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BOOTSTRAPPING THE MAXIMUM LIKELIHOOD ESTIMATOR
IN HIGH-DIMENSIONAL LOG-LINEAR MODELS!

BY WILHELM SAUERMANN
Godecke AG

The notion of a bootstrap estimator of the distribution of the maximum
likelihood estimator in log-linear models is defined for common sampling
models. It is shown that the bootstrap estimator is consistent under assump-
tions which allow the dimension of the model to increase to infinity. Such an
approach allows treatment of large, sparse contingency tables.

1. Introduction. The bootstrap [Efron (1979) and Beran (1984)] is a gen-
eral, easily implemented method for obtaining estimates of the distribution of a
given statistic. It may be used to estimate bias and variance of a statistic, to
construct confidence sets and to estimate the critical values of a test statistic.

The bootstrap is attractive, because:

1. It may consistently estimate the distribution of a statistic under weaker
conditions than the traditional approach (derivation of the asymptotic distri-
bution followed by the estimation of its parameters) does.

. It makes the derivation of the asymptotic distribution superfluous.

. It is applicable in cases where the asymptotic distribution is untractable.

. It has some optimality properties.
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The present paper investigates the consistency properties of the bootstrap in
the context of categorical data. We use an asymptotic framework, in which the
model and the structure of the observed contingency tables may vary. Such
“model asymptotics” or “dimension asymptotics” (since the dimension of the
model is allowed to increase) have been considered before in our context by
Haberman (1977a, b) and Morris (1975) and recently by Ehm (1986) and Koehler
(1986). Such model asymptotics allow the examination of large, sparse contin-
gency tables for which the requirement of standard asymptotic theory, that the
minimal cell expectation be large, obviously is not fulfilled. The approach is not
new; it has been used by Bickel and Freedman (1983), Huber (1973), Portnoy
(1984, 1985) and Shorack (1982) for other models.

Consistency results for the bootstrap estimator of the distribution of the
maximum likelihood estimator (mle) in log-linear models will be proved. In
particular the phenomenon mentioned in point (1) can be observed: The boot-
strap consistently estimates the distribution of linear contrasts of the mle under
the weak condition

k- p?3(log p)'/* > 0,
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where p is the dimension of the log-linear model and « is the maximal asymp-
totic variance of the mle’s of the log expectations of the cells and « is equal to
the quantity d? of Haberman (1977b).

Under this condition the normal approximation estimator is no longer consis-
tent since the mle can have a bias. This bias is automatically estimated by the
bootstrap. The explanation for this phenomenon is that the bootstrap mimics
higher order components of the distribution of the mle. A similar result has been
found by Singh (1981). It is, however, not apparent how his results relate to ours.

This paper is organized in the following way: In Section 2 some preliminaries
about log-linear models and sampling models for contingency tables are pre-
sented. Also the bootstrap procedure is defined in detail. The main results are
presented in Section 3.

In Section 4 estimations of the Mallows distance -between the true and the
bootstrap distribution of the mle are derived which are conditional, given the
observed contingency tables. Section 5 contains the proofs for the unconditional
case. An example for the superiority of the bootstrap over the normal approxi-
mation approach and a discussion of the results are given in Section 6.

2. Preliminaries. Contingency tables will be denoted by n = (n;: i € I)
and will be regarded as elements of R’. Here I is the set of cells and n; the
number of observations in cell i € I. Under the Poisson sampling model the n;
are independent for i € I and n; has a Poisson distribution with mean m,. We
shall write n ~ #(m) where m = (m,: i € I) is the expectation vector of n. Let
u;, =logm; and u =1logm = (u;: i € I). Here we adapt the convention used
throughout the paper that for x,y € R’ expressions like x?, x * y, logx and expx
are to be interpreted componentwise, e.g., x2 = (x2: i € I).

For u € R’ let D(u) denote the linear operator on R’ defined by

D(u)x = (exp(u;)x;: i € I) = exp(u) * x.
If n ~ #(m) and u = logm, then D(u) is the covariance operator of n, that is,
cov((x,n), (y,n)) = (%, D(w)y) for all x,y € R’ [cf. Haberman (1974) for the
coordinate-free approach to contingency tables). In this formula (-,-) denotes
the inner product
(x,y) = L x.%
iel

in RL

The orthogonal projection w.r.t. (-, ) of R onto a linear subspace M of R’ will

be denoted by 7,,. We shall also make use of the weighted inner product
(x,¥)a= X xiye™ = (x, D(w)y)
el
and orthogonal projections w.r.t. { - ,- ), will be denoted by 7;;(u).

