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ON THE RELATION BETWEEN S-ESTIMATORS AND
M-ESTIMATORS OF MULTIVARIATE LOCATION
AND COVARIANCE!
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We discuss the relation between S-estimators and M-estimators of
multivariate location and covariance. As in the case of the estimation of a
multiple regression parameter, S-estimators are shown to satisfy first-order
conditions of M-estimators. We show that the influence function IF (x; S, F)
of S-functionals exists and is the same as that of corresponding M-func-
tionals. Also, we show that S-estimators have a limiting normal distribution
which is similar to the limiting normal distribution of M-estimators. Finally,
we compare asymptotic variances and breakdown point of both types of
estimators.

1. Introduction and preliminaries. Recently Rousseeuw and Yohai (1984)
introduced S-estimators in the framework of multiple regression. These estima-
tors were shown to have the same asymptotic properties as corresponding
regression M-estimators, and also to have good robustness properties, as their
breakdown point (which can be interpreted as the percentage of outliers in the
sample that an estimator can handle) was shown to be 50%.

Davies (1987) investigated some properties of S-estimators of multivariate
location and covariance. Using a slightly different definition from the one
suggested in Rousseeuw and Yohai (1984), he treated existence, consistency,
asymptotic normality and breakdown point. However, the close correspondence
with multivariate M-estimators, as was found in the case of estimating a
regression parameter, remained hidden.

In this paper multivariate S-estimators are related to multivariate M-estima-
tors. First the definition of multivariate M- and S-estimators is discussed and it
is shown that S-estimators of multivariate location and covariance satisfy the
first-order conditions of multivariate M-estimators.

This will have the consequence that the asymptotic normality results and the
expression for the influence function of multivariate S-estimators are the same as
those of corresponding multivariate M-estimators.

Finally, we will compare asymptotic variances in relation with the breakdown
point for both types of estimators. It turns out that S-estimators can achieve the
variances attained by M-estimators, but they have the additional advantage that
in high dimensions (at the same level of asymptotic variance) the breakdown
point is considerably higher than that of M-estimators.
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All proofs have been saved for an Appendix at the end of the paper.

We will denote p-vectors by t = (¢,,...,¢,)T and (p X p)-matrices by M =
(m;;). For any p X p-matrix M, we write Dy, for the diagonal matrix consisting
of the diagonal of M; eigenvalues are denoted by A (M) < --- < A(M). The
class of positive definite symmetric matrices is written as PDS(p) and by
© = R? X PDS(p) we denote the set of pairs 8 = (t, C), which can be seen as an
open subset of R ?*1/2P(p+1)

By x,,X,,... we will mean vectors in R? and we will write X;, X,,... instead
if an underlying distribution is assumed.
The Euclidean norm is denoted by || - || and, because of the frequent appear-

ance of quadratic forms (x — t)’C~!(x — t), we will sometimes abbreviate them
by d%(x;t,C). Denote by E(t,C,c) an ellipsoid {x: (x — )TC™'(x — t) < ¢*}.
Partial derivatives dg(x, 0),/90 will sometimes be abbreviated by g,(x, 0).

We will focus on the estimation of the parameter 8 = (p, 2) which character-
izes an elliptical distribution F, 3 with a density of the form

(11) (det(2)) " [(x - )2 x - p)],

where f: [0, 00) — [0, 00) is a fixed function and (p, 2) € ©. Expectations with
respect to these distributions are denoted by E, 5. The matrix B represents the
unique positive definite symmetric matrix such that = = BBT. Note that it is
often easier to write E (|| X, ) instead of E, sh[(X, — p)"27(X; — p)], where
X, = B7(X, — p) and A is any real-valued function.

2. Definitions.

2.1. M-estimators. M-estimators were originally constructed by Huber (1964)
for the estimation of a one-dimensional location parameter. Later Huber (1967)
considered a very general framework in which consistency and asymptotic
normality were proved under relatively weak conditions.

Maronna (1976) was the first to define M-estimators for multivariate location
and covariance. Huber (1981) extended Maronna’s definition by defining M-
estimates based upon x,,...,x, € R? as solutions of the simultaneous equa-
tions:

(1/n) ¥ o(d)(x,~ ) = 0,
(2.1) N =1
a/mXE {0a(d2)(x, — t)(x, = )" — v,(d;)C} =0,

where d; = d(x;; t,C) and v,, v, and v, are real-valued functions on [0, c0).

ExaMPLE 2.1 (Huber’s Proposal 2). Take vy(y) =1 and v(y) = ¢,(¥)/,
for i =1,2, where ¥,(y) =vyu(y, k) and Yy(y) = Yu(y, k?). The function
Yy(y, k) = min{y, max{y, — k}} is known as Huber’s psi-function.
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Both existence and uniqueness of solutions of (2.1) were only shown for v; = 1
[Maronna (1976); Huber (1981)]. For this case Maronna (1976) shows consistency
and asymptotic normality by means of Huber’s (1967) results.

Maronna (1976) and Huber (1981) consider the breakdown point &* and the
influence function IF to measure the robustness of these estimators. They both
indicate that for solutions of (2.1) the breakdown point is at most 1/(p + 1). A
detailed treatment on the (finite-sample) breakdown behaviour of this type of
M-estimators is given in Tyler (1986). One should note that these results assume
monotonicity of v, and v; to be constant. So from the viewpoint of breakdown,
M-estimators become more sensitive to outliers in high dimensions. From the
viewpoint of the influence function (which describes the effect of one outlier on
the estimate), M-estimators are robust, as their influence function remains
bounded when v,, v, and v in (2.1) are chosen suitably [see Huber (1981)].

2.2. S-estimators. Rousseeuw and Yohai (1984) introduced S-estimators in a
regression context and defined them as the solution to the problem of minimizing
¢ subject to

1z yi_GTxi
(2.2) - Zp(———) ~ b,

among all (8, 6) € R” X (0, c0), where 0 < b, < sup p. The special case p(y) = y?
in (2.2) obviously leads to the least squares estimates. In order to obtain more
robust estimates and preserve asymptotic normality the function p was assumed
to satisfy:

(R1) p is symmetric, has a continuous derivative ¢ and p(0) = 0.
(R2) There exists a finite constant ¢, > 0 such that p is strictly increasing on
[0, ¢,] and constant on [c,, »). (Put a, = supp.)

A direct generalization to S-estimators of multivariate location and covariance is
obtained simply by adjustment of (2.2).

DEFINITION 2.1. Let x,,X,,...,Xx, ER? and let p: R — [0, c0) satisfy (R1)
and (R2). Then the S-estimate of multivariate location and covariance is defined
as the solution 6, = (t,,C,) to the problem of minimizing det(C) subject to

‘

(2.3) o[ {(xi - 97C 2z, 1)) ] = 8,

S|~
™M=

1

l

among all (t,C) € ©. Denote this minimization problem by (Z£,).

