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ASYMPTOTIC DISTRIBUTIONS OF MINIMUM NORM
QUADRATIC ESTIMATORS OF THE COVARIANCE
FUNCTION OF A GAUSSIAN RANDOM FIELD!

BY MICHAEL STEIN
The University of Chicago

Consider a continuous Gaussian random field z(x) defined on a compact
set R c R?Y with covariance function of the form cov(z(x), 2(x’)) =
T 0,K(x, x’), where the K;’s are specified and 0 = (0,,...,0,) is to be
estimated. Let {x;}2, be a sequence of distinct points in R. Based on
2(x1),. .., 2(xy), minimum norm quadratic estimation can be used to esti-
mate 4. Suppose K,..., K, are compatible covariance functions on R, which
means that the Gaussian measures with means zero dnd covariance functions
K,,..., K, are mutually absolutely continuous. Then, as the number of
observations N increases, the minimum norm quadratic estimator of £%_ 0, is
asymptotically normal with variance of order N~!. The minimum norm
quadratic estimator of any other linear combination of the 6;’s converges (in
L?) to some nondegenerate random variable. This limit is the same for any
two dense sequence of points in R. Thus, a definition of a minimum norm
quadratic estimator of § when 2(-) is observed everywhere in R is obtained.

1. Introduction. Consider a random field z(-) with finite second moments
defined on a compact set R in R? by

(1.1) z(x) = m(x) + e(x),
where m(-) is the mean of 2(-) and e(-) is a random field with mean zero. Based

on observing 2(-) at (x,,..., xy) € R, we wish to predict linear functionals of
2(+) defined on R. If we model the mean function by

(1.2) Ez(x) = B'f(x),

where f(-) is a known vector-valued function with ¢ components, 8 is a vector of
unknown regression coefficients and

K(x,x’) = cov(2(x), 2(x)) forx,x’ € R

is specified, we can obtain the best (minimum prediction error variance) linear
unbiased predictor of this linear functional under this model. For example,
assuming this model is correct, the best linear unbiased predictor of z(x) based
on Z = (2(x,),...,2(x,)) is [Goldberger (1962)]

{0271+ (f(x) - Fz—lo)'(Fz—lF')“Fz-l}z,
assuming all inverses exist, where F = ( f(x,),..., f(xy)), 0 = (K(x, x,),...,
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K(x,xy)) and 2 is an N X N matrix with ith element K(x; x ). This
predictor is known as the kriging predictor in the geostatistical literature and is
widely used in mining [Journel and Huijbregts (1978)] and hydrology [Kitanidis
(1983)].
Perhaps the main problem in implementing kriging is that K(-, -) is unknown
in practice and must be estimated from the observations. We will use a model for
the covariance function of the form

k
con(2(2), 2() = L 0K (x, )

= Ko(x,x')’

where 6 = (6,,...,0,) is a vector of parameters to be estimated. Let V be the
correct covariance function, which is not necessarily in the parametric class
defined by (1.3). In this paper, we will investigate the situation where K, ..., K,
are what I call compatible on R. In order to define compatibility of covariance
functions, recall that corresponding to every measurable function m(-) on R and
positive definite function K(-,-) on R X R there is a unique probability mea-
sure of a Gaussian random field on R with mean m(-) and covariance function
K(-, -), which we will denote by (m, K). We will say that K,(-,-) and K(-, )
are compatible on R if (0, K,) and (0, K,) are equivalent (mutually absolutely
continuous with respect to each other), which we will denote by

(O’ Kl) = (0’ KZ)

Note that the definition of compatibility of covariance functions does not assume
that z(-) is Gaussian. While most of the results in this paper will require that
2(-) be Gaussian, the properties of linear predictors discussed in Section 6 do not.
Conditions for the equivalence of stationary Gaussian fields are given in one
dimension by Ibragimov and Rozanov (1978) and in higher dimensions by
Yadrenko (1983). The results presented here can be applied to nonstationary
random fields, although conditions for determining the equivalence of nonsta-
tionary Gaussian fields would be needed. In particular, it would be worthwhile to
extend the results in Yadrenko (1983) to Gaussian intrinsic random functions
[Matheron (1973)], which, in geostatistics, are a commonly used class of nonsta-
tionary phenomena. A
The space of random variables of the form

(1.4) i a;2(x;),

(1.3)

where the a;’s are constant, the x;’s are in R and n is finite, along with their
limits in L? form a Hilbert space with inner product defined by the second
moment. If the mean function m(-) is continuous on R and the covariance
function V{(-, -) is continuous on R X R, then the Hilbert space is easily seen to
be separable. Now, Gaussian measures on separable Hilbert spaces are either
equivalent or orthogonal [Kuo (1975), page 125]. We will say that K, and K, are
incompatible if the corresponding Gaussian measures (0, K,;) and (0, K,) are
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orthogonal, which we will denote by
(0,K,) 1L (0, K,).

Thus, continuous covariance functions are either compatible or incompatible.

