M.

(A) The converse is easily obtained: One jumps from (iii) to equality
(5.3). Integratlng (5.3) yields k;(6)k,(—k,(6)) = c for some positive ¢ and one
can get the existence of (a, b) in R? such that

w(dx) = exp(ax + d)p(dx) and pi(dx) = exp(bx + a)p,(dx)
are reciprocal.

(B) Let p= P(m, F) with m in M. Proposition 5.1 implies the
existence of p, in Z such that (u, u,) is a reciprocal pair. Since m > 0, the open
interval 6(p) contains 0. From Proposition 5.1(iii) the reciprocal p, of u is a
probablhty and &, (0) = 1/m. Therefore p, = P(1/m, F,) isin F,.

(B) Let (,u, p,) be in F X F, and be remprocal Proposmon 5.1(iii)
1mp11es 0 in the closure of 0( w). Since p is in F, 0 is in §(p). Therefore if 0 is not
in §(p), k;(0) = 0, and so 0 is not in f(p,), a contradiction with the fact that u,
is in F,. Hence 0 is in f(u), and there exists m in M. such that p = P(m, F). A
parallel reasomng shows the existence of m in M such that p, = P( m,, F)), and
mm, = 1 is easily verified. O

The two most famous examples of reciprocal pairs (F, F,) of NEFs are
probably the following:

Normal M, =R, Ve(m) =p
(5.4) { F r(m) (p > 0 fixed),

Inverse Gaussian MF, =]o, + ol Ve(m) = pm3,

(5.5) {Exponential Mp=10,+[, Vp(m)=m?

Poisson Mg =10, + o[, Vi(m)=
One can point out that the reciprocal F, of F does not necessarily exist.
Furthermore, F| can be drastically modified, or can disappear, if we make an

affinity on F. For instance, making the change x — 1 — x on the Poisson family
gives

(5.6) Mp=]-0,1[, Vi(m)=1-m

and its reciprocal F, will be defined, by f’ipplying Theorem 5.2, by
(5.7) Mg =11,+[, Vg(m)=m*m-1).
Shifting F|, by x — x — 1 gives a family F,:

(5.8) Mg =10,+ow[, Vg(m)=(m+1)’m

which is an Abel family concentrated on integers, and quite different from a
translated exponential.
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To provide a simple example of a nonexisting reciprocal, one can consider F
generated by p = 6, + §,. Hence

Mp=112[, Vp(m)=(m-1)(2-m)
and we shall see, as a consequence of our classification Theorem 6.2, that
My =11/2,1[,  Vg(m)=m(1 - m)(2m — 1)

cannot define a variance function.
Of course, the members of the T'weedie scale, as described in Jorgensen (1987)
or Bar-Lev and Enis (1987) by

(59) Mp=]10,+o[, Vi(m)=AmP withpB & [0,1[ and A > 0,

provide other examples of reciprocal pairs. Note that if 2 < 8 <3, F has no
reciprocal, and that 8 = 3/2 gives a self-reciprocal family.

It is worth mentioning that one can have reciprocity, and even self-reciproc-
ity, for families such that M, = My = R. A natural example can be obtained by
considering a Brownian notion B(f) in the plane with positive drift in the
direction of the y axis, starting from point (0, — 1). It is not hard to verify that if
u is the distribution of the hitting point of the x axis, with suitable units one has
k(8)=1-V1-6%, 6(p)=]-1, +1[. Clearly, F = F(u) is self-reciprocal and
spreads on all of R.

B. The use of Lévy processes. Although a general probabilistic interpreta-
tion of the reciprocity of a pair (u, p,) is still lacking, certain cases can be
explained by means of classical fluctuation theory. For information on fluctua-
tion theory, we refer to the beautiful survey paper by Bingham (1975).

Recall that a Lévy process (X(?¢)),., on R is a process with independent
stationary increments such that X(0) = 0 (this implies that the distribution has
an infinitely divisible law) and with continuous trajectories on the right and the
existence of left limits. X will be said to be spectrally negative if its Lévy
measure does not charge ]0, + oco[. For us, the main feature of spectrally negative
Lévy processes is the following:

If x>0, denote A(X)(x)=inf{t> 0; X(¢) > x} with
(5.10) h(X)(x) = + oo if this set is empty. Then X(h(X)(x)) = x
if A(X)(x) < oo.

