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BOUNDS ON THE SIZE OF THE x>-TEST OF INDEPENDENCE
IN A CONTINGENCY TABLE!

By WEI-YIN LoH
University of Wisconsin-Madison

Bounds are obtained on the limiting size of the level-a x2-test of
independence in a contingency table, as the sample size increases. The
situations considered include (a) sampling with one or both sets of marginal
totals random, (b) performing the test with or without the continuity correc-
tion and (c) with or without conditioning on the event &, that the minimum
estimated expected cell count is greater than a given k& > 0. Bounds for both
the unconditional and conditional (on &) size are derived. It is shown, for
example, that the limiting conditional size of the test is unity for all a if the
continuity correction is used with 2 = 0 and sampling is done with both
margins random. The same conclusion holds if sampling is done with one set
of margins fixed and the dimensions of the table are not too small.

1. Introduction. Let Y;;, i=1,...,r; j=1,..., ¢, be the observed counts
in the (i, j)-cell of a contingency table with r rows and c¢ columns. Let p;;
denote the probability that an observation belongs to the (Z, j)-cell, let

p;. = Z.pij’ D.;= zpij
J i
and let

Ri=ZY;j’ Cj=ZY;j’ n=ZRi=ZCj
j=1 i=1 i J

denote the ith row, jth column and grand totals, respectively. Consider the
hypothesis H,, that the rows and columns of the contingency table are indepen-
dent, and let E;; = R,C;n"" denote the estimated expected count in the (i, j)-cell
under H;,. When E;; > 0 for every cell, a standard test of H, at nominal level «
is the Pearson x2-test which rejects H, if X2 > x2 ,, where x? , is the upper
a-quantile of the x2-distribution, » = (r — 1)(¢ — 1) and

r (4
2
(1) X?= Z Z (Yu - Eij) /Eij'
i=1j=1
There has been much controversy about this test. One issue is whether the
“continuity corrected” statistic [Yates (1934)]

) xz=Y Y (Y,- E, - 1)"/E,

i=1j=1
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1710 W.-Y. LOH

should be used in place of (1). Pearson (1947), Plackett (1964) and Grizzle (1967)
criticize the use of X2 on the grounds that it tends to yield an overly conserva-
tive test. Mantel and Greenhouse (1968) and Yates (1984) defend the continuity
correction with the argument that probabilities should be computed conditional
on the marginal totals, and that X2 can greatly exaggerate conditional signifi-
cance, especially for tables with one or more small marginal values. Some
computer-generated finite-sample results are reported in Conover (1974), Garside
and Mack (1976) and Haber (1980). All these papers are chiefly concerned with
the 2 X 2 table.

The values of X? and X? are undefined if one or more of the row or column
totals is 0, or equivalently, if min E,; = 0. To improve the accuracy of the x>
approximation, it is usually recommended that either test be carried out only if
the event

&, {mym E,;> k}
occurs, where %k is a nonnegative number. Opinions differ on the smallest
permissible value of k. Values such as & = 5 [Fisher (1925)] and k& = 1 [Snedecor
and Cochran (1980), page 77] have been proposed.

The purpose of this paper is to obtain bounds on the limiting size of the two
tests under the null hypothesis for arbitrary values of k, r and c. For any k& > 0,
we define the conditional size of the two tests as

a,(k) = supPr(X2 > X%,aWk),
HO

aO(k) = supPr( X2 > x2 ,1€;)
H,

and the unconditional size as

a,(k) = supPr({X2 > Xf,a} N g’k)’
HO
aO(k) = supPr({X2>x2 ,} N &,).

H,
Two sampling models are considered, namely:

1. One set of marginal totals fixed, the other random.
2. Both sets of marginal totals random (multinomial sampling).

Lower bounds for the limiting size are obtained by computing rejection probabil-
ities under a sequence of null hypothesis distributions and using the resulting
Poisson behavior of the cell counts. One conclusion is that under model 2,
lim,_,  a{?(0) = 1 for all 0 < a < 1. The same property holds under model 1 if
the dimensions of the table are sufficiently large. Upper bounds are derived for
finite-sample sizes through a Chebyshev-type argument. Practical implications of
the results are discussed in the last section of the paper.