We will now apply some elementary properties of equivalent Gaussian mea-
sures to the problem of estimating 4 in (1.3) when K ,..., K, are compatible on
R and 2(-) is Gaussian. First, for Gaussian measures on an infinitely dimensional
Hilbert space, (0, K) L (0,cK) if ¢ # 1 [see Kuo (1975), page 123]. Thus, if
k = 11in (1.3) and the model is correct, we would expect to be able to estimate 6,
consistently as the number of observations in R increases. Generalizing to the
case k > 1, it is possible to show that if e’§ # e’6*, where e is a vector of 1’s,
then (0, K,) L (0, K,.). However, if p is a vector not proportional to e, then
there exist § and 6* such that p’6 # p’8*, and (0, K;) = (0, K,.) [Stein (1987a)].
It follows that p’# cannot be consistently estimated based on observations in R
if p is not proportional to e. Thus, e’d is the only linear combination of 6 we can
hope to estimate consistently based on an increasing number of observations
in R.

In this paper, we will consider the properties of minimum norm quadratic
estimators [Rao (1971, 1972, 1973, 1979)] of 6 of Gaussian random fields. These
estimators have also been applied to estimation of spatial covariance functions in
Kitanidis (1983, 1985), Marshall and Mardia (1985) and Stein (1987a). Minimum
norm quadratic estimators (MINQE’s) are only defined when the covariance
structure is linear in the unknown parameters, which accounts for the model
chosen in (1.3). We will examine the properties of a particular type of MINQE
known as the MINQE(U, I) as N, the number of observations in R, increases. In
contrast, Mardia and Marshall (1984) investigated asymptotic properties of
maximum likelihood estimators when, roughly speaking, the distance between
neighboring observations remains fixed as N increases so that the observation
region grows with N. The MINQE(U, I) is defined in Section 2. It depends on a
starting choice for § which we will denote by a. We assume K, and K, are
compatible on R, which will be true if e’a = 1 and all of the components of « are
positive [follows from Kuo (1975), page 123]. Since the MINQE(U, I) is un-
changed when « is multiplied by a scalar, assuming e’a = 1 is not really a
restriction. We also assume that there exists ¢ > 0 and B such that (8’f, cK,) =
(m, V), where (m, V) is the true Gaussian measure on R. In Section 3, under
these conditions, we show that as N — oo, the MINQE(U, I) of 2’8 is asymptot-
ically normal with mean ¢ and variance 2¢?/N. This result is independent of the
choice of a. The true measure (m, V) need not have mean B’f(-) and covariance
Ky(-,-) for some B and 6; it merely needs to satisfy (m,V) = (B'f,cK,). We
also show that the MINQE(U, I) of p’d for any given vector p converges in L?
to some random variable with respect to (m,V) as N — oo. If p is not a
multiple of e, then the MINQE(U, I) of p’6 is not consistent; nor, as already
noted, can any other possible estimator of p’6 be consistent. Also, the limit will,
in general, depend on both a and (m, V). We see that only if p is a multiple of e
does the asymptotic distribution of the MINQE(U, I) of p’f obey the usual
normal approximations for large sample estimators. In the case where
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(B'f,cK,) L (m, V)forall c and B, the asymptotic behavior of the MINQE(U, I)
is unknown.

In Section 4, we show that this L? limit of MINQE(U, I)’s of § has a direct
interpretation as a MINQE(U, I) of § based on observing the infinite sequence
{2(x,)}32;- In Section 5, for f(-) and K(-,-) continuous, we show that the
MINQE(U, I) of 6 based on {2(x,;)}%2, is independent of the actual sequence of
points as long as they are dense in R. In Section 6, we show that the results in
Section 3 are highly dependent on the assumption that the random field is
Gaussian. We will also discuss the connection of these results to the problem of
predicting a random field with an estimated covariance function. In particular,
Stein (1988) showed that, under appropriate conditions, compatible covariance
functions give linear predictions which are asymptotically the same. Thus,
considering the results on the MINQE(U, I) obtained here, we see that e’d, the
one linear combination of # that is consistently estimable, is the one linear
combination of # that can have a nonnegligible asymptotic impact on linear
predictions. This result is a somewhat unexpected example of what A. P. Dawid
calls Jeffreys’s law, which roughly says that predictions based on equivalent
prior distributions eventually look nearly identical [Dawid (1984)].

Throughout this paper, we will use the notation that [ v;] represents a column
vector with ith element v; and [v;;] a matrix with ith element v, ;.

2. Minimum norm quadratic estimation. We observe the process z(-) as
described in Section 1 at (x,,..., x5) and wish to estimate the vector 6 in (1.3).
Let Z = (2(x,),..., 2(xy)) and F = (f(x,),-..., f(xy)). We will consider esti-
mating 6 using the MINQE(U, I), the minimum norm quadratic estimator that
is unbiased (the U') and invariant (the I') with respect to changes in the vector of
regression coefficients B. If rank(F') = r, we can choose a (N — r) X N matrix D
of full rank whose row space is the orthogonal complement of the row space of F.
Define Y = DZ, so that Y is a set of contrasts (EY =0 for all B). The
MINQE(U, I) can be defined directly in terms of Z, but for the purposes of this
paper, it will simplify matters considerably to define the MINQE(U, I) in terms
of Y. The fact that this reduction is possible and that the resulting estimator is
independent of the particular choice of D is implicit in Rao (1971), page 448. Let
¥, = D[K(x;, x;)]D’" and ¥(0) = L6,¥,. For a given vector p = (py,..., P;), a
quadratic unbiased invariant estimator of p’d will be of the form Y’HY, where

(2.1) tr(HY,) =p, forl=1,..., k.

