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WEAK CONVERGENCE OF THE RESIDUAL EMPIRICAL
PROCESS IN EXPLOSIVE AUTOREGRESSION

By Hira L. KOUL AND SHLOMO LEVENTAL

Michigan State University

This paper proves the weak convergence of the residual empirical process
in an explosive autoregression model to the Brownian bridge. As an applica-
tion the Kolmogorov—Smirnov goodness-of-fit test for testing that the errors
have a specified distribution is shown to be asymptotically distribution-free.

1. Introduction. Let F' be a distribution function (d.f.) on the real line R, ¢
be a random variable (r.v.) with d.f. F and ¢, ¢,,... be independent copies of .
In an explosive autoregression model of order 1, one observes r.v.’s { X;} satisfy-
ing

(1.1) XO = O, Xt = pXi—l + g |p| > 1, i > 1.

This model arises in time series analysis and has been discussed previously in the
literature. See, e.g., Basawa and Scott (1983) for an interesting discussion of the
model.

This paper discusses the weak convergence of the empirical process

n
(1.2) Vi(y,8)=n"* Y I(X,- pX,_,<y), YER,
i=1
where p is an estimator of p based on X, X,,..., X,, and I(A) is the indicator of
the event A. The paper also discusses some applications of the weak convergence
result to some problems of statistical inference.

The main weak convergence result for a general F is stated and proved in
Section 2 as Theorem 1. As a corollary we get that if F' has a uniformly bounded
derivative, E(log*(|¢])) is finite where log*(x) :== log(1 V x), x € R, and if
16"(p = p)| = 0,(n'/?), then

(1.3) sup|V,(y,5) = Vy(»,0)l = 0 in probability.
Yy
As an application consider the problem of testing Hy: F = ®, where ® is the

d.f. of a N(0,1) r.v. Analogous to the one-sample location model, a test of H,
could be based on

D, = sup|V,(y, ) — n'/?2®(y).
Yy

From (1.3) and the well known result that
{(Vi(3,0) = n'*®(y), ye R} = {B(®()), y € R},
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where B is the Brownian bridge on [0, 1], it readily follows that if § is the least
squares estimator or any other estimator such that |o"(p — p)| = 0,(n'/?), then
D, = sup{|B(u)|; 0 < u < 1} under H,. Thus, unlike in the one-sample location
model, the asymptotic null distribution of D, is completely known. This example
and its suitable modifications for testing that {¢;} are N(u, %), p € R, 02> 0,
are discussed in Section 3.

A result similar to (1.3), for the stationary autoregression model, where
lp| <1, was proved by Boldin (1982) requiring E(e) = 0, E(e?) < o0 and a
uniformly bounded second derivative of F. In (1.1), |p| > 1 and {X,} are nonsta-
tionary. Consequently our proofs are necessarily different from those of Boldin
(1982). The method of the proof of Theorem 1 uses a version of the chaining
argument developed by Giné and Zinn (1984) and an exponential inequality for
stopped bounded martingale-differences of Levental (1989).

In the sequel, o(1), [0,(1)] stands for a sequence of numbers (r.v.’s) converging
to zero (in probability): O(1) [O,(1)] stands for a sequence of numbers (r.v.’s)
that are bounded (in probability). For any x, [x] is the greatest integer smaller
than x.

2. Weak convergence. In order to state and prove the main result of this
section we shall need the following assumptions.

(A.1) E(log™(le])) < oo.
(A.2) F has uniformly bounded derivative f, f > 0 a.e.

(A.3) The estimator p based on {X,..., X, } is such that
10"(p — p)| = 0,(n'/?).