For results on the behavior of the x? for testing goodness-of-fit for multino-
mial distributions, the reader is referred to Cressie and Read (1984), Kallenberg

-~
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(1985), Larntz (1978) and Yarnold (1970). Haberman (1988), Oosterhoff (1985)
and Zelterman (1987) examine the power of the test in large sparse multinomial
distributions.

2. One set of marginal totals fixed. We first consider the case of sampling
with one set of marginal totals fixed. Without loss of generality, suppose that
C;=fn, j=1,..., ¢, for some positive constants’ f;’s summing to 1. We wish to
test the hypothesis

HO:pil=pi2= s =DpiL.= T, l=1,...,r,

for some unknown {=;} such that 0 < m; < 1, ¥;m, = 1. Suppose that the test is
only carried out if the event &, occurs. This implies that min R; > 1.

2.1. Without continuity correction. Because the conditional distribution of
given R, = m > 1 and H,, is hypergeometric with

E(Yilei = m) = f;m,
var(¥, \R; = m) = f;(1 ~ f;)m(n — m)(n = 1),
we have for any set {m; > 1} such that X7_,m; = n,
Pr{X2 > X%,a|Ri =m;i=1,..., r}

B Pr{ i i ( jmi)_l(Yij - fjmi) > X3

Y,

ij

R,=m,,i= 1,...,r}

Ri=mi,i= 1,...,"}

sx;,aE{i 3 (hm) (¥, - fm.)

—(-)NE Y Y (- ) - my)

i=1 j=1
=n(n - 1)_1vx;’%x.
Therefore
Pr({x* > X},o} N 6:) < n(n—1)7"x; % Pr{&,)
and we obtain the following theorem.

THEOREM 1. Under sampling model 1,
Pr({X2 > xf’a} N é’k) < Pr(X2 > xf’akfk) <n(n- 1)_1vx;i
forall 0 <a <1, k>0 andall {f;}.

COROLLARY 1. Under the assumptions of Theorem 1,
(3) limsupa,(k) < vx,2% and limsupa,(k) <vx,?

n— oo n—oo

forall 0 <a<1landk > 0.
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When » is large and 0 < a < }, the upper bound (3) is close to 1 because

Xf,a = V{l +2,42/(9v) — 2(91/)_1}3 asv — oo,

where z_ is the upper a-quantile of the standard normal distribution. [This is the
Wilson—Hilferty approximation; see, e.g., Johnson and Kotz (1970), pages
176-1717.]

To obtain a lower bound, suppose that H, holds with

4) m=wn™', i=1,...,r—-1; m.=1—-(r—1wn™!, O0<w<n.

Then Y;; >, S;;asn > o fori=1,...,r—1land j=1,...,c, where {S;} isa
set of ¢(r — 1) independent Poisson variables, with S;; having mean fw [see,
e.g., Johnson and Kotz (1969), page 297]. (As usual, “ —»,” and “ —,” denote

convergence in distribution and convergence in probability, respectively.) Let

fx = min f; and T, = E

l<j<c j=1

o t=1,...,r—1.

Because the conditional distribution of {S,,..., S;.} given T, = ¢, is multinomial
with ¢, trials and success probabilities f = (f,,..., f.), we have
Pr({X%>x2,) né&,)

({ri g(Y,, )/(fR)>x3,.,}ﬁ{mmR>kf* })

1<i<r

x Pr{z (8- 1) /(ft) > X2

min ¢,> kf 3! Jj=

1

~
|

- Pr

R

1

~.
]

(Sij - iji)2/( iji) > X%,a} N {1Tzn<er‘ > kfil})

1

T = tl”"’Tr—l = tr—l}

XPr{T,=t¢t,....,T,_,=t._}
H(a,f,w, k), say,
where H(a,f, w, k) may be written explicitly as
c f.s-j
(5) H(a,f, w, k) = e (r—De Z w* Z ]__[ —T_—lj‘—',
minti>kf;1 SsEL (L) J=1 i=1(sij')

t=(t,..nt,.y), s={s;pi=1,...,r=1j=1,..,¢},

r—1 r—1
t. = Z tis S.;= Zsij
i=1 i=1

and

r—1

A0 = {o: T T (8= 5)/(8) > xe)-
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THEOREM 2. Under sampling model 1,

(6) liminfa,(k) > supH(a,f,w, k) > a
n—w ©>0
and
(7) liminfa,(k) > supG(a,f,w, k) > a
n—w ©>0
for any 0 < a <1 and k > 0, where
o) "D s
G ® ¢ . fi N
(a,f,0,k)=| L — Y W X H—Tl(—,‘)‘
o> kfyt 7T min £,>kfy!  ses(t) J=1 Lli=1\5ij?