If there exists a matrix H satisfying (2.1), we will say that p’6 is estimable [Rao
(1973), page 305]. The MINQE(U, I) chooses H to minimize the norm tr(HT')?
for some matrix T subject to (2.1). If z(-) is Gaussian with mean B’f(-) and
covariance function Kg(-, -), then

var(YYHY) = 2tr(H¥(9))’.

Thus, T is taken to be ¥(a), where a is.some a priori choice for §. Throughout
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this paper, we will assume

k
(2.2) Y a,[Kl(x,-, xj)] is positive definite,

=1
which just says that our a priori choice for the covariance matrix of the
observations is nonsingular. Under this assumption, we can choose D so that
¥(a) = I. In this case, if p’f is estimable, the MINQE(U, I) of p’d is given by

pltevy] [Y¥Y],

where [tr ¥,¥;]” is any generalized inverse of [tr ¥;¥;] [Rao (1973), page 305].
Now p’0 is estimable for all p if and only if [tr ¥,¥,] is invertible [Rao (1979),
page 143], in which case we will say that the MINQE(U, I) of 6 exists and is
given by

(2.3) b(a) = [tr ¥, T [YEY].

As part of the results of the next section, we will give conditions under which
this inverse exists for a sufficiently large number of observations.

'3. Main results. In this section, we derive some asymptotic results for the
MINQE(U, I) of the parameters of a covariance model for a Gaussian measure
on a separable Hilbert space s# without explicit reference to spatial covariance
functions. At the end of this section, we will consider these results in the context
of Gaussian random fields.

Consider {X;}72,, a sequence of jointly Gaussian random variables forming a
basis for 5. Suppose the true Gaussian measure on {X;}?*, is given by (m, V),
where m is the linear operator on 5 satisfying

m(X,) = EX,
and V is the bilinear operator on J#X 5# satisfying
V(X,, X,,) =cov(X,, X,,).
Suppose our (possibly incorrect) model for the mean of {X;}3, is
(3.1) EX, = B'f,
where f,, f,,... are specified vectors. Our model for the covariance operator is
Ko(X;, X)) = f:loiKi(Xh Xn)s
im

where K, ..., K, are specified bilinear operators such that K,;(X,, X,,) gives the
covariance of X, and X,, under the Gaussian measure (0, K;). We consider
estimating 6 using the MINQE(U, I) with starting value of 6 denoted by a.
Analogous to (2.2), we will assume

(3.2) K, is strictly positive definite,
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by which we mean that for all finite N and real constants a,,..., ay,
N
> aiajKa(Xi’ Xj) >0,
i=1
with equality if and only if @, = -+ = ay = 0. Now let
r= lim rank(f,,..., fy)
N-oo :

and
N, = mhi]n{rank(fl,..., fn) =r}.

We can define a sequence of observations {y,)3, such that y, is a linear
combination of X,,..., X, forl=12,...,

Ey,=0 if (3.1) holds

and
(3.3) Ko( 15 Ym) = 81>
where §,,, = 1if / = m and 0 otherwise. We can then define the MINQE(U, I) of
the X,’s in terms of the y,’s. Define Yy = (y,,..., yy)" and

 Yll,m) = Ki( 3, )
Let ¥,(N) be the N X N matrix with Imth element (!, m) For N> N, - r, 1f
the MINQE(U, I) of § based on Xj,..., X, ., exists, it is given by
(3.4) [tr ¥(N)E,(N)] 7 [ Y3 %(N) Yy

To determine the properties of this statistic, only the distribution of {y,)3, is
needed. We will use the subscript y to denote a Gaussian measure on {y,)% ..
Corresponding to the measure (8'f, K;) on {X,}2,, by (3.1) we have the measure
(0, K;), on { )7 ,, and corresponding to the true measure (m, V) on {X,}2,, we
have the measure (m,V), on {y)7.,. Note that for events measurable with
respect to {¥,};2,, the measures (m, V) and (m, V), give identical probabilities.
Finally, let

Gy = [gij(N)]
= [tr{(w(N) = D)(¥(N) - 1)}]
% (‘!’z(l’ m) - 8lm)(‘1"j(l’ m) - 8lm) .

l,m=1
The following is a strengthening of a theorem stated without proof by Stein
(1987a).
THEOREM 1. Suppose (3.2) holds,
(3'5) (0’ I{l)yE : = (0 Kk)y (0 K )y
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and there exists a constant ¢ > 0 such that
(3.6) (m,V); = (0, CKa)y
Then there exists a finite-valued G such that

() limy_ Gy =G.
Under the additional assumption
(3.7) (f 8) is invertible,
we also have:

(ii) For all N sufficiently large, éN(a), the MINQE(U, I) of 6 based on Yy,
exists.

(iii) (N/2)1/2(e ‘() — ¢)/c >4 N(0,1) under (m, V)y

(iv) Gy(a) = 6(a) in L? under (m V),, where §(a) is a finite, well-defined
random vector.