The constant 0 < b, < @, can be chosen in agreement with an assumed
underlying distribution. For instance, if x,,x,,...,X, are assumed to be a
sample X, X,,..., X,, with an underlying elliptical distribution (1.1), then the
constant b, is generally chosen to be E ;o(|| X,|). In that case the constant ¢,
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can be chosen such that 0 < b,/a, = r < (n — p)/2n, which leads to a (finite-
sample) breakdown point ¢* = [nr]/n [see Lopuhad and Rousseeuw (1987)]. For
r = (n — p)/2n one obtains the maximal breakdown point |(n — p + 1)/2]/n,
or asymptotically 0.50. However, the constant ¢, at the same time determines
the asymptotic variance and, as we will see in Section 6, it is not possible to
achieve small asymptotic variance and 50% breakdown point simultaneously.

It might be worthwhile to mention that S-estimators of location and covari-
ance can also be seen as robustifications of the least squares method. If b, = p,
then using p(y) = ¥? in (2.3) yields the sample mean and sample covariance as
unique solutions of (#,) [see for instance Griibel (1988)].

ExaAMPLE 2.2 (Tukey’s biweight). An example of a rho-function for (2.3) is

B_X LY s

2 2¢¢  6cy’ Y = Cos
pB(y:CO) = 2

% f >

P or 2 Cqh.

6 [yl 0

Its derivative, which is a redescending (psi-) function, is known as Tukey’s
biweight function ¥y, ¢;) = (1 — ( y/co)z)zl[_% ol ()

Davies (1987) defines S-estimates similarly only instead of p he uses a
nonincreasing function x: R,— [0,1] in (2.3). It is related to p as k(y) =
1 — p(y?)/a,. If “continuous differentiability of p” is weakened to “p being
left-continuous on (0, c0) and continuous at 0,” if “strict increasing” on [0, c¢,] is
weakened to “nondecreasing,” and if “ = ” is replaced by “ < ” in (2.3), then the
two definitions are equivalent. Under these weaker conditions Davies proves
existence and consistency of S-estimates, and he obtains asymptotic normality
assuming that the function k has a third continuous derivative.

We will extend existence and consistency of S-estimates to existence and
continuity of S-functionals and obtain the influence function, and we will extend
the asymptotic normality result by considering S-estimators as a special type of
M-estimators and use Huber’s (1967) results.

2.3. Relationship between M- and S-estimators. A drawback of using «
instead of p is that the conjectured correspondence with M-estimators remains
hidden. In this section we will show that a solution to the minimization problem
(£,) also satisfies the first-order M-estimator conditions (2.1).

Let 8, =(t,,C,) be a solution of (#£,). Then, if by A, we denote the
corresponding Lagrange multiplier, the pair (8,, A,) is a zero of all partial
derivatives dL,/dt, dL,/dC and dL,/d\, where L, is the Lagrangian

L,(0,A) = log(det(C)) — A{% Zn: p[{(xi -t)7Cc(x, - t)}1/2] _ bo}'

i=1



1666 H. P. LOPUHAA

This means that besides constraint (2.3), (8,, A,,) satisfies the equations

(A/n) X u(d;)C7\(x;— t) =0,
(2.4) = n
2C7! — De-1 + (A/2n) ¥ u(d,)(2V; — Dy,) = 0,
i=1
where u(y) =y(y)/y, d;=d(x;t,C) and V;=C™\(x; - t)(x; — )"C™7 [for
derivatives with respect to symmetric matrices, see Graybill (1983)]. But the
second (matrix) equation can be written as

A r

(2.5) I+ on Y u(d)A M (x, - t)(x, - t)"A"T =0,
i=1

where AAT = C. When we take the trace we get p + (A/2n)L™, ¢(d,;)d; = 0.

Obviously we can solve A, from this equation, yielding

-1

’

1 n
)\n = _2p(; Z ll/(di,n)di,n
i=1

where d; , = d(x; t,,C,). If we substitute this into (2.5), together with (2.4) and
(2.3) we find that any solution 6, of (£,) satisfies the equations

(1/n) T u(d)(x; ~ £) = 0,
(2.6 .
(1/n) ‘§1 {pu(di)(xi - t)(x; - t)T - U(di)C} =0,

where o(y) = Y(y)y — p(y) + b,. The term —p(y) + b, is added to Y(y)y
because merely substituting A, into (2.5) would give us a system of linear
dependent equations for any pair (t,C) € 0.

So any solution of (£,) turns out to be also a solution of (2.6) which obviously
are of M-estimator type (2.1). To match the notation used in Huber (1967) we
write (2.6) as

(2.) ~ ¥ ¥(x,0) =0,

where 0 = (t,C) € © and ¥ = (¥,, ¥,) is the function
¥,(x,0) = u(d)(x - t),
¥(x,8) = pu(d)(x - t)(x - 1)" ~ o(d)C,

with d = d(x; t, C). We conclude that S-estimators satisfy first-order conditions
(2.1) of M-estimators as defined in Huber (1981), or rather (2.7) of the type
considered in Huber (1967).

However, recall that S-estimators are originally defined by the minimization
problem (£,), which is not equivalent to (2.7), and that in any dimension they
can still be constructed with high breakdown point. The cause of these differ-

(2.8)
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ences might lie in the functions v,(+) and vy -) of (2.1) and the functions u(-) and
v(-) of (2.6). For instance, Huber (1981) chooses v, >0 and v; >0 to be
monotone, and the latter even equal to a constant for proving both existence
and uniqueness of solutions of (2.1). The functions u(y) = ¢(y)/y and v(y) =
Y(¥)y — p(y) + b, will never satisfy either condition.

One could call any solution of (2.7) an M-estimate. However, M-estimates are
generally associated with low breakdown point and with implicit equations (2.1),
with v, decreasing and v, being constant. As this is not the case for S-estimates
we tend.to consider these estimates to be of a different type.

Although the S-estimate is probably not the only solution of (2.7), it is a
solution with high breakdown point. To find it, one must therefore solve (£,)
and not just (2.7). Nevertheless S-estimators do satisfy (2.7) which has the
consequence that their asymptotic behaviour and their influence function are the
same as for M-estimators.

3. S-functionals and influence function. For the derivation of the influ-
ence function we have to extend Definition 2.1 to a functional formulation. We
will identify every distribution function F with its corresponding probability
measure P, on R?, and for brevity we call this distribution F. Denote by % the
class of all distributions on R”. The functional analogue of the S-estimator of
multivariate location and covariance is defined as follows.