Proor. The leftmost inequality of (6) is immediate, while that of (7) follows
from (5) and

(r—1)

wv

Pr( min T; > kf;l) = (e““’ Y —'-) .
l<i<r o> kf3! V.

The rightmost inequality in (6) follows from
supH(a,f, w, k) > lim H(a,f, 0, k) = a,

w>0

which is a consequence of the conditional distribution of

20: (Sij - fjti)2/( fjti)

i=1 j=1

r—1

given (T, =t,...,T,_, = t,_,} being asymptotically x? as min ¢ — co. The
same argument together with the fact

lim Pr( min 7> k') > 1

w— 00 1<i<r

proves the rightmost inequality in (7). O

The quantity H(a,f, w, k) is in general difficult to compute except when
r = ¢ = 2, for which it simplifies to

H(a,f, 0, k) = Pr[{IB - {T1* > TH(1 - f)x}.} 0 {T > kfa'}],

where T is a Poisson variable with mean « and the conditional distribution of B
given T = ¢ is binomial with success probability f,. Table 1 gives some values of
H(a,f, w, k) for this case.

An indication of the magnitude of the lower bound (7) for the conditional size
can be obtained by noting that

(8) limoG(a,f,w, k) =Pr{Nes/(|kfx' +1],..., [ kfs* + 1])},

where |x] is the greatest integer less than or equal to x, and N = (N,;) is an
(r — 1) X ¢ random matrix with independent and identically distributed rows
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TABLE 1
Lower and upper bounds for the limiting unconditional size lim a,(k);
one margin fixed; r = ¢ =2

Lower bound Upper bound

a (foo ) k ® H(o,1,0,k) VXra
0.05 (0.01, 0.99) 0 13.0 0.104 0.260
0.10 (0.01, 0.99) 0 17.0 0.138 0.370
0.10 (0.50, 0.50) 0 47 0.100 0.370
0.10 (0.50, 0.50) 1 47 0.100 0.370
0.32 (0.10, 0.90) 0 12,0 0.391 1.001
0.32 (0.50, 0.50) 0 1.8 0.529 1.001

such that (Ng,..., N,,) is a multinomial vector with |kfy! + 1] trials and
probability vector (fi,..., f,). The value of (8) can be evaluated simply when
k = 0. For example, suppose f = {f,..., f,1 — (¢ — 1)f}, with f < ¢~ ! Then
because kf,' = 0, we have N € #/(1,...,1) if and only if

r-1 c
E Z (Nij_fj)2/fj>xg,a'
i=1j=1

The left side takes on its maximum value of

(r=1{iQ -y +1-f}=(r-Df'0-f),

when the event
2= N U(N;=1,N;=0,; #/)

occurs. The maximum value exceeds x? , if and only if

f<(r-D(E.+r-1)"

Because Pr(#) = {(c — 1)} "}, it follows that for f sufficiently close to (but
less than) (r — 1)(x2, +r—-1)"},

lim G(a,f,0,0) = {(c - )f)y L

A similar calculation shows that if » < x? , and f = (¢7,..., ¢™?), then
lim G(a,f, w,0) = 0.

w—0

Some values of G(a,f,0+ , k) for a = 0.05 are given in Table 2. We see that
collapsing the rows of a table does not always lead to a decrease of the lower
bound G(e,f,0 + , k). For example, collapsing a 3 X 2 table with f = (0.20,0.80)
into a 2 X 2 table with the same f increases G(a,f,0+ ,0) from 0.04 to 0.20.
Another example is collapsing a 3 X 5 table with £ = (0.08,0.08,0.08, 0.08,0.68)
into a 2 X 5 table with the same f. On the other hand, collapsing columns to
make the f;’s less extreme does not appear to be harmful. An example is
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TABLE 2
Lower and upper bounds for the limiting conditional size lim a,(k);
one margin fixed; a = 0.05