Before we prove this theorem, some comments about (3.7) are in order. This
assumption is sufficient to guarantee that the MINQE(U, I) exists for all N
sufficiently large. However, using the fact that the MINQE(U, I) exists if and
only if (2.1) has a solution for all vectors p, it is easy to see that if the
MINQE(U, I) exists for N = N,, it also exists for all N > N,. Thus, to obtain
(ii), it is possible to make the perhaps more natural assumptlon that the
MINQE(U, I) exists for some N. Where we really need (3. 7) is to obtain (3.14),
which allows us to compute the L? limit of 0N(a) It is possible that the
existence of the MINQE(U, I) for some N implies (3.7), but I have been unable
to prove this.

PrROOF OF THEOREM 1. We first prove (i). Using (2.20) of Ibragimov and
Rozanov [(1978), page 81] and the fact that (0, K o)y = (0, K;),, we obtain g;;(N)
converges to a finite limit g, as N —» oo. We have

N

gij(N) = Z (gij(l) _gij(l - 1))»

=1

where g, (0) = 0. This series is absolutely summable as N — oo, since

IZ lglj(l) gt}(l - 1)| < I‘!I (l m) almll\Pj(l’ m) - 81m|
=1 1

l,m=
= {giigji} o

by the Cauchy-Schwarz inequality. Thus, g, (V) converges to a finite limit and
(i) obtains.
Using (3.3), we have

(3.8) Gya =0 forall N,
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and hence,

(3.9) Ga = 0.

Define the vector

(3.10) oy = [tr(¥,(N) - I)].

We need the following lemma.
LEMMA 1. If T2 ,a% < o, then £}_,a, = o(N'/?).

Proor. It is sufficient to prove the lemma in the case of a, > 0 for all n. If
the sequence is rearranged so that it is monotonically decreasing (which is
possible since a, > 0 as n — o), then L_,a, is increased for all N, so it
suffices to consider the case of {a,}*_, nonnegative and decreasing. In this case,
a’ = o(n') by Proposition 1, part ii, of Shorack and Wellner [(1986, page 864].
Thus, a, = o(n~'/?) and the lemma easily follows. O

Now,
S0 -1's T (h(bm) —8n)' =g < e,
which, by Lemma 1, implies |
T (4l ) = 1) = o)
=1
So
(3.11) vy = o(N'?),

by which we mean that each element of v, is o( N'/%). Now (3.9) implies |G| = 0,
so the lower right-hand element of the inverse of the matrix in (3.7) is zero. Thus,

(G e)“ _ ( B d)
e 0 d 0
for some symmetric matrix B and vector d. We must have Gd = 0 and e’d = 1.

But (3.7) and (3.9) imply that rank(G) = k£ — 1, and it follows that d = a. That
is,

G e\’ _ (B a)
o @923
where BG + ae’ = I and
(3.13) Be = 0.

Now, to prove (ii), by (3.4) it is sufficient to show that
Qy= [tr ‘I’i(N)‘I'j(N)]
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is invertible for all N sufficiently large. We have
Qn =Gy + evj + vye’ + Nee'.

(&)
e 0

is invertible for all N sufficiently large. Applying (3.8),

(e =2
e 0 « 0)

By (i) and (3.7),

where

(3.14) By - B .
and

(3.15) Bye=10

for N sufficiently large. By straightforward calculation, we can show
QnvBy =1+ e(Byvoy — a)
and
Qn(Byvy — a) = (vyByvy — 2a’vy — N)e,
from which it follows that
(3.16) Qn'= By + (N + 2a’vy — viyByvy) (Byvy — @)(Byoy — )’

if N+ 2a'vy — ojyByoy #0. But N + 2a’vy — vjyByoy > 0 for all N suffi-
ciently large by (3.11) and (3.14).

To prove (iii) and (iv), we first consider the special case where (m,V), =
(0, cK,), for some positive c. Using (3.4), (3.15), (3.16) and a’e = 1,

e'fy(a) = — (N + 2d'oy — v Byoy) (Byoy — @) [Yi¥,(N)Yy]
= (N + 2avy — vaBNUN)_I{YI\'JYN — oy By [ YR (¥(N) - I)YN]}
(3.17) [using (3.3) and (3.15)]
=c+ (N + 2a'vy — vjByoy) (Y4 Yy — cN)
— (N + 2a’vy — viByoy) (v BySy + 2ca’vy),
where

N
Sy = [si(N)] = Z (Y1 — cszm)(%(la m) — 6tm) .

I,m=1
Now, 2a’vy — vyByoy = o(N) and Y3 Yy ~ cx’% under (0, cK,),, so
N'Y2(N + 2a'vy — vyByvy) (Y5 Yy — ¢N) — ,N(0,2¢?)
under (0, cK,),.
Let #, be the sigma field generated by the random vector Y,. We can easily

(3.18)
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show that {s;(N), #y}%-, is a martingale under (0, cK,), and
so it is bounded in L2, hence in L'. Thus, by the martingale convergence theorem
[Chung (1974), page 334] s;(N) converges almost surely under (0, cK,),. That is,
we can say
Sy =58
3.19 N
(319) lim 3 (3~ eS)(¥illm) = 8,,) | under (0, K,),.