DEFINITION 3.1. Let p: R — [0, »0) be a function satisfying (R1) and (R2).
Then the S-functional S: % — © is defined as the solution S(F') = ((F), C(F'))
to the problem of minimizing det(C) subject to

B 1/2
(3.1) [el(v - 97c iy - )] aF(y) = by
among all (t,C) € O, where 0 < b, < a,. Denote this problem by (#p).

Existence of solutions of (%) is ensured if there is not too much mass
concentrated at infinity or at arbitrarily thin strips H(e,7,8) = {y: { < Ty <
I+ 8}, where |lof =1, 8 > 0and / € R. Let 0 < ¢ < 1 and consider the following
property for the measure P; on R? corresponding with distribution F:

(C,) There exists a compact set B, € R? such that Pr(B)>1—¢, and the
value 8, = inf(8: Pp(H(a,1,8)) > ¢, ||la| = 1, 8 > 0, [ € R} is strictly posi-
tive.

THEOREM 3.1. Let F satisfy property (C,) for some 0 <e¢ < 1 — r, where
r = by/a,. Then (Py) has at least one solution.

Let G, k > 0, be a sequence of probability distributions on R” that con-
verges weakly to F as £ — 0. The following theorem shows when S-functionals
are continuous.



1668 H. P. LOPUHAA

THEOREM 3.2. Let € be the class of all measurable convex subsets of RP
and suppose that every E € € is a Pg-continuity set, i.e., P(dE) = 0. Suppose
that F satisfies (C,) for some 0 < ¢ < 1 — r, and assume that the solution S(F')
of (Py) is unique. Then for k sufficiently large, (#g,) has at least one solution
S(G,) and for any sequence of solutions S(G,), k = 0, lim,, _, . S(G,) = S(F)
holds.

REMARK 3.1. In the proof of Theorem 3.1 strict monotonicity of p on [0, c,]
is not needed and continuity of p is not essential. This means that Theorem 3.1
can easily be shown to hold also for S-functionals that correspond to the larger
class of S-estimates considered by Davies (1987) (see Section 2.2). With a
stronger condition on F, which will ensure [p(|ly||/(1 + 7)) dF(y) to be strictly
decreasing at » = 0, also Theorem 3.2 can be shown to hold for these S-func-
tionals.

REMARK 3.2. A part of the proof of Theorem 3.2 consists of showing that
solutions S(G,) eventually stay inside a fixed compact set. For the special case
G, = (1 — h)F + hA_ (see Definition 3.2) one can show that if 0 < r <  and if
F only satisfies (C,) for ¢ = (1 — 2r)(1 — r)~!, then for any 0 < a <1 there
exists a compact set K(a) independent of x such that for all z € [0, ar] the
problem () has at least one solution and all solutions are contained in K(a).

Condition 0 < r < % is similar to the condition 0 < r < (n — p)/2n which
ensures (finite-sample) breakdown point &* = [nr]/n (see Section 2.2). The
latter means that the S-estimator stays in some fixed compact subset of ® when
the amount of contamination is less than &*. This is in agreement with the
statement above that when the amount of contamination at x € R” is less than
r, the S-functional stays within a compact subset of ©.

The robustness of the S-estimator can be measured by means of the influence
function [see Hampel (1974)]. It is defined in terms of the S-functional in the
following manner.

DEFINITION 3.2. Let S(:) be a vector-valued mapping from a subset of #
into © and let F lie in the domain of S(-). If A_ denotes the atomic probability
distribution concentrated in x € R”, then the influence function of S(-) at F is
defined pointwise by ‘

(3.2) IF(x; S, F) = lim S((1 — R)F + hA,) — S(F) |
hl0 h

if this limit exists for every x € R?.

If we replace F' by the empirical distribution F,_, and A by 1/n, we realize
that the IF measures a weighted alteration of the value of the estimator when
one additional observation is added to a large sample of size n — 1. The
importance of the influence function lies in its heuristic interpretation: It
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describes the effect of an infinitesimal contamination at point x on the estimate.
A bounded influence function is therefore considered to be a good robustness
property.

To derive the IF at a distribution F we need to be sure that S(-) is uniquely
defined at (1 — A)F + hA,, for all x € R” at least for small A, and second, that
the limit (3.2) exists for all x € R ”. Theorem 3.2 ensures that for all x € R? and
h sufficiently small the problem (%, ), with G, = (1 — h)F + hA,, has at least
one solution and that all solutions are continuous.

We conclude that for 4 sufficiently small there exist solutions 8, = (t,,C,) of
(%g,) and that they all converge to the same limit (t( F'), C(F)) as h tends to 0.
Therefore there exists an open neighbourhood N of S(F) which contains all
solutions 8, for A sufficiently small.

Remember that (2.7) is obtained from differentiation of the Lagrangian
corresponding with problem (£,). Similarly one could now differentiate the
Lagrangian corresponding with the problem (). If we restrict to the neigh-
bourhood N, we may interchange the order of differentiation and integration,
and similar to (2.7) we obtain the equation

(3.3) [¥(v.0) dF(y) = 0,

where ¥(y, 0) is defined in (2.8).

Solutions (t;, C;) of (%, ) must be a solution (not necessarily the only one) of
(3.3), at least for A sufficiently small. Note that if we had considered a functional
M: % — 0, defined as the solution of (3.3), we could have some problems to
ensure the uniqueness, and therefore for obtaining the influence function
IF(x; S, F) we explicitly consider the solution S(F') of (3.3). The implicit func-
tion theorem, applied to this equation will ensure the uniqueness of S(-) at G,
for h sufficiently small, and also the existence of IF(x; S, F').

THEOREM 3.3. Let p: R — [0, o0) satisfy (R1) and (R2). Assume that p has
a second derivative Y’ and suppose that

(R3) Y'(y) and u(y) = ¥(y)/y are bounded and continuous.

Suppose that the conditions of Theorem 3.2 hold. Let ¥ be defined as in (2.8)
and let N(8) = Ep¥(X, 0). Suppose that \(-) has a nonsingular derivative A
at S(F) = ((F),C(F)). Then the influence function IF(x;$S, F) exists and
satisfies

(3.4) IF(x;S, F) = —A~¥(x,S(F)).

Huber (1981) showed that (3.3) has a unique solution when certain monotonic-
ity conditions on the functions «(-) and o(-) are satisfied. One of these condi-
tions is that the function o(-) is constant. In our case v(-) is certainly not a
constant function and so (3.3) may have many solutions. However, it is possible
that there is a unique “S-solution” among all solutions of (3.3). For this solution
we have derived the IF and naturally the expression is of the same type as for
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multivariate M-estimators. Note that the properties of the function p imply that
the influence function IF(x; S, F') is bounded.