Lower bound Upper bound

v r c YA k G(o,£,0 + ,k) VX2
1 2 2 (0.50, 0.50) 0 0 0.260
1 2 2 (0.50, 0.50) 5 0.065 0.260
1 2 2 (0.30, 0.70) 1 0.084 0.260
1 2 2 (0.30, 0.70) 5 0.060 0.260
1 2 2 (0.20, 0.80) 0 0.200 0.260
2 3 2 (0.20, 0.80) 0 0.040 0.334
4 3 3 (0.16, 0.16, 0.68) 0 0.102 0.421
4 2 5 (0.08, 0.08, 0.08, 0.08, 0.68) 0 0.320 0.421
8 3 5 (0.08, 0.08, 0.08, 0.08, 0.68) 0 0.102 0.516
9 4 4 (0.15, 0.15, 0.15, 0.55) 0 0.091 0.533

collapsing the above 3 X 5 table into a 3 X 3 table with f = (0.16,0.16,0.68),
where we see that G(a,f,0+ ,0) remains unchanged. The most improvement
occurs when collapse of rows and columns is accompanied by an increase in k.
For example, collapsing a 4 X 4 table with 2 = 0 and f = (0.15, 0.15,0.15,0.55)
into a 2 X 2 table with 2 =1 and f = (0.30,0.70) reduces G(«,f,0+ , k) from
0.091 to 0.084. Increasing k to 5 for this 2 X 2 table leads to further reduction of
G(a,f,0+ , k) to 0.060.

The next corollary shows that the bound (8) converges to « for large values
of k.

COROLLARY 2.
(9) limOG(a,f,w,k)—>a ask - 0.

ProoF. From (8), the left side of (9) is just the probability of a type I error
of a x2? goodness-of-fit test applied to the random matrix N consisting of (r — 1)
ii.d. rows of a multinomial vector with |kf;' + 1| samples each. Letting k& grow
without limit implies letting the total sample size of N tend to oo, and the result
follows from the standard x? asymptotics. O

2.2. With continuity correction. Consider now the continuity corrected
statistic (2). A proof parallel to that of Theorem 2 yields the following theorem.

THEOREM 3. Under sampling model 1,

liminfa{?(k) > sup G (a,f,w, k) > a

w>0

and
liminfal?(k) > supH(a,f, 0, k) > a

n—oo w>0
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forany 0 < a <1 and k > 0, where

fjs.j
r—

o\ —(r=D) .
Gc(a’f’w’k) =( Z “ ) Z w Z l_[——'_

= | e
N min ;> k3! sELt) J=1 i=i(si)!

H(afo k) =etve ¥ o0y T]—07

3 r—1 ]
min ¢,> kf 3! set) J=1 I1z'=1 Sij')

and

r-1 c¢
2
0= (8T 5 - 01~ 2100 > -
i=1 j=1
It turns out that when & = 0 and the dimensions of the table are sufficiently
large, the limiting conditional size of the test is 1.

THEOREM 4. Suppose that

(10) (r=1)(c—-2)7°> 4x2 .
Then under sampling model 1, lim,, ,  «?(0) =1 forall 0 < a« < 1 and all £.

PRrOOF. Suppose that H, holds with ; given in (4). Then using the notation
there

Pr( X.C2 > x%,aléd())

R,lei}

r-1 ¢
2
= Pr{ > (IYij —-E - é) /E;; > Xf,a
1j=1

i=

r-1 c 9 r—1

Thew X P[{ L L (8= 4T = 1) /T > xa) 0 (Ti=1)

(11) =1 i=1j=1 i
+ Pr(min 7, > 1)

r-1 c¢
2
ZPI'{ Z(Si'_fjl_%)/fj>x%,a T,= --- =Tr—1=1}
i=1j=1
XPr(Ty= --- =T._, =1)/Pr(min T, > 1)
=Pr(Ty= -+ =T,_,=1)/Pr(min T, > 1) ool

Equality (11) is a consequence of the joint action of assumption (10), the fact
that (|y — f] — 1)? is constant when y = 0,1 for all 0 < f <1 and the inequality

c

(12) Y (f-3)/f2 (c - 2%/,

j=1
which holds because the left side of (12) is minimized when all the f; are equal to
c .. O
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The next theorem gives an upper bound on the limiting size when % > 0.