N=o g mo1

Since vjByvy = o(N) and vy = o( N/?), it follows that the last term in (3.17)
NBnUN

is 0, (N~'/?). Thus, using (3.17) and (3.18), we obtain (iii) when (m,V), =

(0, cK,),. We also have

by(a) = (e’dy(a))a + BySy + Byoy(c - e’éN(a))
% ca+ BS under (0,cK,),,
so that we have convergence in probability in (iv) when (m, V), = (0, cK,),. We
see that an explicit expression for #(«) is given by ca + BS.

More generally, suppose (3.6) holds: (0, cK,), = (m, V),. The fact that S is a
well-defined finite random vector under (0, cK ,), implies that S is a well-defined
finite random vector under (m, V),. Also, again using (3.6),

”éN(a) ~ ca — BS|| 20 under (0,cK,),
implies
[6x(a) — ca — BS|| 20 under (m,V),.

Thus, we have convergence in probability in (iv). Of course, the distribution of S
depends on (m,V),. To obtain (iii), we note that the last term in (3.17) is
0,(N~'/?) under (m, V),, since it is ‘0,(N~'/?) under (0, cK,),. Thus, it suffices
to show that

(3.20) N~Y2(YYy — ¢N) -4 N(0,2c?) under (m,V),.
Choose H)y, orthogonal so that under (m,V),,
Y~N = HyYy ~ N(py, cWy),
where W), is diagonal. Thus,
(3.21) (YN - I-‘N)'WIQI(YN - HN) ~cxy under (m,V),,
N_l/z[(YN - #N)'WNI(YN - P‘N) - CN] g N(O,2C2)
(3.22)
under (m, V),
and, under (m, V),
N_I/QE{YA'/YN - (Y - HN)'WIGI(YN - #N)}
(3.23) = NV (pnn)? + deuyWpy
—2c(pypn) tr(I — Wy) + 2¢2tr(I - WN)2}.

2
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Now, (3.6) implies tr(I — Wy)? and pjyp,y both are bounded as N — oo
[Ibragimov and Rozanov (1978), (2.9) on page 76] and it follows that uj\Wyu  is
bounded as N — oo. Since tr(I — Wy) = tr(I — Vy), where ¢V}, is the actual
covariance matrix of Yy, and tr(I — V)% = tr(I — Wy)? is bounded, we have
tr(I — Wy) = o(N'?) by Lemma 1. Therefore, (3.23) tends to zero as N — oo.
Combining this fact with (3.22), we obtain (3.20) and hence (iii).

To finish the proof of Theorem 1, we consider the L? convergence of éN(a)
We first show that S(N) - S in L2 under (m,V),. Since S(N ) — S almost
surely under (m,V),, it suffices to show that S(N ) is Cauchy in L? under
(m,V),. We have for N> N/,

(5(N) — s;(N))*
N N
={ L L (0 b)Yl m) - 8y,)

(3.24) I=N'+1 m=N'+1

2

N N
+2 Y X bl m)} .

m=N'+1I[=1

Let us define 7, = Ey, and y(, m) = cov(y,, y,,), where the lack of a subscript
indicates that the expectations are taken under (m, V) ,- We have

E(51mY ) = ¥(L, m)¥(q,r) + (I, r)¥(m, q)
+(L, g)¥(m, r) + 17,91, m)
+rn4(l,q) + 174(1 r)
+TlTr¢(m7 q) + Tqu¢(mr r) + TITm‘I/(q’ r)'

Thus, we can show
2

N N
E{ Z Z (Y1 — CSIm)(%(lr m) — 81m)}

I=N'"+1 m=N"+1

= {0t m) = ) vt m) = eb,,))

B2 T ) = 0, (90 m) = 0, || Saml9ult, m) )
im Im
+2 Z (lP,(l, m) - ‘Slm)(‘lli(q’ I‘) - Sqr)"l’(l’ r)\b(m’ q)

Imqr

+4 Z Tq\b(l r ( i(l’ m) — 8zm)(¢i(Qy r)— 8qr)7

Imgqr

where each index in the summations has limits N’ + 1 and N. We have

(o<}

(¥, m) - ‘Slm)2 =8y < ™.

l,m=1
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Using (3.6), we similarly have [see (2.20) of Ibragimov and Rozanov (1978), page
81]

Z (¥(l,m) - C‘Szm) ©

l,m=1
and [see the proof of Theorem 3 of Ibragimov and Rozanov (1978), page 78]

(o]
Y 1< oo.
-1

Thus, by applying the Cauchy-Schwarz inequality, we can easily show the first
two terms in (3.25) tend to zero as N, N’ —» . By repeated application of the
Cauchy-Schwarz inequality, we can obtain the general inequalities

1/2 1/2 1/2
(326) Z almbchql = (Zalzm) (Zbriq) (chl)
Imq im mq ql
and
1/2 1/2 1/2 1/2
(321) | T apbugeqda| < (Tat] " (Zo2,) (Zez) (Zaz) "
Imgr Im mq qr rl

Thus, considering the third term in (3.25), we have

Y (4l m) = 8,) (Wilar r) - 8, )8 (L, r)¢<m,q>}

Imqgr

< Z |\1/,(l, m) - 8lm||¢i(q’ r) - 8qr|

Imqr

X("P(l’ r) - 08[r| + CS,,)('%IJ(m, Q) - C8mq| + C"qu)
= Z |4’z(l’m) - SlmH‘Pi(q’r) - 8qr“4’(l’r) - CSer‘k(my q) _-csmq|