4. Asymptotic normality of S-estimators. Let X, X,,... be a sequence
of independent random vectors X; = (X,,. Xip)T with a distribution F on
R ?. Suppose that for n > p + 1 the sample Xl, ..., X, is in general position,
i.e., no p + 1 points lie in some ( p — 1)-dimensional subspace, almost surely.

When F in Definition 3.1 equals the empirical distribution F,, we get the
definition of the S-estimator. Note that F, satisfies (C,) for ¢ = (p + 1)/n
almost surely, so as a special case of Theorem 3.1 we have that for n(1 — r) >
p + 1 the problem (£,) has at least one solution almost surely. If F satisfies the
conditions of Theorem 3.2 one has consistency: 8, — (t(F), C(F')) almost surely.

As we have seen in Section 2.3 solutions 8, of (£,) satisfy first-order condi-
tions (2.7) of M-estimators. An immediate consequence is that the asymptotic
behaviour of S-estimators is similar to that of M-estimators.

THEOREM 4.1. Let p: R = [0, 0) satisfy (R1)-(R3) and suppose that the
conditions of Theorem 3.2 hold. Let ¥ be defined as in (2.8) and let \g(-) be
defined as in Theorem 3.3. Suppose that the solution S(F) of (Py) is unique
and that Np(-) has a nonsingular derivative A at 0, = S(F). Let 0, be a
solution of (2,). Then n'/*(8, — 8,) has a limiting normal distribution with zero
mean and covariance matrix A"'MA~T, where M stands for the covariance
matrix of ¥(X,, S(F)).

REMARK 4.1. One might try to prove asymptotic normality of S-estimators
directly from Definition 2.1 and avoid (2.7). A first derivative ¢ of p in (R1),
needed to arrive at (2.7) is then no longer required. At least continuity of p seems
necessary. This is indicated by the results of Kim and Pollard (1988) on
Rousseeuw’s (1986) minimum volume ellipsoid estimator, which can be seen as an
S-estimator with a discontinuous p-function.

5. Elliptical distributions. Consider the case that F = F, 5 is elliptical
and therefore take b, = !Eo ()| XolD in (2.3) and (3.1). For this ch01ce of F, Huber
(1981) obtains the expression for the IF of M-functionals and Maronna (1976)
gives a detailed description for the asymptotic covariance matrix of location
M-estimators. We compare these results with Theorems 3.3 and 4.1 applied to
F, s.

"It is not difficult to show that F, 5 satisfies property (C,) for any 0 < & < 1, so
according to Theorem 3.1 at least one solution of (.@F ;) exists. Davies (1987)
showed that it is even unique and Fisher consistent,

(5'1) S(F;A,E) = (M,E).

The following corollary gives a detailed description of the limiting normal
distribution of n'/%(8, — 6,). In particular, the asymptotic covariance of the
location S-estimate t, as defined in Definition 2.1 is exactly the same as the
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asymptotic covariance found for the location M-estimate considered by Maronna
(1976) if one chooses v,(y) = x,b(y)/y in (2.1).

To describe the asymptotic covariance matrix of n'/?(C, — =) in condensed
form, we represent (p X p)-matrices M by vecM) = (my,..., m,,...,
My, ..., m, )T The operator vec(-) just stacks the columns of M on top of each
other. Magnus and Neudecker (1979) investigated algebraic properties of this
operator in relation with the commutation matrix K,, . Here we will only use
the special case K, ,, which is a ( p? X p%)-block matnx with (i, j)-block being
equal to A ;. The latter is a (p X p)-matrix which is 1 at entry (j,7) and 0
everywhere else Fmally, M ® N denotes the Kronecker product of the matrices
M and N which is a (p? X p?)-block matrix with (p X p)-blocks, the (z J)-block
equal to m;;N.

COROLLARY 5.1. Let p: R — [0,0) satisfy (R1)-(R3) and let F be the
elliptical distribution with parameter 8, = (p, 2). Suppose that

Eo,1¥'(I Xoll) > 0,
(5.2)
Eo i [ ¥/ (IXDII X% + (2 + D (I X1 Xol] > 0.

When 0, = (t,,C,) is a solution of (2,), then n'/*(8, — 8,) has a lmiting
normal distribution with zero mean and t, and C, are asymptotically indepen-
dent. The covariance matrix of the limiting distribution of n*/%(t, — p) is given
by (a/B*Z, where

1
a=—Eo (11 Xol),

p
(5.3)

=E [1 ! X Ly X
B= 0,1( —;)u(” 0||)+;1P(|| oll) |-

The covariance matrix of the limiting distribution of n*/*(C, — =) is given by
(5.4) o(I+K, ,)(Z®3)+ o, vec(T)vec(Z)",
where
_ p(p + 2)E o 1¢*(11 Xl | XolI?
(Eo [ (IXMIXN? + (p + DU (IXIDIXN] )
2 4E,(p(IXll) — )"

0, = ——0,;

p {Eo r¢ (1 X0l Xoll}®

For the influence function, it is sufficient to give the expression of IF(x; S, F, 1)
because affine equivariance of S(-) yields the general expressions

IF(x;t, F, 5) = BIF(B~'(x — p);t, Fy 1),
IF(x;C, F, 5) = BIF(B"!(x — p); C, F, ;)B".

(5.5)

(5.6)
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We will describe IF(x; S, K, ;) such that it can be compared with the expressions
found for M-functionals in Huber (1981).

COROLLARY 5.2. Let p: R — [0,00) satisfy (R1)-(R3) and suppose that
conditions (5.2) hold. Then the influence function IF(x; S, F, ;) of the S-func-
tional defined in Definition 3.2 exists and it holds that

1 X
5.7 IF(x;t, F, ;) = =y (|x|) —,
(5.7) (53t For) = (Il s
where B is defined in (5.3) and IF(x; C, K, ;) satisfies

1
IF(x;C, Fy ) — > trace[IF(x; C, F, 1)]1

(5.8) T
il B - Ly
yl”‘”” I ||(”x”2 > )
and
1 . 2
(5.9) > trace[IF(x; C, Fy ;)] = 73("(”"”) - by),

where v, is defined in (A11) and v5 = Eq cb (I XolDl| Xl

6. Asymptotic variance in relation to breakdown point. We compute
asymptotic variances of the S-estimator defined by Tukey’s biweight function
pg(+, cy) of Example 2.2. The variances are computed for different values of p
(= 1,2 and 10) and for each p the constant ¢, is given five different values that
correspond with the values for r = 0.1,0.2, 0.3, 0.4 and 0.5, by means of the
relation

(6.1) Egpa(l1X1l; ¢o) _

(c2/6)

where the expectation is with respect to the standard normal distribution. The
values of r are the limiting values of the finite sample breakdown point
¢* = [nr]/n. Denote the corresponding S-estimator by S(r, p).