THEOREM 5. Under sampling model 1,
limsupa(P(k) < x, 2(v + re/(4k)}

n— oo

and
limsupal?(k) < x, %{v + re/(4k)}

n— oo

forall 0 <a <1, k>0 and all £.
ProOF. Since E;; > k for each i and j, we have

r c
X2<X?>+47' )Y Y EF'<X®+rc/(4k).
i=1 =1

The proof of Theorem 1 shows that for any set of integers {m,} such that
m; > k(min fj)_1 and ) m;=n,
i=1
we have

Pr{X2>x? |R;=m;i=1,...,r}

< X;iE{ Z (fjmi)_l(IYij - fjmil - %)2 R,i=m,i=1,..., 7’}
i=1j=1

< X;,%xE{ Z Z (fjmi)_l(Yij - fjmi)2 + re/(4k) \Ri =m,i=1,..., "}
i=1j=1

= x;i{n(n -1)" v+ rc/(4k)}.
Thus
Pr({X2>x2,} N&,) <Pr(X2> x2 J&,) < x;2{n(n— 1) + re/(4k))
and the proof is completed by taking limits. O

3. Both sets of marginal totals random. Suppose now that sampling is
performed such that the marginal totals {R;} and {C;} are all random. The
hypothesis to be tested is

HO:pij=p,-.p,j, i=1,...,r;j=1,...,c.
3.1. Without continuity correction. Because conditioning on the column to-

tals reduces the problem to that of sampling with one set of marginal totals
fixed, the next result follows from Theorem 1 by taking expectations.
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THEOREM 6. Under sampling model 2,
@,(k) < a,(k) <n(n—1)"vx,2

forall 0 <a<1landk >0.

To obtain a lower bound, assume H,, holds with
(13)  p.=pj=yA/n fori=1,..,r—1;j=1,...,c—1;A>0.
Then as n - 0, we have
(14) Y, >, T;;(N), E;—>pX, Vi=1l,..,r-1;j=1,...,¢c-1,

where {T;(A):i=1,...,r—1;j=1,...,c— 1} is a set of mutually indepen-
dent and identically distributed Poisson random variables with mean A. There-
fore

r—1c-1
Pr(X2>x2,) > Pr{ Y Y (v,-E;)/E;> xz}

i=1j=1
r—1c-1 9
S Bl T T Um0 - .
i=1 j=1
Because A~'/*T,(A) — A} is asymptotically standard normal as A — oo, we
have the following theorem.
THEOREM 7. Under sampling model 2,
liminfa (k) > J(k), liminta,(k) > J(k),
n—oo n— oo

where

r—-1c-1

J(k) = supPr| ¥ YA YT, (A) -2} >x2, >«

A>Ek i=1 j=1
forall 0 <a<landk=0.
Observe that J(k) is a decreasing function of k. A lower bound for J(%) may

be obtained as follows. Suppose that u — ; < A < u + 3, and that m of the T;
takes value u, for some integers 0 < m < v and u > k. Then

J

Z Z (T,(\) =AY 2 m(A—u)® + (v - m)(1 = ]\ — u])?

and hence

(15) J(k) > sup{K(v,a,A\,u): A\ >k, u>k,]A—u| <}},
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TABLE 3
Lower and upper bounds for the limiting conditional and unconditional
size without continuity correction; k = 0; both margins random

Lower bound Upper bound

v « \ K(v,,\,0) VXoa
1 0.01 0.117 0.110 0.151
0.05 0.176 0.161 0.260
5 0.01 0.059 0.255 0.331
0.05 0.078 0.323 0.452
10 0.01 0.040 0.330 0.431
0.05 0.050 0.393 0.546
50 0.01 0.012 0.451 0.657
0.05 0.014 0.503 0.741
100 0.01 0.007 0.503 0.736
0.05 0.007 0.503 0.804

0 0,1) =p! 0.632 1

where

! vom
K(v,a,\,u) = ), "1 -6)

g m! (v —m)!
(16) # = {m:O <m<vand m(A —u)’+ (v —m)(1 — ]\ — u|)® > )\xf‘a}
and

6=e *N/u!l.