In other words one cannot go above the level x without touching x before:
This comes from the fact that X has no positive jumps. Some examples of this
situation are

(5.11) X = Brownian motion possibly with drift z.

X is an extreme stable process, i.e., E(exp §X(t)) =
(5.12) exp(atf®), with a > 0 and 1 < a < 2 [see, e.g., Bingham
(1975)].

X(t) =t — U(T), where U(t) is a subordinator, i.e., an

(5.13) increasing Lévy process.
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The connection with reciprocity comes with the following result which is nothing
but a restatement in the terminology of this section of Proposition 2, page 721, of
Bingham (1975).

THEOREM 5.3. Let X be a spectrally negative Lévy process and h(X ) defined
by (5.10). Denote by p the distribution of X(1) and by v, the distribution of
h(X)(x) restricted to [0, + oo (i.e., »/([0, +oo[) = P[3 & X(t) = x]. Then
(1, v,) is a reciprocal pair. More generally, for all x > 0, the distribution of
X(1)/x and v, give a reciprocal pair.

REMARKS. The proof of this is not difficult and makes standard use of
martingales. Jumping from (p, »;) to (Law X(1)/x, »,) is just a matter of rescal-
ing. Last, (v,),., is a convolution semigroup (i.e., »,,, = v *».). Therefore
F(v)) is always infinitely divisible.

Before applying Theorem 5.3 to Ressel families, let us survey some other
applications. Taking X like in (5.11) will provide

(x —8)
2p

dx

V2mp

p(dx) = eXP(—

and »; will have the cumulant transform

8
k,(6) =8 — /62— 2p6 with 6(p) =} ~ o, 2_1;[_

Note that », is the familiar inverse Gaussian law if § > 0. If § < 0, », will be an
inverse Gaussian law multiplied by exp28. If 8§ = 0, we get (5.2). These facts
make (5.4) precise.

Applying Theorem 5.3 to (5.12) will explain reciprocity in the Tweedie scale
(5.9). Actually, an easy computation shows that if

k,(0) = A60% with8(p)=]0,+oo[, A>0andl < a <2,

then, denoting F = F(u), 8= (2 — «)/(1 — @) and B = (a — 1)(Aa)/*~ V), one
has My =10, + o[ and Vi(m) = BmP. (Recall that since p is spread on R, F is
not steep.) The reciprocal family F, will be described by

My, =]0, +[ and V,=Bm3 8,

corresponding to the family generated by a stable subordinator with parameter
o, — 1/a, with B, =3 - 8= (2 - a;)/(1 — ) [see Tweedie (1984), Jorgensen
(1987) and Bar-Lev and Enis (1987)].

We now apply Theorem 5.3 to (5.13) when U(t) = N(t) is a standard Poisson
process with intensity » [i.e., E(N(¢)) = vt]. Then the NEF F generated by
X(1) = 1 — N(1) is defined by (5.6), the distribution of A(X)(1) belongs to the
family F, described by (5.7) and from (5.8) A(X)(1) — 1 has a distribution which
belongs to the Abel family [see Pyke (1958), Theorem 2, note 3].

For the purpose of this article, our main interest in Theorem 5.3 is its
application to (5.13) when U(¢) is a gamma process, that is, the distribution of
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U(t) is
t—1,—u du
(5.14) u"le 1]0’+w[(u)m.

Therefore if F is the NEF generated by (1/p)X(1) = (1 — UQ))1/p with
p > 0 its variance function is

(5.15) M= =0 Velm) = - pm)*

[here we épply Proposition 2.4(v)].
Using now Theorem 5.2(iii) and Theorem 5.3, if F; is the NEF generated by
the distribution of

(5.16) r(X)(p) = inf{¢; t — U(¢) = p}
the variance function of F; will be

Mg =]p,+[, Vg(m) =m(%— 1)2.

Taking the image F, of F, by x — x — p, that is, the family generated by
h(X)(p) — p, we get the Ressel family (5.1) with power p; thus Theorem 5.3
provides a third proof of the existence of this family.