Under the product multinomial sampling model it is assumed that there exists
a.partition @ = (I,,..., Iy) of I, such that the subtables n® = (n;: i € I,,) are
independent for £ =1,..., K and n® has a multinomial distribution with
parameters N, p® = (p{®: i € I), p{¥ €[0,1] and £;c; p{®¥ = 1. Let N =
(Ny,..., Ng) and p= ¥ 1G € I,)p{®: i e I). We shall use the notation
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n ~ #ZQ(N, p), if a product multinomial model is assumed for n.

To each sampling model there corresponds a linear subspace Z of R! [cf.
Haberman (1974)]. In the case of Poisson sampling Z = {0}, whereas in the case
of the product multinomial sampling Z is the linear span of the K vectors
v® = (1(i € I,): i € I). If m = En, under each sampling model n satisfies the
constraints (n,z) = (m, z) for all z € Z. Z is therefore called design manifold.

Under the product multinomial sampling model the covariance operator of n
is D(u)(Id — 7 (u)), if u = logm. Since 7 (w) = 0, this is also the covariance
operator under the Poisson sampling model.

A log-linear model is specified by a linear subspace H of R! and the require-
ment u € H. Let i be the mle of u under the model H. It may be obtained (if it
exists) by solving the equations (for & € H) myn = myi and m = exp(i). We
shall make the assumption Z C H, which is discussed in Haberman (1974).

If (E, p) is a metric space, the Prohorov distance between two probability
measures P and @ on E is the infimum of all £ > 0, such that for all measurable
A, P(A) < Q(A®) + e and Q(A) < P(A®) + ¢, where A* = {x € E|p(x, A) < ¢}.
If E=R' we denote the Prohorov distance by 8,. If E = R! and p(x,y) =
|x — ¥, = ;e lx; — ¥ is the L'-distance, we shall write 8, for the Prohorov
distance. If X and Y have distributions P and @ we use the shorthand notation
8,(X,Y) [or 8,(X,Y)] for 8,(P, @) [or §;(P, Q)].

To estimate the distribution of @ the bootstrap proceeds in the following way:
Given the observed table n, let it be the value of the mle &i. We make the
distinction between 11 (a random variable) and i1 (a fixed value) in order to clarify
the different roles of 1 as an estimator and its realization. Let i = exp(ii). The
bootstrap estimate of the distribution of &t under one of the above sampling
models is defined as the distribution of @ under the same sampling model with
log-expectation ii. More precisely, if n ~ 2(m), let n* ~ #(fa). If n ~ /Z (N, p),
let

& m;
n* ~ #y(N,p), where p=| Y 1(iel)—:iell.
k=1 Nk

Let ©* be the mle (under the log-linear model H), derived from n*. The
distribution of #1* is the bootstrap estimator of the distribution of {. Practically
it has to be computed by a Monte Carlo simulation. The error due to this
simulation will be neglected here.

It should be noted that it is necessary to use a parametric bootstrap proce-
dure. If one imagines the table n as being generated by classifying observations
X,,..., Xy, one could try to simulate the tables n* by sampling with replace-
ment from the (hypothetical) observations X; and then classify again. However
the resulting tables n* have a simple (K = 1) multinomial distribution with
probabilities p; = n;/N, which is not appropriate if n is Poisson distributed (for
example).

3. Consistency of the bootstrap estimator. We shall consider sequences
n = (n{: i € IM), t=1,2,..., of contingency tables whose index set I is
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allowed to depend on ¢ Also the assumed log-linear models H® for the
log-expectation u® = log En(® and the sampling model, described by the linear
manifold Z®, may depend on t. We drop the index ¢ throughout to ease
notation. Convergence statements will be understood as ¢ = oo unless otherwise
stated. Conditions for consistency involve the quantities

p=dimH

and

I

where |x||2 = (x x), and e' = (1(j=1i): je€I). k is the maximal (i € I)
asymptotic variance of #; under the Poisson sampling model.

The proofs are based on the examination of a second order stochastic approxi-
mation of @t — u which is of the form

k = max ”77' (u)D(u) e

t—u=L-inL?%
with
= m(w)D(u) '(n - m),
L*=(L:ie])

[cf. Haberman (1974), equation 4.104].

Under the general asymptotic setup used here the validity of this formal
approximation is difficult to prove. We therefore restrict consideration to the
class of decomposable models. It seems however possible to use the methods of
Ehm (1986) to extend the results to general log-linear models.