Thus K(v, a, A, u) is a lower bound for J(&) for appropriate values of A and
u. Table 3 gives some values of K(», a, A,0) which are lower bounds for JJ(0).
They are the maximum values of K(»,a,A,u) over a grid {(u,A):u=
0,1,...,5; A =u +1/1000,i = 0,1,...,500}. It happens that the maximum is
consistently attained at u = 0. This observation leads to the following corollary.

COROLLARY 3. Under sampling model 2,
liminfa,(0) > 0.632, liminfa,(0) > 0.632
[o¢] n— oo

n—

for all 0 < a < 1 and v sufficiently large.

Proor. Put u=0and A =n»~! in (16), where 0 <5 < 1. Because x? , =
v+ za\/2_v, we have # = {0,1,...,» — 1} for all large ». Let V denote a binomial
variable with » trials and success probability e~"/%, and let 7T(7n) denote a
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Poisson variable with mean 7. Then for each n < 1 and » sufficiently large,
K(v,a,m» 1,0)=Pr(0 < V<»—1)
- Pr{T(n) 21} asv - .

The corollary now follows from (15), Theorem 7 and the fact that Pr{T(1) > 1} =
0.632. O

Notice that, unlike the lower bounds in Table 2, which are not monotonic in »
because they are functions of the column probabilities, those in Table 3 are
increasing in ».

3.2. With continuity correction. The following analog of Theorem 7 with the
continuity correction is similarly proved.

THEOREM 8. Under sampling model 2,
liminfal?(k) > J(k), liminfal?(k) > J(k),

where
r-1c-1

J(k) = supPr| ¥ LA YIT,(A) A - 1)’ > x2.| 2 a
A>k

i=1 j=1
forall 0 <a<landk >=0.

As in model 1, the lower bound for the limiting conditional size is too
conservative when & = 0.

THEOREM 9. Under sampling model 2,1lim,, _, , a{?(0) =1 forall 0 < a < 1.

Proor. Let H, hold with the probabilities given in (13) and suppose that
k = 0. Then (14) implies that

Pr(Xf > Xf,a) = Pr({IYu —E,| - %}2/E11 > X%,a)
“now Pr({lTll(}\) - AI - %}2/A > Xf,a)

x-0 L.

The theorem follows because Pr(&;,) — 1 asn — oc0. O

Our last result gives an upper bound for the case 2 > 0. It is proved by taking
expectations in Theorem 5.

THEOREM 10. Under sampling model 2,
limsupa{?(k) < x; 2{v + re/(4k)}

n—oo

and
limsupal?(k) < x,%{v + re/(4k)}

n— oo

forall 0 <a<1landk>0.
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4. Concluding remarks. Although the bounds we derived may sometimes
be conservative, they suggest the following conclusions.

1. Whether the continuity correction is used or not, and whether sampling is
performed with one set of margins fixed or with both sets random, the
asymptotic size of the x2-test, as the sample size increases, can be many times
larger than its nominal level.

2. The numbers in Tables 1 and 2 suggest that when sampling is performed with
one set of margins fixed, the best choice of f is one with equal components.

3. If the continuity correction is used, the test should be carried out conditional
on the event &, for some & > 0. Otherwise the asymptotic conditional size of
the test is one for all a.

4. Larger values of k yield tests with size closer to the nominal level than do
smaller values of k.

5. The upper bounds suggest that another way to improve the accuracy of the
size of a test is to collapse rows and columns to reduce degrees of freedom.

6. Interestingly, both an increase in % and a decrease in degrees of freedom can
be achieved by collapse of the rows and columns of a table. This explains why
the usual practice of collapsing a table to ensure that % is sufficiently large
tends to make the test more effective.

Acknowledgments. I am grateful to an Associate Editor and three referees
for their useful comments.
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