We compare these results with the asymptotic variances of the M-estimator
defined by Huber’s Proposal 2 of Example 2.1. The different choices of
correspond to “windsorizing proportions” w = Py{|| X|| > &k} (= 0.3, 0.2, 0.1 and
0). Denote the corresponding M-estimator by H(w, p). Note that in all cases
sup ¥, = k%2> p, which is needed for the existence of H(w, p). By H(0, p) we
mean the limiting case of H(w, p) as k - «. Note that H(0, p) is also the
limiting case of S(r, p) as ¢, = oo, namely sample mean and sample covariance.

Maronna (1976) already computed asymptotic variances for the H(w, p)-loca-
tion estimator at the multivariate student and the multivariate normal distribu-
tion, and Tyler (1983) computed an index for the asymptotic variance of the
H(w, p)-covariance estimator also at these distributions as well as at a symmet-
ric contaminated normal distribution with thicker tails.

r,
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TABLE 1
Asymptotic variances of S(r, p) and H(w, p) attained at NOR and SCN

p=1 p=2 p=10

NOR SCN NOR SCN NOR SCN

S(0.5) A 3.485 4.007 1.725 1.952 1.072 1.191
n 3.711 4.301 2.656 3.020 1.093 1.215

S(0.4) A 2.165 2.499 1.356 1.542 1.036 1.152
n 2.949 3.554 1.736 1.991 1.045 1.163

S(0.3) A 1.512 1.757 1.157 1.327 1.016 1.133
n 2.467 3.174 1.298 1.516 1.020 1.140

S(0.2) A 1.181 1.392 1.055 1.232 1.006 1.139
n 2.176 3.173 1.096 1.334 1.007 1.174

S(0.1) A 1.035 1.271 1.011 1.252 1.001 1.250
n 2.035 3919 1.018 1.430 1.001 1.527

H(0.3) A 1.100 1.327 1.048 1.260 1.009 1.185
n 3.974 4.231 1.256 1.302 1.047 1.066

H(0.2) A 1.060 1.302 1.029 1.257 1.005 1.190
i 3.186 3.536 1.171 1.246 1.030 1.060

H(0.1) A 1.026 1.299 1.012 1.272 1.002 1.203
n 2.561 3.119 1.087 1.230 1.014 1.070

H(0) A 1.000 1.800 1.000 1.800 1.000 1.800
n 2.000 7.333 1.000 2.778 1.000 2.778

We consider the multivariate normal (NOR) distribution N(p,Z) and the
symmetric contaminated normal (SCN) distribution 0.9N(p, 2) + 0.1N(p,92).
Table 1 lists the asymptotic variances. It partly overlaps similar tables in
Maronna (1976) and Tyler (1983).

In all cases the location estimator has an asymptotic covariance which is a
certain multiple A of =. The expression for A for S(r, p) is obtained from (5.3),
and the expression for A for H(w, p) is given in Maronna (1976). The values of A
are listed in Table 1.

In all cases the covariance estimator has an asymptotic covariance that is of
type (5.4) [Tyler (1982)]. To measure the asymptotic variance of the covariance
estimators we distinguish the cases p = 1 and p > 2. If p = 1, then (1.1) reduces
to (1/0)f [(x — p)?/a%] and we give the value n = 20, + o, which represents the
asymptotic variance of n'/%(s2 — %), where s2 denotes the estimate for the scale
parameter o2 of the underlying distribution.

For p > 2 we give the value n = o,. Tyler (1983) compared values of o, for
different covariance M-estimators with simulated values of a Monte Carlo study
of robust covariance estimators in Devlin, Gnanadesikan and Kettenring (1981).
It turned out that o, suffices as an index for the asymptotic variance of the
correlation estimator based upon the robust covariance estimator. The expres-
sion for o, for S(r, p) is given in (5.4), and the expression for o, for H(w, p) is
given in Tyler (1982).

From Table 1 we see that the asymptotic variances of S(r, p) for r not too
large are of similar magnitude as the asymptotic variances of H(w, p), except at
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TABLE 2
Comparison of breakdown points of S(r, p) and H(w, p) at the same level of asymptotic variance
attained at NOR and SCN

S(r, p) at NOR S(r, p) at NOR S(r,p) at SCN

p H(w, p) o A r(\) o r(o;) A r(\)
2 H(0.1) 0.217 1.012 0.104 1.087 0.192 1.272 0.256
H(0.223) 0.333 1.033 0.162 1.190 0.256 1.257 0.239

H(0.3) 0.169 1.048 0.189 1.256 0.285 1.260 0.243

10 ‘H(0.1) 0.063 1.002 0.124 1.014 0.263 1.203 0.500
H(0.2) 0.074 1.005 0.186 1.030 0.349 1.190 0.497

H(0.3) 0.085 1.009 0.238 1.047 0.406 1.185 0.487

H(0.358) 0.091 1.011 0.258 1.057 0.432 1.183 0.483

the SCN distribution where the H(w, p)-covariance estimator has a better
performance. In general the asymptotic variance of S(r, p) decreases simultane-
ously with the breakdown point r. However, in contrast with M-estimators, for
every dimension p it is possible to construct an S-estimator with a high
breakdown point.

It is interesting to compare the breakdown points of S(r, p) and H(w, p) at
the same level of asymptotic variance. Table 2 gives such a comparison.

According to Tyler (1986), when k2 > p, then the limiting value of the
breakdown point of H(w, p) equals 8* = min{1/k? 1 — p/k?}, which is maxi-
mal when k% =p + 1. The values w = 0.223 and 0.358 in Table 2 correspond
with the values k2 =p + 1.

Given the asymptotic variance A of the H(w, p)-location estimator at the
NOR distribution, the constant ¢, of pg (:,¢c,) is determined such that
the S(r, p)-location estimator achieves the same level of A. With this value of c,
the breakdown point r(A) is computed by means of (6.1). Next this procedure is
repeated given the value o, of the H(w, p)-covariance estimator at the NOR
distribution, and finally the procedure is repeated given the value A of the
H(w, p)-location estimator at the SCN distribution.

We conclude that the S-estimator is able to achieve the asymptotic variances
attained by the M-estimator, but in addition it has a breakdown point that
becomes considerably higher when the dimension p increases.

APPENDIX

The proofs of existence and consistency of S-estimators in Davies (1987)
extend fairly easily to existence and continuity of S-functionals. The following
lemma is fundamental.

LEMMA 3.1. Let (1,C)€0©,0<my<o0,0<c<ooand 0 <e<1.