Decomposable log-linear models [see Darroch, Lauritzen and Speed (1980),
Goodman (1970, 1971) and Haberman (1970, 1974)] are log-linear models for
factorial tables. To define them suppose that there are factors 1,2,...,d and
that 5; = {1,..., s;} is the set of levels of factor j. Then the index set I of the
contlngency table whlch summarizes the counts of the corresponding cross-clas-
sification is I =T1% 5, For a subset E C {1,...,d} of factors let I(E) =
IT;c EI Furthermore let i € I(E) denote the mdex projection of i € I on I(E)
lie., iz = (i))jer if i = (i));cq,... a)] and let H(E) be the linear subspace of all
z € R’ such that 2; depends only on iy A set A =(E,..., E;} of subsets
is called a generating class, if it is maximal w.r.t. inclusion. Each generating
class % = {E, ..., E;} defines a log-linear model, namely H(%) =
H(E)) + -+ +H(E;). H(¥) (or %) is called decomposable if T = 1 or if there
exists an ordering % = (E,,..., E;) such that for t = 2,...,T

E,n(E,V---UE, |)=E,NE, =F, withr,<t.

Consistency of the bootstrap will be proven for the distribution of linear
contrasts (¢, 1) of the mle and for the multivariate distribution of . Both are
standardized in such a way that the distributions asymptotically do not degener-
ate. For linear contrasts we therefore assume that |7Z(u)D(w) lc||2 = 1.
For contrasts orthogonal to Z this means [cf. Haberman (1977b)] that the
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asymptotic variance of (¢, i) is 1. Similarly (in the multivariate case) we consider

D)% — u).
The following theorem contains the main result. Observe that ¢ as well as the
number T of sets in the generators of the log-linear models depends on ¢. It is

assumed that either a Poisson or a product multinomial model holds.

THEOREM. Assume that the log-linear models are decomposable with
bounded T. :

(@) If ||lmg(w)D(m)~ e||i =1 and
(4) kp*/*(log p)*"* - 0
holds, the bootstrap consistently estimates the distribution of (e, ), i.e.,

8,((e,t —u),(c,0* — 1)) > 0

in probability. Consistency is uniform for normed contrasts c.

(o) If
(B) [1|*p*log p — 0
holds, the bootstrap consistently estimates the distribution of @ in the sense that

8;(D(w)"/*(@ — u), D(w)"*(a* — @) - 0

in probability.

We shall see later that k > p/N, where N is the (expected) total number of
observations. Therefore a necessary condition for (A) to hold is

p*/3

T(logp)l/a - 0.
We shall first examine the situation conditionally given the table n. Then i is

fixed. More precisely we assume that either (C.P) (Poisson sampling model) or
(C.M) (multinomial sampling model) holds:

n-~ ‘//{Q(N, p)’
n* ~ ./”Q(N, ﬁ).

In this case let m = (ZX_,1(i € I,)p;Ny: i € I) and f = (ZX_1(i € I,)p;N,:
i € I) be the expectations of n and n*.

(C.M)

(C.P) \
Let
L = 7(a)D(u) '(n - m),
L* = 73(@)D(d) " '(n* - /),
Q=L - inf(w)L?,
Q* = L* — im(@)L*?,

where u = logm and @ = log .
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Furthermore let
d,(u,v)” =inf{E|X - YPP: X ~u,Y ~v)

be the Mallows distance [Mallows (1972)] between the probability measures u
and v [see Bickel and Freedman (1981)]. Again we use the abbreviation d (X, Y)
for d,(u, v) if X and Y have distributions v and v. The L'-norm | - |, w111 be
assumed for probability measures on R’.

The following proposition relates the Mallows distance between (¢, Q) and
(¢, Q*) (and likewise for the multivariate distributions) to the nearness of u and
ii. Technically we assume that m,/m; is close to 1 uniformly in i € I. Since
m,/m; — 1 = exp(u; — @;) — 1 this means that u; and &, are close, uniformly in
i € I. Later on when we consider the unconditional situation the quantity e
appearing in the proposition will stand for the random variable

I = |, = maxju; — ;.

Estimating the Mallows distance is inspired by the work of Bickel and Freedman
(1981).

PROPOSITION 1. Let ¢, > 0 and assume that (C.M) or (C.P) holds. If for
some 0 < ¢ < g,

(*)
then

3

<1+eg, iel,

»|
<
s|s:

di((e,Q), (¢, Q")) < Ve (C, + Cyfkp) || m (w)D(w) "¢,
for all ¢ € R and also

d;(D(w)"/*Q, D(u)"*Q*) < \TI Ve (Ci/p + Cufxp?),

where the constants C, and C, only depend on ¢,.

This proposition is true for arbitrary log-linear models H.

The key step in the proof of Proposition 1 is Proposition 2 which permits an
estimation of the Mallows distance between the distributions of linear combina-
tions of contingency table counts.