In view of (1.1), we can rewrite

(21) V(3. p)=n"2 Y I(e,<y+p(p—p)p "X, ,), yER.

i=1
Thus to study the weak convergence of the processes V. (-, ), it suffices to
investigate the processes

n
(2.2) S(y,8)=n"Y2Y I(e;<y+sp "X;_,), s,YyER.
i=1
One of the main tools used in provihg the weak convergence of the preceding
processes is an exponential inequality for bounded martingale differences, given

in Lemma 3. For this reason it is convenient to center the ith summand in S, at
its conditional expectation, given %;_,, where

(2.3) F, = o — field{e,..., &}, i=1.
Accordingly, let
Y, (y,8)=I(e;<y+sp7"X;y) —Fly+sp7"X,,), ix1,

@n(y’s)=n_l/2 Z@n,i(y:s)’ s,y €R.

i=1

(2.4)
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Observe that the term corresponding to the sum of the indicators in @(y, ),
with ¢ = p"(p — p), equals V,(y, p).

In view of (A.3), to prove our main result, we need to show that for any
sequence of real numbers {a,} satisfying

(A4) a, = o(n'?),

(2.5) sup  |%(¥,8) — F(5,0)] = 0,(1).

YER, |s| <|a,|

It is thus convenient for us to rescale the time space and the preceding
processes, for any real sequence {a,} and any bounded set of real numbers K, in
the following way:

T={(y,t): yeR,te K},

Z‘ ,t :=@ni ,tn, .21,
. 00 =8, (),

n
Zn(y’t) = n_1/2 ZZn,i(y’t)’ (y’ t)ET
i=1
We are now ready to state our main result.

THEOREM 1. Assume that (A.1), (A.2) and (A.4) hold. Then
(2.7) sup|Z,(y, t) — Z,(y,0)| = 0,(1).
T

COROLLARY 1. Under (A.1)-(A.3),

(2.8) Sup [V,(, ) = Val 3, 0)l = 0,(1).

Consequently,

Vo(+,8) — n'/?F(-) = B(F(+)).

Before proving the preceding results, we state some preliminary facts in the
form of various lemmas. Throughout the sequel, |p| > 1 is fixed.

LEMMA 1. Under (A.1),

8

(a) lp~'&| < 0 a.s.,
i=1

12

(b) p"X, = (p-1)7'Y a.s,
i=1

13
Yo" X il = (ol = 1) 7Y as.
i=1

where Y = £ p " ',
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ProoF. The proof of (a) is straightforward, whereas that of (b) uses the
Toeplitz lemma and the fact that p7'X; - Y a.s. O

LEMMA 2. Assume that (A.1), (A.2) and (A.4) hold. Then
(a)

n
sup Y |F(y + tya,p" "X, ) = F(y + tia,p "X, ;)| = o(n'?) a.s,
Yt ty i=1
where the supremum ranges over —c0 <y < 00, —1 < t,t, < 1.
(b) For any ¢ > 0,

n
limsup sup [n"2 ) F(y + a,to "X;_,) — F(x + a, tp™"X,_,)| <& a.s.,

n—ooo x,y,t i=1

where the supremum ranges over |t| < 1, x, y € R, |F(x) — F(y)| < en™'/2

Proor. (a) This follows from the mean value theorem (MVT) and Lemma
1(b).
(b) Again, by the MVT,

LHS.(b) < lim sup{2|a,,|n-l/2 L oK, o + supn F() = R
n— oo X,y
<e¢ as,

by Lemma 1(b) and (A.4). O

i=1

The proof of the next lemma appears in Levental (1989).

LEmMA 3. Let (d;),.;., be a real-valued martingale-difference sequence
with respect to increasing o-algebras (2,)o.i<n i€, E(d})2,_))=0, i=
1,..., n. Suppose that ||d;||., < M for a constant M < co, i =1,...,n. Let

T < n be stopping time relative to the (2,) that satisfies

Y E(d?e,,)

l<i<r7 e

Then for each y > 0,

7
l<i<r

Proor oF THEOREM 1. W.lo.g. take K = [—1,1]. On T define the metric d
by
(2.9) d((yo, to), (0, t1)) = |F(%) = F(y)I'? + 1t, — &,'/%.
Under the metric d, T is totally bounded. Thus, to prove the theorem it suffices
to prove:

@) (Z(y,t) — Z,(y,0)) = 0, in probability, for every (y, t) € T, and
(b) for every 0 < ¢ there is 0 < 8 such that

lim sup P{ suplZ, (3, to) — Zi( 3, 1) > ¢} <,
n (&)

< L fora constant L.