Imgr

+2¢ X Wil m) = 84, ¥i(a, 1) = 8|9 (m, ) — 8,

Imgq
+e2 Y (yi(l, m) = 8,,)".
Im

Applying (3.26) and (3.27), we have that this expression tends to zero as
N, N’ > . We can also show the fourth term in (3.25) tends to zero as
N, N’ - 0, so we have that (3.25) tends to zero as N, N’ - oo. Using similar
manipulations, we can obtain

N N’ 2
lim E Y X yyablm)| =o0.
N N'=oo  \ maNt1 =1
Thus, E(s;(N) — s,(N’))? tends to zero as N, N’ > oo, so s,(N) is Cauchy in L?
under (m, V) Combining this result with (3.17), (3.21) and (3.23), we obtain
’HN(a) — cin L? under (m, V),. The L? convergence of 0N(a) follows, complet-
ing the proof of (iv) of Theorem 1. O
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From (3.17), we also have
E(e'fy(a)) = c+ o(N"2),
var(e'fy(a)) ~ 2¢%/N.
Of course, if (m, V), = (0, K,), for some & vector 6, then E(e’éN(a)) =e'f=c
for all N.

To apply Theorem 1 to Gaussian random fields, let us suppose we model the
mean and covariance functions as in (1.2) and (1.3) and consider a sequence of
observations z(x,), 2(x5),... in R. Let us identify {2(x;)}%, with {X,}2, and
make the obvious correspondences between the mean and covariance functions in

Section 1 and the mean and covariance operators in Theorem 1. For example, the
true mean function m(x) defines a linear operatox, which we will also call m,

that satisfies
m(z(x)) = m(x),

and the true covariance function V(x, x’) defines a bilinear operator V that
satisfies

(3.28)

V(2(x), 2(x")) = V(x, x').

Now, if two Gaussian measures for the random field on R are equivalent, they
are also equivalent on the (possibly smaller) Hilbert space generated by {z(x,)}3 ;.

Defining {,}%., as in the beginning of this section in terms of {z(x,)}%,, we
further have that equivalence of Gaussian measures on the space generated by
{2(x;)}72, implies equivalence on the space generated by {y,}% ;. Thus, compati-
bility of K,..., K, and K, on R implies (3.5) and (m, V) = (B'f,cK,) on R
for some 8 and c>0 1mphes (3.6). Finally, (2.2) implies that {2(x,)}?°, satisfies
(32). Defining §y(a) and G as above, we have

CoROLLARY 1. For a Gaussian random field 2(-) and a sequence of observa-
tions in R, if (2.2) and (3.7) hold,
K,,..., K, and K, are compatible on R
and there exist ¢ > 0 and B such that
(m,V)=(Bf,cK,) onR.
Then (i)-(iv) of Theorem 1 hold.

4. The MINQE(U,I) based on an infinite sequence. Since f(a) = ca +
BS is the L? limit of a sequence of MINQE(U, I)’s, we might expect () to
have a direct interpretation as a MINQE(U, I) of 6 based on the sequence of
Gaussian random variables { X;}7 ;. Under the conditions given in Theorem 1, we
now show that 6(«) does have such an interpretation.

Based on the sequence of contrasts {y,}%; as defined in the previous section,
we wish to estimate p’d for some fixed vector p. We will consider estimators of
p’0 of the form

N

(4.1) im ¥ w4 (N) s

N—oo l,m=1
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where the limit exists in L? under (0, K «)y- We note that p'6() is in this class.
Generalizing the argument in the previous section, we can show that this limit
exists in L? for any measure (m, V) , satisfying (3.6). Following the proof in Rao
(1972), write

(42)  lim Z Um(N) 3,3 = p'0(a) + Jim Z Oy N ) Y Y-

N—ooo g mey ~ 0 m=1
Now, p'ﬂ(a) is the L? limit of unbiased estimators of p’d, so it is also unbiased.
Thus, for the left-hand side of (4.2) to be an unbiased estimator of p’d, we must
have

(4.3) hm Z om(N)Y;(l,m) =0 fori=1,...,k.

N—=oo j meai

We also have

cov,

P, m ¥ o,,..(N)y,y,,,)

N2 et

N
= p'Bjcov, (sl, lim ) Uzm(N)yzym))
N—oo l,m=1
=2p'B hm 2 (N )(i(2, m) — ‘Slm)) =0
N—oo l,m=1

using (4.3) and Be = 0, so that the two terms on the right-hand side of (4.2) are
uncorrelated under (0, K,),. It follows that the variance under (0, K,), of
estimators of p’d of the form given in (4.1) satisfying the unbiasedness conditions
in (4.3) is minimized by p’f(«). This estimator is unique in the sense that any
other estimator of the form (4.1) that satisfies (4.3) and has the same variance as
p'0(a) under (0, K,), has p'd(a) as its L? limit under (m, V),.