It does provide more than its mere existence. While it is impossible to get a
generating measure of (5.1) from the analytic expression of the variance (with the
help of Proposition 2.3, for instance), the previous probabilistic interpretation of
(5.1) is going to give us this generating measure in a much simpler way than in
Letac (1986). For this, we use the following result, initially due to Zolotarev
(1964); for a self-contained proof in English, see Borovkov (1965). The result is
quoted in Bingham (1975), page 725.

THEOREM 5.4. Let X be a spectrally negative Lévy process and h(X) defined
by (5.10). Then for all x and t > 0,

Pr[h(X)(x) < ¢t] = —x%/(:Pr[X(u) > x] %.

Furthermore, if the Lévy measure w(dx) is absolutely continuous and un-
bounded, then the distributions of X(t) and h(X)(x) are absolutely continuous;
denoting by p(x, t) and q(x, t) their respective densities, one has for all x and
t>0,

(5.17) tg(x,t) = xp(x,t).

C. Ressel families. We now apply Theorem 5.4 to X(¢) = ¢t — U(t), where U
is defined by (5.14). Since for 6 < 1

E(exp(0U(¢))) = exp( t/ow

1-— e

e"‘dx)

X
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[see, e.g., Feller (1966), page 427, (78)], the Lévy measure fulfills the requirement
of Theorem 5.4. The density of X(¢) = t — U(t) is, for x < ¢, from (5.14):

1
t—1 5
plx,t)=(t—x)""e tl]—oo,t[(x)Tt)‘
Hence from (5.17) the distribution of A(X)(p) is
1
t—1 -
(5.18) g(p,t)dt=p(t—p) e” t1]p,+w[(t)m dt.

Note that since E(X(¢)) =0, the process X satisfies P(limsup,_, , X(¢) =
+ o0) = 1 [see Bingham (1975), Theorem 3.c]. Therefore (5.18) is not a defective
distribution, but a real probability measure. Shifting (5.18) by x —» x — p, we get
the main result of this section.

ProrosITION 5.5. If p > 0, the following measure:

t+p—1,—t

pt e

(dt) = I'(t+p+1)

1]0, +oo[(t) dt
is a probability measure which generates the Ressel NEF with power p and
variance function (5.1).

Theorem 5.3 has provided a case of probabilistic interpretation of reciprocity.
There is no space here to give some details on similar interpretations when the
spectrally negative Lévy process X is replaced by a random walk on the set of
relative integers Z which is right-continuous in the Spitzer (1964) sense. We shall
content ourselves with the following statement, without proof.

THEOREM 5.6. Let U,...,U,,... be a sequence of independent and identi-
cally distributed random variables, taking their values in the set N of nonnega-
tive integers. Denote S;=0, S,=n—~ U, —U,— --- — U, and for k in N:
T, = inf{n; S, = k}, with T, = + oo if this set is empty. Then

(i) kP[S, = k] = nP[T, = n] fornand k > 0.
(ii) The distributions of S,/k and T, (restricted to T, < o) give a reciprocal
pair.
(iii) Let {N(t); t = 0} be a Poisson process independent of (U,), .., X(t) =
Snry and H(k) = inf{t; N(t) = T,}.

Then the distributions of X(1)/k and H(k) (restricted to T, < o) give a
reciprocal pair.

REMARKS. (ii) and (iii) are easy to check by using martingales. (i) is the
Kemperman theorem and is a perfect analog of (5.17). See Wendel (1975) for an
elegant proof of (i) by the Lagrange formula Theorem 4.1. Result (ii) for 2 =1
partially explains Theorem 4.5 for p = 1 only. In the notation of Theorem 4.5,
F, would be the family of the distribution of U, and F the family of the
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distribution of T, — 1; using Theorems (5.6)(ii) and (5.2)(iii) gives Theorem 4.5
for p = 1.

There is a final remark about reciprocity and cubic variances. The formula
Vg(m) = m3Vi(1/m) of Theorem 5.2 shows that the set of cubic variances is
closed under reciprocity, and makes this set especially interesting to classify.
Theorems 5.3 and 5.6 explain why NEFs with variance of degree equal to 3 have
appeared in the literature through the distributions of first passage times.