(1) If F satisfies (C,) and Pp(E(t,C, ¢)) > ¢, then A (C) > k, > 0, where k,
only depends on ¢, F and c.
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(i) Assume A, (C) =k, > 0. If [p(|lyll/m,) dF(y) < b,, then any solution
(t, C) of (P§) must have A (C) < k, < oo, where k, only depends on k, and m,,

(iii) Let F satisfy (C,) and suppose Py(E(t,C,c)) > e If A(C) <k, < oo,
then (t,C) is contained in a compact set K C ©, which only depends on ¢, F, ¢
and k.

PrOOF. Because E(t,C,c) is contained in some strip H(a,l,2¢/A,(C)) it
follows from (C,) that A ,(C) > (8,/c)?/4 > 0, which proves (i).

The function p is continuous and nondecreasing on [0, ), so any solution of
(Zp) is also a solution to the same minimization problem with constraint (3.1)
replaced by

(A1) Jel{6 =97 - 9} ar(y) < b,

As the pair (0, m2I) satisfies (A.1) we conclude that any possible solution of (%)
must have det(C) < m2P. Because A AC) =k, >0 we find that A(C) <
m2P /kP~1 < oo which proves (ii).

Let B, be the compact set such that Py(B,) > 1 — &. Then |t — y|| < c‘/k—2 for
some y € B,. Otherwise E(t,C, c) would be contained in B¢ which would be in
contradiction with P,(E(t,C, c¢)) > e. So |it|| is bounded and together with (i) the
lemma follows. O

PROOF OF THEOREM 3.1. Let (t,C) € O satisfy constraint (3.1). Then we find

(na) PrlECC) 1= [ol(r - vTe s - 9)] arty)

=1l—-r>e.
Lemma 3.1(i) implies that A (C) > &, > 0. Because lim,, _,,, [p(|ly|l/m) dF(y) =
0, there exists an m, > 0 such that [p(|ly||/m,) dF(y) < b,. Lemma 3.1(ii) yields
that A,(C) < k, < co. Finally Lemma 3.1(iii) implies that for solving () one
may restrict to a compact subset K C @. As det(C) is a continuous function of
(t, C) it must attain a minimum on K. O

LemMA 32. Let G,, k>0, be a sequence of distributions on RP? that
converges weakly to F as k > . Let 8,, k > 0, be a sequence in © such that
B, = 6, as k > co. If g(y,0) = p[{(y — t)"C~X(y — t)}'/2], then

(A3) lim [g(y,0,) dG,(v) = [&(y,8,) dF(y).
Proor. Put g,(y) = &(y,0,) and g,(y) = &(y, 0,). Then for every sequence
{y.} with y, — y we have
klin;gk(yk) =g.(y)-

Next apply Theorem 55 of Billingsley (1968). Let T': [0, ) — [0, 00) be
the function I'(y) =yl ,1(¥) + @0l (4, )(¥), which is a bounded uniformly
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continuous function. Then as a consequence of G, = F we have

lim [T(g,(y) dGi(y) = [T(g.(y)) dF(y),
which proves (A.3). O

ProoF oF THEOREM 3.2. According to Ranga Rao (1962), Theorem 4.2 we
have

(A4) sup |P; (E) — Po(E) -0 ask — oo.
Ee®

Because strips H(a,l,8) € ¥, (A.4) implies that for k& sufficiently large every
strip with Pg(H(a,1,8)) > 1 — r must also satisfy Pp(H(a, [, 8)) > e. This
means that

inf{8: Py (H(a,1,8)) 21— r} > inf(8: Po(H(a,1,8)) > €} > 0.

Next consider the compact set B, of (C,). We may assume that it belongs to ¢
and therefore, as Py(B,) > 1 — ¢ > r, for k sufficiently large F;(B,) > r. We
conclude that for % sufficiently large G, satisfies (C,_,) and according to
Theorem 3.1 at least one solution exists.

Denote S(G,) = 68, = (t,,C,). Because compact (convex) sets are transformed
affinely into compact (convex) sets and because S(-) is affine equivariant, we may
assume that S(F') = (0,I). Similar to (A.2) we find Po(E(ty, Cpyco) 21—,
such that from (A.4) it follows that for % sufficiently large Pp(E(t,,C,, c,)) =
3(1 — r). Lemma 3.1(i) implies that A (C,) > &, > 0 for & sufficiently large.

According to Lemma 3.2 for any n > —1, we have

Jeyll/(t +m)) dGy(y) = [olyll/(1 +n)) dF(y),

as k — oo. As the limit is strictly decreasing at n = 0 we see that for any 1 > 0,

/ vl

1 +7
for % sufficiently large. Then similar to the proof of Lemma 3.1(ii) we find that
det(C,) < (1 + n)?? eventually. Because n > 0 may be taken arbitrarily small,
we conclude that
(A.5) limsupdet(C;) < 1
k— oo

and we find that A (C,) < 47/kP ! eventually. With Lemma 3.1(iii) we see that
there exists a compact set K such that for k2 sufficiently large the sequence
{6:) < K.

Consider a convergent subsequence {6} with 8, — 0, = (t,,CL). With
Lemma 3.2 we find that

fp[d(y;tL’CL)] dF(y) = Jim fp[d(y;tk,,ck,.)] dG,, (y) = b,.

So 0, turns out to satisfy constraint (3.1) of (£) which has solution (0, I). This

dGy(y) < [o(lyl) dF(y) = b,
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means that det(C,) > 1. Next, (A.5) yields det(C,) = 1. But then uniqueness of
(0, 1) implies 8, = (0,I). As {0,} eventually stays in a compact set we must have
lim,_ 6, =(0,I). O

To prove Theorem 3.3 we will use the following version of the implicit
function theorem.

THEOREM 3.4. Let # be a metric space, (hy,8,) € Q2 C A X R*, Q open.
When W: M X R* > R*, with W(h,, 8,) = 0 is such that

1. W is continuous on Q,
2. dW /38 is continuous on 2,
3. dW /38 is nonsingular at (h,, 8,),

then there exists a neighbourhood B, X B, of (h,, 8,) on which a function 0(-):
B, — B, exists such that W(h, 0(h)) = 0. Moreover it holds that:

4. If (h,8) € B, X B, with W(h,8) = 0, then § = 0(h).
5. 8(-) is continuous on B,.

Solutions 6, of (#;,) eventually are contained in an open neighbourhood N of
S(F'), and they satisfy (3.3) or equivalently the pairs (A, 0,) are a zero of the
function W(-; x): [0,1] X © — O, defined as

W(h,0;x) = [¥(y,0) dG,(y)
(A.6)

= (1= &) [¥(y,8) dF(y) + h¥(x,0),

where ¥ = (¥,,¥,) is defined in (2.8). Theorem 3.4 will be applied to the
function W(A, 6; x) considered on the open subset @ =[0,1] X N of [0,1] X
RP+1/2p(P* 1) Tn this setup Theorem 3.4(4) will ensure the uniqueness of S(+) at
G,,, sufficiently close to F, but first we note that the existence of limit (3.2) is also
implied by conditions 1-3 above.