PROPOSITION 2. Assume (C.M) or (C.P). Then there exists a joint distribu-
tion of n and n* such that

E( 2 ci((n;—m;) — (n} - 'ﬁi)))2 <2} clim; - .

iel iel

Incidentally we remark that this proposition can be used to prove consistency
of the bootstrap under the conventional asymptotics (which fixes the model) for
a more general class of models than the log-linear model constitute. Namely, it
follows directly from Proposition 2 and the definition of the Mallows distance
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that for a linear operator A: R - RY it holds that
q
d3(A(m - m), A(m* — i) <2 Y Y (A", e!)im, — .

lel j=1

Here A" is the transpose of Aand f/ = (1(! =j):l=1,---,q)and e’ = (1(i = 1):
i € I) are unit vectors in R? and R’

Assume that there is a parametric model for the cell expectations m; = my90),
0 0. Frequently [cf. Bishop, Fienberg, and Holland (1975), Theorem 14 8-3] an

estimator @ of 6 has a stochastic expans1on
VN -0)=A— (n —m(0)) + o,(1),

which is valid locally uniformly. Then

a3 4= (n = m(9)), A - - n(0))

m,(8) — m, (0)

<2
< 2max N

el

39 (ATf7,e')".

lel j=1

So the bootstrap is consistent if the cell frequencies p,(6) = m,(8)/N are
estimated consistently by p,( 0)

To apply Proposition 1 it is necessary to determine the rate of convergence of
[ — ul|,, to zero. We shall prove the following.

PROPOSITION 3.  Assume that the log-linear models are decomposable with
bounded T. Then if xlog p — 0,

& - ull, = O,(Vklogp).

The following proposition shows that it is enough (under the conditions of
Theorem 1) to consider the approximation of & — u by Q. The distribution of n
will be denoted by P, and the conditional distribution of n* (given n) by Px.
Unconditionally Pg* is a random distribution.

PROPOSITION 4. Assume that the log-linear models are decomposable with
bounded T.

(@) If ||mf)D) ||, = 1 and (A) holds, then for all & > 0,
P(l(c,;d —u—Q)|>¢) >0,
Px(|(c,0* —a— Q*)| > ¢) > 0 in P,-probability.

Convergences are uniform for normed contrasts c.
(b) If (B) holds, then for all € > 0,

P“(ID(u)1/2(ﬁ -—u- Q)I1 > 3) -0,
Px(|D(w)"*(@* — @ - Q*)|, > ¢) > 0 in P,-probability.
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4. Proofs—conditional distributions. In this section we prove Proposi-
tions 1 and 2. These give estimations for fixed u and @ and may be thought of as
describing the situation for a given (observed) contingency table n.

PROOF OF PROPOSITION 2. Assume that (C.P) holds forn = (n;: i € I) and
n* = (n}: i € I). Since the n; are independent and the same is true for the n},
we can construct a joint distribution of n and n* by specifying a joint distribu-
tion of n; and n¥ for each i € I and letting the pairs (n;, n}) be independent.
Then we have

2
E( T e(ni= m) = (n7 = )] = T B ((n,— m) = (n = )"
iel iel

Therefore it is sufficient to prove that for two univariate random variables
n ~ #(m) and n* ~ P(im) there exist a joint distribution with

E((n—m) - (n* — m))® < 2im — m|.
W.lo.g. assume that m < . For some N € {1,2,...} which will be chosen later
let X ~2(p)and X* ~ Z(p) with p =m/N and p = m/N.

A joint distribution of X and X* can (and shall) be constructed such that
P(X=jX*=j)=P(X=j)APX*=j)forall j =0,1,2,... (in other words,
the event {X = X*} has maximal probability). Since P(X =i)/P(X* = i) =
v'%e®N with y = m/m < 1 and 8 = i — m > 0, by choosing N large enough one
can achieve
(41) P(X=i, X*=i)=P(X=i)AP(X*=i)=P(X=1), i>0.

Now let (X©®, X*®) (I =1,..., N) be independent copies of (X, X*) and let
(n, n*) =N (XD, X*®), Then n ~ #(m) and n* ~ P(1). We can estimate

E((n—m) - (n* - m))’
= NE((X - p) - (X* - p))’ < NE(X - X*)’

=NY (i-j)’P(X =i, X* =))

i#)j
< 2N{ Y i?P(X =i, X* =j) + ¥ j2P(X = i, X* =j)}
i#j i#j
o0 00
- 2N{ Y 2P(X =i, X* #i)+ Y i?P(X* =i, X + i)}
i=0 i=0

2N{ f 2[P(X =i) - P(X =i, X* = i) + P(X* = i)

-P(X =i, X* =i)]}

0

= 2N{ Y i((P(X*=i)-P(X = i))}

i=1
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by (4.1). The last expression is equal to

2N{E(X*)* — EX?} = 2|/ — m|(1 + j + p).
Now let N — 0. The resulting sequence of joint distributions of n and n* is
tight. Proposition 2 is proved therefore for the Poisson sampling model.