5. Application to spatial covariance functions. Suppose we model a
Gaussian process z(-) as in (1.1)-(1.3) with f(-) contmuous on R compact and
K (-, ) continuous on R X R. We will show that 0(a), as defined in Section 3, is
the same for any two dense sequence of points in R. That is, if (m,V) =
(B'f, cK,) for some ¢ > 0 and B, we get the same L? limit under (m, V) for
éN(a) as N — oo independent of the sequence of points, as long as it is dense
in R.

Let C, be the class of finite contrasts under the model for the mean function
given in (1.2): random variables of the form

N
2 Nz(w)
=1
satisfying

N
IZ Alf(wl) =0,
=1
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where A,,..., Ay are arbitrary, w,,...,wy are points in R, and N ranges over
the positive integers. Define C to be the L? closure of C, under (0, K,),, the
Gaussian measure on the space of contrasts. By (2.6) of Ibragimov and Rozanov
[(1978), page 76] C is also the closure under (0, K,), = (0, cK,),, ¢ > 0. We need
the following lemma.

LEMMA 2. Suppose {x,}72, is a dense sequence of points in R, a compact set,
f(+) is continuous on R and K (-, -) is continuous on R X R. Then C is the L*
closure under (0, K ), of finite contrasts based on observations at {x;}7 .

Proor. To prove the lemma, it suffices to show that if X € C, X can be
approximated arbitrarily well (in L?) by a random variable of the form

N

2 Az(x,)

=1
satisfying XA, f(x;) = 0. Since X € C, given ¢ > 0, we can choose w,,...,w;, in
R and A,,..., A, satisfying A, f(w;) = 0 and

J 2

(5.1) Ea(X - E Alz(wl)) < g,

=1
where E, indicates expectation under (0, K ,),. Because {x,}{2, is dense in R and
f(-) and K (-, -) are continuous on R, we can choose x,), ..., X4, & subset of
{x,)7>, satisfying

€

(52) ”f(w,)—-f(xa(,))"<jl/—2”—>\ﬂ fOI'l=].,...,J,
where || - || denotes Euclidean norm and A = (A,,..., A;), and

J 2
(5.3) L Ea(1§1>\l(z(wl) - z(xa(,)))) <e.

Suppose r = suprank( f(w,),..., f(w,)), where the supremum is taken over all
wy,...,w, € R and ¢ is the number of components in f(-). Since f(-) is
continuous on R, there exist x,),..., Xy, € {*,}2; such that F, =
(f(xpay)s---» [(xp(ry)) has rank r. We will use these sites to adjust for the fact
that >A,2(x ;) is not quite a contrast. We have

J J
1§1}\lf(xa(l)) 1§1}\l( f(xa(t)) - f(wz))
J %
S| £ o) = 1] <o

“using (5.2). For = (n,,...,n,), consider the equation

(5.4)

J
(5.5) Fy = IZ Alf(xa(l))‘
=1
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By the definition of F,, F, is of full rank and has the same rank as F, so the
right-hand side of (5.5) is in the column space of F} and it follows that (5.5) has a
unique solution n. We also have |||| < he, where A is a constant depending only
on F,. (If welet F;* be an r X r nonsingular matrix made up of r rows from F,,
we can take A to be the matrix norm of F;*~1) Then

J r
Z )\zz(xa(z)) - E "'Izz(xb(z))
=1 I=1

is a contrast and
2

J r
Ea{X - (lgl)\zz(xa(z)) - lglnzz(xb(z)))}

2

~

Z xb(l))}

J J
= Ea{(X - ZA,z(w,)) + ( ;, (2(w) - 2(x4)) | +

2

v

< 2{Ea(X - i)x,z(w,)

J
Ea( El)\z(z(wz) - Z(xa(z))

Z mZ(xbu))) }

< 2{e + e + Lr’h%?*},
where
L = sup var(z(w)).
weR
Now ¢ and X are arbitrary, so we can conclude that C is contained in the L?
closure of the contrasts of a finite number of the z(x;)’s and since this L? closure
is trivially contained in C, Lemma 2 is obtained. O

Under the conditions in Lemma 2, we have just shown that C is separable,
since the contrasts of any dense but countable sequence of observations will serve
as a basis for C. Suppose {y,}3%, and {7,}32, are two orthonormal bases [under
(0, K,),] for C. Define a,, = cov(y, 7,)- We have

[e o]
Y= E alqu’
g=1
where the sum converges in L2 Consider
Q= lim QN
= lim Z Ui N ) Y1

N—ooo ey
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where the limit exists in L2. We have

J
lim Z ulm(N) Z ulm(N) E alqampyqyr

Sl R q,r=1 q,r=1

Qn

I

g8
o))
z 3
s

where
B J N
QN(J) = E E ulm(N)alqamr 5;(15’;"

q,r=1\1l,m=1

For a given N, we can choose Jy, increasing in N such that
~ 2 N
( - QN(JN)) <1/N.
Since @y — @ in L?, it follows that Qn(Jy) = Q in L2 Define Qn = Qp(Jp)
for Jp< N < JP +1 80 @y — @ in L2 Thus, the space of random variables
defined by (4.1) is independent of the orthonormal basis chosen. By Lemma 2,
any sequence of observations at a dense set of points in R can be used to form a

basis for C, so the space of random variables of the form (4.1) is the same for any
dense sequence of observations in R. We can conclude:

THEOREM 2. Under the conditions of Corollary 1 and Lemma 2, the
MINQE(U, I) of 0(a) (as defined in Theorem 1) is independent of the dense
sequence of points {x,}?°, in R.