COROLLARY 3.5. Let x € R? and let W(h, 8; x), as defined in (A.6), satisfy
conditions 1-3 of Theorem 3.4 in the setup described above. Let 6, =
(t(F),C(F)). When W(-, 8,; X) has a right derivative

IW W(h,0,;x) — W(0,86,)
—(0,0,;x) = 1i
ah ( ’» Y0 X) hli% h

at h = 0, then also the function 0(-; x) has a right derivative at h = 0, with

a0 IwW A
(A7) R ) (AT )

Proor. When .# would be a Banach space it is a known consequence of the
implicit function theorem that when W(-; x) is continuously differentiable on ©
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and satisfies (3), the function 0(:) is continuously differentiable on B, [see
Dieudonné (1960)]. We are not dealing with a Banach space .#, but we are also
not interested in the total (or Fréchet) derivative of 8(-; x) but only in the right
derivative of 8(-; x) at A = 0. It is not difficult to prove (A.7) similar to Theorem
10.2.1 in Dieudonné (1960). O

LEMMA 3.3. Let p: R — [0, 0) satisfy (R1)-(R3) and consider the function
¥(x,0) of (2.8). Then:

(1) ¥ is bounded and continuous on R? X ©.
(i) d¥ /00 is continuous on RP X O and is bounded by a constant which
depends only upon ||C|| and ||C||.

Proor. Continuity of ¥ is obvious and boundedness of the functions u(y)y,

u(y)y? and v(y) proves (i).
For (ii) compute the derivative d ¥ /36:

e [ - o - 07+ uan],
P D ey -y,
Phis " (- t)e - 1
epu(a) 2B ) | ) ey,
o - P @V =Dy~ (s - o

o(d) ac
2d (2V - DV)UC - D(d) acij7
where d = d(x;t,C) and V= C"(x — t)(x — t)TC~T.

Because ||x — t||2/d? < ||C|| and (R3) the second statement (ii) follows. O

Proor oF THEOREM 3.3. Apply Theorem 3.4 and its Corollary 3.3 to the
function W(-; x) of (A.6) considered on [0,1] X N. Let 8, = (t(F'), C(F)) be the
unique solution of (£) such that W(0, §,) = 0.

According to Lemma 3.3(i) the function ¥(y, 0) is bounded and continuous, so
we conclude from (A.6) that also W(#£, 6; x) is continuous on @ for all x € R”.
Lemma 3.3(ii) implies that d ¥ /30 is bounded and continuous on R? X N, so

v v
O ) = (1= 1) [ T (5, 0) dF(y) + b (,0)
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is also a continuous function on . Finally, we have that

A A 4
(A8) —o (0.8) = [ = (3, &) dF(y) = A

which is nonsingular. So conditions 1-3 of Theorem 3.4 hold.

Let A be sufficiently small such that (%, ) has at least one solution. Suppose
that 8, , and 6, , would be two solutions of (.@G ). Then according to Theorem
3.2 both (h 8),,) and (h,8,,) are contained in the neighbourhood B, X B,
mentioned in Theorem 3.4 for A sufficiently small, and they are both a zero of
W(-; x). We may therefore conclude that 8, , = 8, , = 8(A; x). For A sufficiently
small the functional S(-) is thus uniquely defined as

S(G,) = S((1 — h)F + hA,) = 0(k; x).

Corollary 3.5 implies the existence of IF(x;S, F) and the expression can be
obtained from (A.7). As [ ¥(y, 0,) dF(y) = W(0, 8,) = 0, we find that at (0, 6,)
the derivative W /dh = ¥(x, 8,) and the theorem follows. O

Proor oF THEOREM 4.1. Put
U(x;0,8) = sup |¥(x,7)— ¥(x,0)].
llIr—8||<8
According to Huber’s (1967) Theorem 3 and its corollary it is sufficient to prove
the following conditions:

1. There exists a 8, € © such that N\ ;(6,) = 0

2. There exist strictly positive constants b, ¢ and d,, such that (i) E ;U(X,; 6, §) <
b for ||6 — 6,]| + & < d,, and (ii) EU?(X;; 0, 8) < cd for ||6 — 6| + § < d.

3. E || ¥(X,,0,)|? is finite.

According to Theorem 3.1 a solution S(F) of (%) exists and it must therefore
satisfy (3.3). In other words 8, = (t(F'), C(F)) is a zero of \(8) which proves 1.
Lemma 3.3(i) yields condition 3.

Let K be any compact subset of ® which contains 8,. We will show that for
all 8 € K° and & sufficiently small, there exists a constant b > 0 such that

(A9) U(x; 0,8) < bs.

This obviously yields condition 2. Let 8 = (t,C) € K. So both ||C|| and ||C~ || are
bounded away from 0 and oo.

Let 8 be sufficiently small such that the ball By(0) c K. Then the mean value
theorem together with Lemma 3.3(ii) yield that there exists some constant b > 0
such that for 7€ By0) we have ||¥(x,7)— ¥(x,8)| < b||6 — 7| < b8. This
proves (A.9) and the theorem follows. O

Before proving Corollaries 5.1 and 5.2 we state three minor lemmas. The first
one states a property of elliptical distributions.

LEMMA 5.1. Let X, have an elliptical distribution F with parameter (0,I).
Then U = X,/||X,| is independent of ||X,|, has mean zero and covariance
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matrix (1/p)l. Furthermore E,,UUTU =0 and E,; vec(UUT)vec(UUT) =
oI + K, ) + o, vec(Tvec(D), where o, = 0, = (p(p + 2))"L.

Proor or LEMMA 5.1. To show independence of U and | X, it is sufficient
to show that || X, and (U,,...,U,_ DT are independent. This can be proven
immediately by performing the coordinate transformation Y, = U, for i =
1,2,...,p—1 and Y, =X/, and computing the simultaneous dens1ty of
Y, Y2, )T The other results can be obtained by using spherical coordinates
ina suitable manner. O

LEMMA 5.2. Let Z be a random p X p-matrix which has zero mean and
covariance matrix E vec(Z)vec(Z)T = oI + K,, + o, vec(I)vec(I)T Sup-
pose that BBT =3, then BZBT has zero mean and covariance matrix
oI+ K, )2 ® Z) + o, vec(Z)vee(Z)".