Y d;|> y} <2-exp{—(y/2M) - arcsinh(My/2L)}.

where (8) = {[ 30, %), (1, )] € T* d((%, to), (1, 1)) < 8}
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PrOOF OF (a). The fact that Z, is a sum of conditionally centered Bernoulli
r.v.’s yields

E{(Z,(y,t) - Z,(y,0)}" = E[n_l _i E{[Z,(5.t) - Zn,i(y,O)]zlﬁ‘Z_l}]

< E[n“ i |F(y + ta,p"X;_,) — F(y)l} -0

i=1
by Lemma 2(a) and the dominated convergence theorem. O

PrOOF OF (b). The proof of (b) uses a chaining argument developed by Giné
and Zinn (1984), which appears in Pollard (1984), pages 160-162. The chaining
argument that follows uses the exponential inequality of Lemma 3 for the
stopped martingales. Accordingly, fix an ¢ > 0 and define, for each n > 1, the
grid points
%”n={s =(yt;)) €T:1<ix<[n%1];

—[n"% '] <j< [nl/ze‘l]},

where y, = F~l(ie - n™"?), 1 <i<[n'%7 '], ¢;=je - n" V% —[n"% "] <j <
[n'/2¢71] and F~*(u) = inf{x: F(x)>u}, 0 < u < 1. We also need the follow-
ing stopping time w.r.t. the filtration {%,):

(2.10)

k
T, =nA max{l <k: max ), E{[Zn (s) -2, i(h)]zlﬁ}_l}
s, hest;, ;| ! !
(2.11)
+d*(s, h) < 4n}.

To adapt our situation to that of Pollard we first prove that P(r,<n)->0
[see (2.12)]. This will let us work with n=%%(r, )1/ ®Z, instead of with Z,. By
using Lemma 3 and the fact that arcsinh(x) is 1ncreasmg and concave we can
prove the following: if en™'/2 < d*%(s, h)/x for s, h € #,, then

P(n"V%Z,(s) - Z,(h)| = x)
< 2exp{ —(x?/2d%(s, h))(e - arcsinh(1/8e))} .

Now we can chain between the points in J#, almost as in Pollard. What remains
is to connect between each point in T and a point in 5#,. This will be done in
(2.16). The first step in our program is to. show

(2.12) P(r,<n)—> asn- w.

PROOF OF (2.12). For s = (y,,¢;)and h = (¥,,t,), i, < i;, we have
Z E{[Zn z(s) 23;—1}
i=1
(2.13) <2 Z {[ (3, t (3 )]}
; {[ il 1) = Zo (30 1))

-
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Consider the first term on the rh.s. of (2.13): The fact that d%(s, k) >
(i; — ip)en™ 172 and direct calculation yield

2.=il {[ ylo’ Jo) Z, yzl )] I? }/dz(s h)

< 2[(i, — ip)e] A2 Y {F( Y, + anthP_nXi—1)
i=1
_F(yio+a” Jo nX 1)}

n
<2 ! 1/2 { E [ (yk+1 + a, Jop—nX )

i=1

_F( Y+ antjop—nXi_l)]},

where the max is taken over 1 < k2 < [n!/2¢7!]. By using Lemma 2(b) we get

2
7.}

+d?*(s, h) < 3n} - 1.