6. The classification of cubic variance functions. In this section we are
going to prove that all cubic families have been met before in this paper or
among the Morris quadratic families. (Recall that quadratic means “of degree
less than or equal to 2,” as cubic means “of degree less than or equal to 3.”) Of
course, this must be understood as “up to an affinity.”

First, we give a list of 12 cubic types in Table 2. There, p is a positive number
and is the power parameter (see Proposition 2.5). Note that all the types except
the “binomial” are infinitely divisible.

The p column of the table shows the generating measures of the family. In the
continuous cases (lines 1, 5, 6, 11 and 12) we have chosen p as a probability
(however, it is not in the family for lines 11 and 12). We have given in line 6 a
closed formula instead of the first formula of page 73 of Morris (1982). The name
“hyperbolic cosine” for line 6 alludes to the fact that the Fourier transform is
L, (i) = (cosh8)~>.

PROPOSITION 6.1. None of the following functions V: M —10, + o[ are
variance functions:

(i) Let a be noninteger and positive
m
M=]0,a[ and V(m) = m(l - ;)
(i) Let a > 0,
m2
M=]0,a[ and V(m) = m(l - ;) .
(iii) Let 0 < a < b,
m m
M=10,a[ and V(m).= m(l - —)(1 - —)
a b
(iv) Let 0 < b < a,
M=]0,+c[ and V(m)=m(1 - 2bm + a’m?).
[(iv) should be compared to the end of Section 3.]

ProoF. From Proposition 4.4, if any of these functions is a variance function,
it is associated to an exponential family F generated by a measure p = ¥°_u,8

n-n

concentrated on nonnegative integers such that p, and p, are positive, and there
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exist primitives ¢ and ¢; on M of m —» 1/V(m) and m — m/V(m) such that
(6.1) expy,(m) = Y p,exp(ny(m)) formin M

n=0

(see Proposition 2.3). We are going to compute explicitly primitives ¢ and ¢, in
each of the four cases and show that p, defined by (6.1) is negative for some n,
getting a contradiction.

a

6 ewnm=(1-2)", epum=2{1-2)"

Denoting z = m/(a — m), (6.1) becomes
(1+2)"= X p2™
n=0

Since a is not an integer, there exists an integer N > 1suchthat N -1 <a < N;
hence py,; =[1/(N+ Dla(a—1)...(a = N + 1)(a — N) < 0.

m

m m
), expy(m) = exp .
a—-m a—m a—-m

(i) exp ¥(m) = exp

Denoting z = m/(a — m), (6.1) becomes

00
exp(—az) = ¥ p,(zexpz)”.
n=0

Denote now w = ze® and apply Corollary 4.2 to g(z) = exp(—z). With the
notation A(w) of Theorem 4.1, one gets

exp(~ ah(w)) = gu,.w"

and formula (4.4) gives

= — —2(a +
bn = e ¥ nnt|de” exp(—2(a + n)) 2=0

a 1 [ d"
which is clearly negative if n is odd.

(iii) To simplify, denote r = b/(b — a) > 1. Then

exp ¢,(m) = (1 - %)m(l - ﬁ)_m,

a

oot 2512 -2 ()

Denoting z = (b/a — 1)m/b — m in (0, 1), (6.1) becomes

(1-2)" = g#n(Z(l —2)7)"
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We now apply Corollary 4.2 to g(z) = (1 — z)", with p = a. Therefore from

(4.4),if n # a,
_—a 1|/d\" . )
AL ———" (dz) (1-2) o

Let us take n > ra/(r — 1). This implies r(n — a) — k> 0 for all integers
k=0,1,...,n — 1. Hence

(&0

This implies p,, < 0if 2n > ra/(r — 1).
(iv) Without loss of generality, we write

(m—r)+q?