Now assume that (C.M) holds. The case K > 1 can easily be reduced to the
case K = 1 by independence as above. If K = 1,n ~ #(N,p) and n* ~ #(N, D),
write n = LV XO, n* = TN X*® where XY ~.#(1,p) and X*P ~ . #(1,p),
with independent X and independent X*¥. A joint distribution of X® and
X*(® can then be constructed which satisfies

P(Xh=1,X®=1)=p,Ap;, i€l

Similar estimates as above show that Proposition 2 is also true under the
multinomial sampling model. O )

The proof of Proposition 1 will be prepared by a series of lemmas. We still
consider m and i as fixed. D(u) and D(i1) will be abbreviated by D and D. Also
we write m% = mF(u) and 7 = m%(i). As in Section 2, L = 73D '(n — m),
L* = #2D 'm* — i), Q =L — ln*L? and Q* = L* — 1#L*? are the first
and second order approximations to thée centered mle.

LEMMA 1. (i) For v € R! we have
mi(V)D(v) "' = mi(v)D(v) 'my.

(i) For v € R! the linear operators m%(v)D(v)™! and m,D(v) are mutually
inverse on M.

Proor. Part (i) holds since (X,m) =0 for all m € M is equivalent to
(D(v)"'X,m), =0 for all m e M. Part (i) follows since (for m € M)
Tk (V) D(V) "'y D(v)m = ak(v)D(v) "D(v)m = m. O

LEMMA 2. The operator m%(v)D(v)~! on R! is symmetric w.r.t. the inner
product (-, ).

Proor. This follows immediately from the fact that #}(v) is symmetric
wr.t. (-, ),, since

(D) 'x,5) = (n(¥)DE) 'z, D(v) 'y . 0

Before stating the next lemma we introduce the operator norm |4||, =
Supy, <1llAX||,. Since mj(v) is an orthogonal projection wrt. (-, ),,
7 (W)|ly < 1. The next lemma estimates ||7;f(i)||, for @ close to u.

LeEMMA 3. Assume that for some ¢ > 0,

m; 1, .
(4.2) — V — <1+eg, 1el,
mi mi
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holds. Then we have
gt (@) [, < 1 + e.

Proor. It follows from (4.2) that |x||, < V1 + €||x|| and vice versa. There-
fore

[ mg @), < ;»"uplﬂ +e||my(@) |alixlla < 1 +e. m
u< ’

LEMMA 4. Let ¢ = (c;: i € I) be in R! and assume that (4.2) holds. Then
(7Dt — #3D~)e], < &(1 + &)llmg D~ el

ProOOF. According to Lemma 1,
#rD ™! = 73D 'y = FFD " 'myDu D \my = wiF D 'DagDL.
Therefore,
[(mgD~t = #3D~")e|, =|#3(1d — D-'D)mzD |,

< 141l (1d = D='D)mgD e,

By Lemma 3 ||#||, < 1 + e Also for z € R/,

|(1d — D~D)z|’ = L my(1 — my/i;)’2? < &zl|2.

iel

Therefore the assertion of the lemma is true. O

The next lemma contains the estimation of the Mallows distance between the
linear approximations of the mle under the true and under the bootstrap
distribution.

LEMMA 5. Let ¢ = (c;: i € I) be in R! and assume that (4.2) holds. For the
Jjoint distribution of n and n* constructed in the proof of Proposition 2

E(c,L — L*)* < &4 + 2¢(1 + ¢)*)||m3D 2.
Proor. We have

E(c,L - L*)* = E((¢, 74D '[(n — m) — (n* — f)])
+(c,(72D! - 73D ") (0* — @)))”
< 2{E(c, afD"[(n — m) — (n* — l'il)])2

+E(e, (n3D' — 7D ") (n* - m))2}

= 2{E(w,’,"D‘1c, (n —m) — (n* — ﬁl))2

+E(Te,n* — ﬁ1)2},
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where I' = m#D~! — ##D~". Here we applied Lemma 2 which is also valid with
7D~ ! replaced by I'. Let ¢’ = m3D~'c. By Proposition 2 the first summand is
less than or equal to

m. — ﬁli
2 Y (cf)lm; — iyl < 2max'—‘——
iel il m;

2 - 2
el < 27D~ eI}

by (4.2). The second summand is equal to
2 Var(Te,n*) = 2(Te, D(1d — ##)Te)
= 2(Te, D~'D(Id — #4)Te)
< |ID7'D|lli1d — 7|l TellE-

It is easy to se that |[D~'D||, < 1 + e. The result follows now from Lemmas 3
and 4.0

ul

PROOF OF PROPOSITION 1. Assume that n and n* have the joint distribution
constructed in Proposition 2. Then

di((¢,Q),(c,Q")) < E|(c,L — 3m¥L2) — (e, L* — 373 L*?)]|

< VE(e,L — L*)* + 1E|(c, mfL* — #3L*?)|

< VeCyllmgD ||, + LE|(c, mFL? — 7 L*?)],

where C, = \/ 4 + 2¢,(1 + £,)* (use the Schwarz inequality and Lemma 5).
It remains to estimate E|(c, m¥L% — #¥L*?)|, which according to Lemma 2
can be written as