P{2 max Z E{[Zn i\ Dy ,0) - Zn,i(yin tjo)]

Tos Jos b j=1

(2.14)

By similar arguments, the second term on the r.h.s. of (2.13) is at most
2¢ nl/? m}?x{ Y IF + a,ty 0 "X ) — F(yi1 + antkp‘"X,-_l)l},
i=1
where the max is taken over —[n}/2e71] < k < [n!/%2¢7!]. By using Lemma 2(a)

we see that

P{Q max ZE{[Z,, i\ Dy '1) Zn il Jigp ¢ )] |'/z 1}

01011, 1

(2.15)
+d%(s, h) < n} - 1.
This completes the proof of (2.12). O
For each s = (y,t,) € T denote by s, = (y,t;) €#, the point in i,

that is the closest to s w.r.t. the d-metric from the p01nts of 5, that satlsfy
Yr, < Js and ¢; < t.. Next we prove the second step in our plan:

(2.16) P{ sup |Z,(s) — Z,(s,)| = 215} - 0.
seT
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ProoF OF (2.16). We need to show that

n
Z [I(Ei < Vs + antsp_nXi—l)

i=1

P{ sup

seT

(2.17) —I(e; <y, + aptip "X, 1) — F(y, + a,t,p "X, ;)

+F( Y, T a,,tjsp'"X_l)]

> 21£n1/2} - 0.

First observe that
|F(5, + ayto "X,_,) — F( Y, T antjsp_nXi—l)l
< IF(yks+1 +a,tp "X, ) - F(J’ks + a,t,p "X, )|
+ |F(yk,, +a,t,o "X, ) - F(yk,, + antjap_nXi—l)I'
By using Lemma 2 we get

E [F(ys + antsp_nXi—l)

i=1

P{ sup
seT

(2.18)
—F( Y, T antjsp_nXi—l)]

> 2£n1/2} - 0.

So it suffices to show that

Z [I(ei < s + antsp_nXi—l)

i=1

P{ sup

seT

(2.19)

_I(ei S, t antj,P_"Xi—l)]

> 19£n1/2} - 0.

Next, with 5, = a,07"X,_,,
II(ei =Ys + antsp_nXi—l) - I(Ei = yka + antjsp_nXi—l)l

(2.20) <I(m;> 0){I(yk,, tatip "X, | <& <Yyt antj,,+1P—nXt—1)}
.20 .
+ I(n; < O){I(}’ks tad 0 "X <<yt antjsp—nXi—l)}

+ Iy, < 0){I(yks ta,t 1o "X <g <y t antj,P_nXi—l)}-
We will show that

n
P{ sup ). [I(Tli 2 O){I(yks tatp7 "X, | <& <Y 4
seT j=1

(2.21)

+antj,,+1p‘"Xi—1)}] > 6€n1/2} So.
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By Lemma 2 we see that

{sup > [I(m 2 O){ (yks+1 + antjs+1p_nXi—l)

seT j=1
P+ e )] = 2] 0

Now (2.21) will follow from

P{ max

s Jo

Z I(nz 2 0)[ n,i ylo+1’ Jo+1) - Znyi(yio’ tjo)] ‘
(2.22) =

> 3en1/2} - 0.

Because of (2.12) it suffices to show that

Z I(nz>0)[ n,i yl0+1’ Jo+1) Z (yio’ tjo)]l

{max
tos Ji <,
(2.23) Prst

> 3sn1/2} - 0.

But (2.23) follows from Lemma 3: Take 7 := 7, as defined in (2.11), L = 8¢n!/2
y = 3en'/? and M = 1. For each (i, j,) we get

P{ Z I(nz = O)[ n,i y10+1’ l0+1) Zn,i(yio’ tjo)] = 3£n1/2}

l<i<m,
< 2exp{ —(3¢/4)n'/? arcsinh(3,/16) } .