ProOF. We use two identities from Magnus and Neudecker (1979). First
vec(ABC) = (CT ® A)vec(B), which implies that vec(BZBT) = (B ® B)vec(Z)
and also that vec(Z) = (B ® B)vec(I). The second identity K,, (A ® B) =
(B®AK, ,yields(B® BK, (B® B)! = K, (Be®BB®a B)T. As it is not
difficult to see that (B ® B)(B ® B)T 3 ® = the lemma follows. O

LEMMA 5.3. Let 1 denote the (p X p)-matrix with all entries equal to 1. For
a, b, c,d € R it holds that:

(i) Ifa # 0 anda + pb # 0, then (al + b1)"! = (1/a)l + (b/(a(a + pb)))1.
(ii) (cI+d1)(al+ bl)(cl+ dl) = c2al + (cad + ad(c + pd) + b(c + pd)?)1.

PROOF. Straightforward. O

PRrROOF OF COROLLARY 5.1. Affine equivariance of t, and C, and Lemma 5.2
imply that we may restrict to 8, = (0,I). Obviously the conditions of Theorem
3.2 hold for elliptical distributions. Therefore in order to apply Theorem 4.1 we
are left with showing that Ap () has a nonsingular derivative at 6,. To show
this and to derive (5.4) we first consider the symmetric p X p-matrix C as
3p(p + 1)-vector (¢;y,..., Cpp, Cros++, Cpoy, p) consisting of the upper-right tri-
angle elements of the matrix C.

According to (A.8), A = E, ¥,(X,, §,). With Lemma 5.1 it follows from the
expressions found for d¥,/30 and d¥,/d0 in the proof of Lemma 3.3 that A is
of block form

A.10 A A
(1) - A01

Whel'e At = Eo,l(\Pl)t(Xl’ 00) and AC = IEO,I(\I’2)C(X11 90).
Using Lemma 5.1 again we see that A, = — I and is therefore nonsingular.
The matrix Ag is a (3p(p + 1) X 3p(p + 1))-matrix which consists of two
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nonzero block matrices on the main diagonal. The upper-left is a (p X p)-
matrix Ag; = —v,I + y,1 and the lower-right matrix is a diagonal

Gp(p — 1) X 3p(p — 1))-matrix A, = —v,I, where

Eo i [¢'(IX: DI X% + (p + 1)¢(IIX1II)IIX1II]
p+2

Eo,1 |29/ (I X1 X% + p¢(uX1n)||X1||]
2p(p +2)

As the matrix A¢; has determinant (—y, + py,)(—v,)?~}, it follows from (5.2)
that A is also nonsingular and hence Theorem 3.1 applies.

To obtain the expressions for the asymptotic covariance matrices first com-
pute the covariance matrix M of (¥, ¥,)7, with the symmetric matrix ¥,
considered as a ip(p + 1)-vector. Lemma 5.1 implies that M is also a block
matrix,

"1

(A.11)

Yo =

M,
M= ,
M,

where M, = E, (2*(| X)) X, X[ = ol and M, = E, ¥y( X}, 8,)¥,(X;, 0,)". The
matrix A~ is of the same structure as M, which immediately implies that t,
and C, are asymptotically independent and that t, has asymptotic covariance
matrix

A;'MA;T= —1.

To describe the (1p(p + 1) X ip(p + 1))-matrix Ag'M,Ag", consider the co-
variance matrix M, of ¥,(X], 8,). Because

¥, (%, 6) = py(Ixl)Ix II

” ”2 - U(”x”)sz‘jy
Lemma 5.1 implies that M, is of the same structure as A. It also consists of two
nonzero block matrices on the main diagonal. The upper left is the (p X p)-
covariance matrix M, , of the diagonal elements ¥, ;;(X,, 0)): M, = §,I + 8,1,
and the lower right matrix is a diagonal (3p(p — 1) X ;p(p — 1))-covariance
matrix M, , of the off-diagonal elements ¥, ; (X,,68,) 1 <i<j<p) M,, =

L where 8, = 2p(p + 2) 'Eqy 2(IX DX, and 8, = —8,/p +

E,, I(p(||X ) b0)2 Therefore Ag! and M, are of the same structure and
hence Ag'M,AG! is. It follows immediately that the lower-right matrix is
a (3p(p — 1) X ip(p — 1))-diagonal matrix with diagonal element

& _ p(p + 2)“50,1‘!“2(||X1||)||X1”2

2% {Eou[w(IXMIXIZ + (2 + DoKX

The upper-left matrix is the (p X p)-matrix Ag}iM, ;Ag%. Using Lemma 5.2,
easy but tedious computations show that this equals 20,1 + 0,1, with ¢, as in

(A12) o, =



1682 H. P. LOPUHAA

(5.5).

The expressions found for Ag\M,,AcT and AghM,,AgY tell us that
n'/*(C, — I) converges in distribution to a symmetric random matrix Z of which
the off-diagonal elements are uncorrelated with each other and uncorrelated with
the diagonal elements, of which each off-diagonal element has variance 0,, and of
which the diagonal elements all have variance 20, + 0, with the covariance
between any two diagonal elements being o,. In other words, E vec(Z)vec(Z)T =
oI + K, ) + o, vec(I)vec(I)”, which proves the corollary for the case 0, = (0,1).
Lemma 5.2 then implies the general form (5.4). O

PROOF OF COROLLARY 5.2. The conditions of Theorem 3.2 hold for elliptical
distributions. According to (5.1), S( Fy.1) = (0,I) and from the proof of Corollary
5.1 we have that Ny (-) has nonsingular derivative A of (A.10) at (0,I).
Therefore Theorem 3.3 applies, which means that IF(x; S, F; ;) exists and its
expression can be obtained from (3.4). As A consists of the two block matrices A,
and A¢ on the main diagonal, IF(x;t, F, ;) and IF(x;C, F, ;) can be treated
separately.

Equations (3.4) and (2.8) give

IF(xit, Foy) = =7 ¥(x, 0.1) = gullisl)x,

which proves (5.7). Let us denote by IF = (IF,,,...,IF,  IF,,..., IF, , )7 the

influence function IF(x; C, F, ;) of the covariance estimlzﬁor. Then (3.4) and (2.8),

together with the expression found for A in the proof of Corollary 5.1, yield

(A.13) = nlF; + v, trace(IF) = —pu(|x[|)x? + o(|Ix]),
(A~14) - Y1IFij = —pu(||x||)xixj,
where v, and vy, are as in (A.11). Summation of (A.18) over i = 1,2,..., p gives
(A.15) trace(IF) = —p¥(IxI)Ix|l + po(|x|) '
Y1t DY,
From (A.11) we have —v, + py, = — 3E¢ ;¥ (IX,lDIX,ll, and when we put in

o(y) = ¥(¥)y — p(y) + by, we find (5.9).
Finally substitute (A.15) into (A.13). Together with (A.14) this proves (5.8). O
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