Vi = s
(m) =m 21 g2
with r > 0 and ¢ > 0. Hence
r? + g2 m-—r
exp ¢,(m) = C, exp arctan ,
q q
-1/2 r m—r
expy(m) = Cm((m -r)’+ q2) / exp(— arctan p ),
a

where C, and C are constants that we will choose later. Denote
m-—r r
and a = arctan —;

6 = arctan

(6.1) becomes

(6.2) Clexp(ﬂ(rQ ; qg)) - gou,,(c 7 Gin(6 + a)exp(gﬂ))n,

COS a

for 0 > —a. In (6.2) we denote z = sin(6 + a), p = (r2 + ¢?)/r and we now
choose the constants by C, = exp(pa) and C = exp((r/q)a). The new form of
(6.2) is

r . it r . "
exp(p— arcsin z) =Y u, zexp(— arcsin z) .
q n=0 q

It remains to apply Corollary 4.2 to
r
g(z) = exp(— 7 arcsin z).
If n # p, (4.4) gives

n

B N S |
q -

Br =

n—pn!|\dz

Clearly, p,, < 0if 2n > p. O
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We now state and prove the main result of this paper, which is the theorem of
classification of the cubic families.

THEOREM 6.2. Let F be a natural exponential family on R such that its
variance function Vy, is the restriction to the mean domain My, of a polynomial P
with degree less than or equal to 3. Then there exists an affinity ¢: x — ax + b,
a # 0, of R to itself such that the image ¢, F of F by this affinity is one of the
twelve types of the array.

REMARKs. This theorem contains the statement of Morris (1982) about the
existence of exactly six quadratic types, up to affinity. However, his paper
contains some obscure points due to the omission of statements corresponding to
our Theorem 3.1 and Proposition 6.1(i). For this reason, we give a complete proof
of Theorem 6.2.

ProOF. Denote My =]a, B[, with —c0 < a < 8 < + c0. We make two obser-
vations about the polynomial P:

(a) P has no 0 in ], B[.
(b) Either a« = —o0, or P(a) = 0. Similarly, either 8 = + 0 or P(8) = 0.
This is a consequence of Theorem 3.1 applied to the analytic function P.
We now prove the theorem by discussing § o P = degree of P.
1. If § o P =0, (b) implies Mz = R and F is a normal family (line 1).
2.If §oP=1, P(x)=ax + b with a # 0, and M, is a half-line with
endpoint —b/a. The affinity ¢(x) = x/a + b/a? changes F in F, = ¢, F, and
Proposition 2.4(v) gives M r, =10, + oo[ and Vg(m) = m; thus F, is the Poisson
family corresponding to line 2.
3. 80P =2, P has two distinct real roots and M =]a, B[ is bounded.
Therefore from (b) the roots of P are a and B, and there exists A > 0 such that

(B-x)(x —a)
y .

The affinity ¢(x) = A[(x — «)/(B — «)] changes F in F, = ¢,F, and from
Proposition 2.4(v):

P(x) =

m
Mg =10, +oo[ and Vi(m)= m(l - X)

Then either A is not an integer and from Proposition 6.1(i), F, does not exist, or
A is an integer N > 0, and F, is a binomial family corresponding to line 3.

4. 8o P =2, p has two distinct real roots and M =]a, B[ is not bounded.
Therefore from (b) either 8 = + o0, P(a) = 0 and there exists r < « and p > 0
such that

(x—a)(x—71)
p b
and the affinity ¢(x) = p[(x — a)/(a — r)] will send F to the negative binomial

P(x) =
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family F) of line 4, on a = — o0, P(B) = 0 and there exists r > 8 and p such
that

(B-x)(r—x)
p

and ¢(x) = p/r — B(B — x) will send us to line 4 again.

5. 8o P=2, P has a double root. Then from (b): Either 8 = + o and
P(a) =0, and there exists p > 0 such that P(x) = (1/p)(x — a)?, then the
affinity p(x) = ¢(x — ), where ¢ > 0 will send us to line 5, and ¢, F is a gamma
family; or « = —co and P(B8) = 0, then P(x) = (1/p)(x — B8)? for p > 0 and
@(x) = ¢(x — B) with ¢ < 0 will send us to line 5.

Note that here the particular value of c is irrelevant, since a gamma family is
invariant under scaling: See the characterization of the gamma families after
Proposition 2.4.

6. 8o P = 2, P has no real root. Therefore from (b) M, = R and there exists
p >0, rreal and A > 0 such that

P(x) =

b

VF(m)=z—2 1+

A%(m —r)®
p’ '
The affinity ¢p(x) = A~ x + r will send us to line 6 of the hyperbolic cosine.