Since the last bound does not depend on (i, j,) we can bound (2.23) by
(2n/€?) - 2exp {—(3e/4)n'/2 arcsinh(3/16)} — 0, which proves (2.21). We can
prove results similar to (2.21) for the rest of the terms on the r.h.s. of (2.20). This
completes the proof of (2.19) thereby establishing (2.16) and hence Theorem 1.

m]

PRrOOF OoF COROLLARY 1. By (A.3), there exists a positive sequence b,—0
such that P(|jn"%™(p — p)] < b,) > 1 as n = 0. Now apply Lemma 2(a) and
Theorem 1 with a, = n'/2p, and

t=n"V%"(p — p)b; U(n~"%"(p — p)| < b,). O



1792 H. L. KOUL AND S. LEVENTAL

3. Applications. First consider an extension of the model (1.1) where
(3.1) Y, =0, Y, =u+pY,_, + og, LER,06>0,|p|>1,i>1.
Let 6 = (&, b, 8) be estimators of § = (p, p, 0), respectively. The process of

interest here is

n
W(5,0) = n"2 ¥ (Y, < 56 + i + pY,_,)

i=1

=n 2 Y (%~ w)/o<y8/0+ (i—p)/o+ (p/0)Y,_,)
=1

=n 2y I{(Y, = pn)/o <y/0 + (i — ) /o + pu/o
i=1

+B(Y, — u)/o).
Thus if we identify (Y; — p)/o with X, of (1.1), then
W(y,0) = V,(y6/0 + (i — 1) /o + pu/o, p).

Consequently we have the following;

COROLLARY 2. Assume that (3.1) holds and that i, p and 8 are such that
(A.5) n/Hi — pl + 16071 — 1|} + [p"(p — p)| = O,(1).
Furthermore assume that

F, the d.f. of & in (3.1), is strictly increasing and has a

(A.6) bounded derivative f.

Then
sup|W(y,8) — W(,0) — n'*((f— ) + (6 — 0)y}o ()| = 0,(1).

Proor. This follows from Corollary 1 applied to X; = (Y; — p)/0, the tight-
ness of the Z (-, 0)processes and the fact that n'/%(p — p) = 0,(1), in a routine
fashion. O

Now consider the model (1.1) and the problem of testing H,: F = F,, where F,
is a known d.f. and the statistic

T, = sup|V,(y, p) — n'*Fy(y)l.
y
Corollary 1 implies that F, and p satisfy (A.1)-(A.3). Then T, =
sup, ., <1/B()|, under H,. Hence the test of H, based on T, is asymptotically
distribution-free.
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Next, consider (1.1) and Hy: F = N(p,1), p € R. This is equivalent to
assuming (3.1) with ¢ = 1 and testing that {¢;} of (3.1) are i.i.d. N(0,1). In this
case the test statistic is

T, = sup|W(,6) — n'/*@(y)],
y
where now 6 = (ji, p,1) and

(3.2)

From Corollary 2, under Hy,,

T = sup|n™ ¥ (I(e;53) = 0(5) + e9(5))

y

—n"2(p - p) Xn) Y_9(y)

i=1

where o is the density of ®. But under H;, and (3.1),

n n
n V(B —p) XY =020, — p) LoV = 0,(1).
i=1 i=1

+ 0,(1),

From Durbin (1973) it follows that T,, = sup,|G(y)|, where G is a mean zero
Gaussian process with covariance function ®(x)(1 — ®(y)) — p(x)@(y), x < y.
The distribution of sup,|G(y)| is available in Durbin (1973).

Finally consider the model (1.1) and the problem of testing Hy,: F = N(u, o),
p € R, o > 0. Consider the test statistic

T, = sup|W(y, ) — n'20(y)|,
Y

where now 8 = (i, p, 6), with i, p asin (3.2) and 62 = n'T7_ (Y, — i — pY,_))2
Now arguing as for T, one finds the limiting null distribution of T,, to be
similar to its analogue in the one-sample location-scale model.

It goes without saying that analogous results remain valid for any other
goodness-of-fit test statistics based on the empirical process of the residuals.
Finally we point out that the results of Section 2 are general enough to allow the
investigation of the asymptotic power of the preceding tests, although we do not

discuss it here.
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