E|(n3D ‘e, DL?) — (##D e, DL*?)|

= E|(n#D ‘e, L2y, — (7D 'eD!, DL*?),|

< Emy| + Elmg| + Elngl,
where

n, = (c’,L2 _ L*2>u’ 1, = (c',L*2 _ D_IDL*2>“,
ny = (¢’ —¢", D"DL*?),, ¢ =mngD 'c,c” =aFD e,
We first estimate the main term E|y,|. Repeated application of the Schwarz

inequality yields

Eln,| = E| Y m;c/(L? - L¥?)
iel
< EZ mjc}| |L; — L¥||L; + L}
el
< [ Y myc/2Y mE(L, - L¥)’E(L, + L¥)*
el iel

= ||713‘D_1°||u\/z m,E(L,— L} )2E(Li + L} )2 .

iel
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By Lemma 5, E(L;— L¥)?= E(e',L — L*)?2<eC2; and «;=|7gD ‘e||,.
Furthermore E(L; + L*)2 < 2(VarL; + Var L¥).
Since D(Id — #}*) is the covariance operator of n,

Var L, = |(Id — ) mzD"ei|’ < |mgD €2 = ;.
Similarly,
Var L* < ||7¢D e}2
< |D7V2DV2%( |74 D te! — mi D~ el||2 + [|lmgDtel|2)
<2(1+ 80)(83(1 + 80)2 + 1)Ki

(Lemma 4).
Combining these estimates yields

Ejn,| < C'z‘/ Y mex? || D elly
iel

< C’2‘/ex2m,-xi||7r,;"D_lc||“ for some constant Cj.
As was also shown by Haberman (1977b), Lemma 2,
Y mx;= Y m(mzD 'e!, D7 e'),

iel il
(4.3) = Y (miD el ey, = L (e, me')
il iel
= trace mf = dim H = p.
Therefore

Epny| < Ci{expl|lmiD~ elly.

Similar estimates yield

En,y| = E|{e’,(1d — D7'D)L*?) |

A

Y myc]|

iel

2. mjc{|eCs’k

iel

< &Cy'\/kp||m¥D'e||,, for some constant C;’.

- ey

13

IA

Finally

Epny| < X myfcf = /'

iel

’EL*2

<€ = ¢luy/ T mi( EL¥?) (1 + &).

iel
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Now use Lemma 4 and obtain
E|ns| < eCy”Jkp||mD~'e||, for some constant C,” .
We have therefore shown that
E|(e, m¥L? — #FL*?)| < Cy/exp||mtD'¢||, for some constant C,.

The first assertion of Proposition 1 is therefore proved. For the second assertion
observe that ’

d,(D'*Q, D'*Q*) < E|DV*(Q - Q*)|,
= Y E|(¢', D'/*(Q - Q)|
iel .
= Y E|(D'%,Q - Q)|
iel
Now apply the just proved assertion with ¢ = D'/%e? and obtain
d(D'*Q, D'/*Q*) < Ve(C, + Cy/kp) L DDV %,

iel

< Ve (C, + Co/p )YIIT \/ Y. |lmD~'DY %2

el

according to the Schwarz inequality. Now note that ¥, ,||7# D~ 'D/%||2 = p
by (4.3). This proves the second assertion of Proposition 1. O

5. Proofs—decomposable models. In this section @ will be the random
bootstrap parameter which was taken as the mle ©t. We will first obtain
information on the convergence rate of it and then apply Proposition 1. This will
be facilitated by confining to decomposable log-linear models H. Heavy use will
be made of the fact that in these models the mle has an explicit representation.

We shall state this first. Details of the following computations can be found in
Andersen (1974), Darroch, Lauritzen and Speed (1980) and Haberman (1974).
Assume that factors 1,..., d are given and that H = H(%) is decomposable with
(ordered) generator % = (E,,..., E;), E,c {1,...,d}. For x€ R and E, C
{1,...,d} let x¥ = (T, p =i, % ¢ € I) be the E-marginal of x (recall that kg
and iy are the index projections of k, i€ I= l'[;i’.== I;, Section 2). Clearly
x? € H(E) and one can easily prove that Ty X = f(E)x® and 1/f(E) =
Icq,...,anes; Now let x € R), u = logm € R’ and z = 73 (u)D(u) 'x. Then
by Lemma 1