In the remaining cases § o P = 3 and P has necessarily a real root. Without
loss of generality, by means of a translation, we may assume that P(0) = 0.
Therefore we suppose that there exists a polynomial @ with degree 2 such that
P(x) = xQ(x). Since we have already done a translation, we are now only
allowed to do scaling ¢(x) = x/A, with A # 0.

7. @ has a double root different from 0. Then if My =]a, B[ is bounded,
either a = 0 and Q(B) = 0, or @(a) = 0 and B = 0. In the first case, there exists
a > 0 such that

(B-x)*
Ba

and the scaling ¢(x) = ax/B shows that F, C ¢, F would have the variance
function

P(x)=x

Mg =10,a[, V(m)= m(l - %)2,

which is excluded by Proposition 6.1(ii). A similar analysis excludes Q(a) = 0
and B = 0. Therefore, in this case, My is unbounded.

If B = + oo, then from (a) either a« = 0 or a > 0. If & = 0, there exists p > 0
and r > 0 such that

x(x +r)?
P(x) = =,

and the scaling ¢(x) = rx/p sends F onto the Abel family of line 7. If « > 0, a
translation x — x — a would send us to case 11 and we defer its study.
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If @ = — o0, then either 8 = 0 and a similar analysis will send F to line 7, or
B < 0 and we defer until case 11.

8. @ has distinct real roots different from 0. Assume that M, =]a, B[ is
bounded. From (b), P(a) = P(B) = 0. Since P has three simple roots, up to a
translation and if necessary changing x to —x, we can assume that a = 0,
Q(B) = 0 and that the second r of @ is larger than B. Therefore there exists
A >0,a=8/Aand b =r/A such that

P(x) = Ax(l - %)(1 - %)

The scaling @(x) = x/A show that F, = ¢, F would have the variance function,
where 0 < a < b,

M, =10, a[, V(m)=m(1— L:—)(l— %),

which is excluded by Proposition 6.1(iii). Therefore M, is unbounded.

Since P has three simple roots, up to a translation and if necessary changing x
in —x, we can assume that a = 0 and B8 = + oo. Therefore there exist three
positive numbers p > 0, @ > 0 and A > 0 such that

a+1 x
a Ap/

P(x) = Ax(l + Zx;)(l +

The scaling ¢(x) = x/A shows that F, = ¢, F is the Takacs family of line 8.

9. @ has no real roots and its roots are purely imaginary. Therefore M, =
] —,0[ or My =10, + o[. Changing x to —x leads to the second case, and
there exist p and A > 0 such that

P(x) =Ax(1 + (Zx;)z).

We get a strict arcsine family (line 9) by the scaling p(x) = x/A.

10. @ has no real roots and its roots are not purely imaginary. Therefore
My =]—- 0,0 or M;=1]0, + o[. Changing x to —x leads to the second case.
Assume that the roots of @ have a positive real part. Therefore there exist
A > 0and 0 < b < a such that

x  a’x?
P(x) = Ax|1 — 2bz + 2z |

Scaling ¢(x) = x/A and Proposition 6.1(iv) show that this is impossible. Hence
the roots of @ have negative real parts, there exist A > 0, 0 < b < a such that

P Ax|1 + 2b * o
= +2b— +
(%) = Az A A
and scaling ¢(x) = x/A sends F onto the large arcsine family on line 10.
11. @ has two distinct roots and one of them is 0. Again we exclude the case
where My =]a, B[ is bounded like in case 7 by Proposition 6.1(iii). Therefore
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changing x to —x if necessary gives M, =10, + oo[ and there exist p > 0 and
A > 0 such that

P(x) = x;(l + :—p).

The scaling @(x) = x/A yields the Ressel family (line 11).

12. @ has a double root on 0. Therefore M, =] — o0, 0[ or My =]0, + oo[, and
changing x to —x leads to the second case. Therefore there exists p > 0 such
that

P(e) =
x)=—;,
P’

and this is the inverse Gaussian family of line 12. O
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Note added in proof. Professors V. Seshadri and T. Speed have recently
informed the authors that formula (5.18) is formula (20) in a paper written by
David G. Kendall [Some problems in the theory of dams. J. Roy. Statist. Soc.
Ser. B 19 207-212 (1957)]. According to this, Kendall-Reosel families could be a
more appropriate name for line 11 of the classification of the cubic families. We
apologize for having missed this reference.
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