THEX = WH(E)D(u)WI;(E)(u)D(u)_IWH(E)X

and therefore f(E)xZ = f(E)D(u)z)F = f(E)zmF [since z € H(E)].
It follows that w#(u)D(u)~'x = x¥/mF. Let u =logm € H(Y) and & =
log in be the mle of u. It was shown by Darroch, Lauritzen and Speed (1980),
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pages 529-531 that the mle exists iff nE>0foralliel, t=1,...,T, and that
l‘I,T_ mi . Hz- ni

1—L-zm - I1,,n

m; =

and therefore
A m;
ui - ui = ].Og e
m;
E, _ T F, _

T nE— m¥ nfi — mf
2 e R =

t=2

(5.1)

The following lemma summarizes results hidden in the literature [Haberman
(1974), Chapter 5, especially page 208]. It gives explicit formulas for the quanti-
ties L, Q and ;. We present it with only a brief indication of how a structural
proof can be performed.

LEMMA 6. Assume that H= H(%) is decomposable with generator U =
(E,,..., E;). Then for u = logm € H:

—1 T xE. T xF
@) mf(w)D(w) x = El —E EZ 7> Xc<R.
T nF_mf T pFf— mF
i L= - _ -
(i) tgl m® t§2 m'
57-': nf —mf 1 [nf— mP\®
- (iii) Q= z —F. 3 —
i nf—mf 1 (nf—m"\
Pt m’ 2 m’
T 1 T 1
(iv) Ki= Y —5 - L —-
o oamd D mj

Proor. With the methods of Haberman (1974), it can be shown by induction
on T that
T

H(Y) = H(E,) ® €B (H(E,) e H(F,)),
where M, ® M, denotes the direct sum of subspaces M; of R! that are orthogo-

nal with respect to { - ,- ), and M; © M, is the respective orthogonal comple-
ment of M, in M,. Then

T T
ﬂ,.}‘(m)(u)D(u)_lx = Z Tr}}‘(Et)(u)D(u) Tlx - E ﬂ}}‘(ﬂ)(u)D(u)_lx,
t=1 t=2
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from which (i) follows. Parts (ii) and (iv) follow from (i) by letting x =n — m
and x = e'. Again by induction on T one can show that

1)2 i xFr\? i xF\?
7o (W) T (W) D(u) " x) = (——) - (——-) .
H(X) ( H(X) = mE: = mF
This proves (iii). O

It should be remarked that parts (ii) and (iii) of Lemma 6 become plausible, if
one replaces log(1 + A) by its first and second order Taylor expansion in (5.1).
This will be exploited later.

PROOF OF PROPOSITION 3. Let

t=1,...,T

iel’
where I, = (i € I|i; =1 for j € {1,...,d} \ E,}. It follows from (5.1) that, for
small M, |[&t — u||,, is bounded by const. M.

Here we use the boundedness of T and the fact that F, C E, which allows to
estimate |(nft — mf)/m¥| < M.

Let r=X[_ \Il;cps; = L{_,|E|. M is the maximum of r random variables.
Furthermore let p = max,_, . 5 ;c,(1/m{). Since H(E,) is a subspace of
H(), we have r = L, dim H(E,) < Tp and 1/mf = ||n} z (w)D(u) e’ < k.
Therefore p < k and r/p is bounded. It follows that p log r — 0.

We now prove that for all sequences C tending to + oo,

(5.2) P(M> JologrcC) - 0,

which then proves that ||i‘i — ul|,, tends to zero in probability at rate y/k log p .
Existence of the mle is guaranteed by (5.2) with probability tending to 1, since
k= 0.

For a Poisson or binomial (univariate) random variable with expectation m
the standard techniques of the theory of large deviations [exponentiation and
estimation of the moment generating function, Bahadur (1971)] yield an estima-
tion
(5.3) P(ln — m| > b) < 2exp(—b?/3m)
for all 0 < b < ¢,m, where ¢, can be chosen independently of the distribution

of n.
Now if C - oo, then also C = C A (g,/ Ve logr) — co. We have

P(M > \JologrC) < P(M > \/plogrC)

1 |nf—mF
2 2 =1
=P,| max ———|———|>plogrC
t=1,..., T m.Et m,Et
i€l i Vi

< Y P“(|nf"' - mE| > m¥ long~).
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Observe that ymZ:log r € < m¥+/plogr € < mF,. Therefore we can apply (5.3)
with n = n® and b = /m¥ log r C to obtain

c? logr)

P(M> JologrC)< Y 2exp(— 3
t

: G2
(1 - —3—)log r),

= 2exp
which tends to zero. Therefore (5.2) holds. O

PROOF OF PROPOSITION 4. We only prove (a). The multivariate case can
easily be reduced to be a univariate case as in the proof of Proposition 1.
It {(E)=(l,;c (1., dNES j)‘l denotes the redundancy factor introduced

above, then for z € H(E) it holds that

Y czi=[(E) X cfz;.

iel iel
Along with the estimation |log(1 + x) — (x — x2/2)| < C|x|3, valid for |x| < 1,
this can be used in a straightforward calculation to show that

(e, — u — Q)]

T
< Ct‘j‘ F(E) X JeB| 2

iel

3
Ft_mf

!

M +CZf(F)E|c""|

el

(5.4)

2

+ Z e

E,
i

<M. C{Zf(E)Equ——"—m—

n"7—m

el i ,

[Hint: Use (5.1), Lemma 6(iii). W.Lo.g. |[M| < 1.]
We prove that for E C {1,..., d},
2

= 0,(Vkp).

Since, by Proposition 8, M = O,(y/k log p) it then follows from (5.4) that
(e, —u— Q)| = O,(Yxlog pkp) = O,(xy/plog p).

Since xy/p log p = kp**(log p)'/*(log p/p)*/® = 0, the first part of (a) is then
proved.

To prove (5.5), the expectation ¢ of f(E)L;c /|cE|(|(nE — mE)/mE|)? is esti-
mated. We have proved that 7;#(u)D(u)~'x = x¥/mF. Therefore

e = f(E) T Ief] - Bmfes,(@) D) "m = m) ')

E
T ™

el z

(5.5) f(E) X ICEI

<f(E) X lcF|lIng gy (u)D(u) "e|2

iel
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[compare with the estimation of Var(L’) in the proof of Proposition 1]. An
application of the Schwarz inequality yields

.E 2
)y mi( %) ‘/ )y mi”"fﬂls)(u)D(“)—lei”i :
i el

el

Now

el

E\?2
Y m(if) = Wﬁ(E)(u)D(u)_lc”z <1,
since H(E) c H(%). Also i
Zn] mia(W)D(w) el <« z m] mis (WD) e[ = xdim H(E)
te e

< kp.

Therefore (5.5) holds.
The second part of (a) follows from an application of the foregoing on ii,
noting that £/k — 1 in P,-probability, where & = k(@). O

ProoF oF THE THEOREM. The convergence rate of |h/m — 1|, is the same
as that of |t — u||,. This was shown to be \/k log p in Proposition 3. Applying
Proposition 1 with & = |fh/m — 1|| , yields

d\((¢,Q), (e, Q")) = O,((xlog p)"*(C, + Cy(xp)*?))
= 0,(Cy(xlog p)/* + Cy(x(log ) *p**)”")

= 0,(1).

The error of replacing it — u by Q was estimated in Proposition 4.
The assertion about the multivariate distribution is proved analogously. O

6. Discussion. It is easy to construct examples in which the bootstrap
works while the traditional approach does not. For instance let n = (n;;) be
a sequence of k X k tables with & - oo which follow the Poisson sampling
model. Let H be the model of independence of the two factors [H({1}, {2})
in our notation]. Assume that m,;= E(n;;))=a for i<k/2 and =2a
for i > k/2. A straightforward calculation [use Lemma 6(iv)] yields « =
(ka)~'(1 + 2/3 — 2/3k). Since p = 2k — 1 we may choose @ — 0 in such a way
that condition (A) holds and consequently the bootstrap consistently estimates
the distribution of standardized linear contrasts e.

Now let c;; = 2(a/3k)"/? for i < k/2 and = —2(a/3k)"/? for i > k/2. Then
| (w)D(u) ~'e|| = 1. According to Proposition 4 (¢, @ — u) can be approximated
by (¢, Q). But for b=a"%%/2 - 3"2) > w0, (c,Q) — b is asymptotically dis-
tributed as N(O, 1).
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The examples shows that the theory developed here covers large sparse
contingency tables. It is somewhat artificial since a large (estimable) bias b —»
only occurs in extremely large tables [in the example a necessary condition for
(A) is b3/k — 0]. However, case studies performed by the author indicate that in
large sparse tables occurring in practice a bias may be present and will be
estimated by the bootstrap.

It is unknown to the author if nonnormal limit distributions occur under the
condition of the theorem. This of course would give the results a larger practical
importance. It is also unknown if condition (A) can be further weakened. As can
be seen from the proof of the theorem, its special form derives from two
components: the convergence rate of the mle and the bound on the Mallows-
distance between the quadratic approximations of the mle’s.

The difficulty in generalizing the results to indecomposable log-linear models
lies in the fact that these models do not possess a closed-form mle. It is therefore
not possible to prove Proposition 4 with the same techniques (Taylor’s expansion
and estimation of the remainder term). Instead methods like those developed by
Haberman (1977a, b) would have to be used. If however the validity of the
approximation of the mle by Q can be established, consistency of the bootstrap
will follow from Proposition 1 which is valid for general (not only decomposable)
log-linear models.
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