Thus, we are justified in calling é(a) the MINQE(U, I) of 6 based on
observing z(-) everywhere in R.

6. Discussion. While the results of the previous sections provide important
information about the asymptotic behavior of MINQE(U Iys of a spatlal
covariance function, there are many unresolved issues. In particular, in the
expression § = ca + BS for the MIN QE(U, I) based on an infinite sequence of
observations, we do not have an explicit expression for the distribution of the
random vector S. It is not difficult to compute the mean and covariance matrix
of S under the true Gaussian measure, but they do not tell the whole story since
S, in general, will not be multivariate normal. In fact, under the conditions of
Theorem 1, it seems unlikely that S will ever be multivariate normal except in
the trivial case where # has only one component. Another problem is that
Ky(-,-) is not necessarily a positive definite function. Thus, in practice, some
modification of the MINQE(U, I) is used [Stein (1987a)], and it is unclear what
the properties of these modified estimators will be.

In the examples in Table 1 of Stein (1987a), the variances of MINQE(U, I)’s
‘based on N observations in a compact region R showed remarkable insensitivity
‘to the value of «, the starting choice for 6 for both large and small N. Except for
(3.28), which says that the variance of e’oN(a) is asymptotically independent of
a, the results given here do not explain the insensitivity to a observed in these
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examples. These examples also suggest that N does not need to be very large for
var( p’0AN(a)) to be close to var(p’f(a)) for p not proportional to e. The results
in this paper do not give rates of convergence; however, if we were in a case
where we could make a statement about v, sharper than (3.11), it would be
possible to give bounds on the errors. For example, if vy = O(1), then from (3.17)
we can show for (0, K,), = (0, cK,,),,

var(e’fy(a)) = 2¢>N~* + O(N~?) under (0, K,),,

which we can compare to (3.28). The behavior of vy in the examples in Table 1
of Stein (1987a) is unknown. Considering the rapid convergence observed there,
it would not be surprising if in fact v, = O(1) in at least some of those cases.

It is important to note the strong dependence of Theorem 1 on the assump-
tion that the random field is Gaussian. As an example, suppose that 2(-) is a
stationary Gaussian process on [0,1] with unknown mean p and covariance
function K(x,x’) = e ¥~ ¥, We observe #(x) = e**, which is a stationary
lognormal process with

Et(x) = e**1/2 = 12,

cov(t(x), t(x’)) = 8(exp{e™*~*1} - 1).
Let u(-) be a Gaussian process on [0, 1] with the same first two moments as #(x).
Consider a sequence of distinct points in [0,1], {x,)7%,, and let x,,..., xyy be
Xy,...,%y rearranged in ascending order. We have that exp{e ¥} — 1
is compatible with e(1 — |x — x’)) on [0,1] [see Theorem 13, Chapter 3, of
Ibragimov and Rozanov (1978)]. The MINQE(U, I) of 6 based on u(x,),...,
u(x ) and assuming fe(l — |x — x'|) is the correct covariance function is

(6.1) g" {u(xiN) - u(xi—l,N)} .

i=2 XiN — Xi—1,N

Applying (3.28), we have that the asymptotic variance of this estimator is
20%2/N. However, if we replace u(-) by #(-) in (6.1), we can show that the
variance of this estimator does not tend to zero as N increases. Thus, this
estimator is not consistent, at least not in L2, despite the fact that #(-) has finite
moments of every order. Of course, if we knew #(:) was lognormal, we could
analyze the process on the log scale and avoid this problem. Cressie (1985)
suggests a technique for choosing a pointwise transformation of a random field so
that the transformed field is more nearly Gaussian. Unfortunately, a continuous
random field need not be pointwise transformable to a Gaussian field, in which
case, it is unclear how, or even if, one should estimate the covariance structure of
the field.

Stein (1988) considers the asymptotic effect of using a covariance function
which is compatible with the correct covariance function on kriging as the
number of observations in a compact set R increases. We briefly summarize
those results. Suppose K-, ) and K(-, -) are two possible compatible covari-
ance functions on R X R. We want to predict some element of the Hilbert space
given by the closure in L? under (B'f, K,) of random variables of the form given
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in (1.4). Define e,(N) to be the error of this kriging predictor based on
2(x,), ..., 2(xy) assuming the mean function is B'f(-) and the covariance func-
tion is K,(-, ). Let Vi(-) denote variance under (8’f, K;). Since the kriging
predictor is unchanged when the covariance function is multiplied by a constant,
we have the following trivial extension of Theorems 1 and 2 in Stein (1988).

THEOREM 3. Suppose that for some ¢ > 0, K (-, ) and cK (-, -) are compat-
ible covariance functions on a compact set R and {x,}, is a sequence of points
in R. If

(62) Jim Vieo(N)) =0,
then
(6.3) lim M—N—)l =1

N-o Vo(e(N)) B

and

. Vy(e(N)) 1
oy ¥ V(e (M)

Suppose K-, ) is the correct covariance function on R X R. Then the
variance of the kriging prediction error using K,(-, -) is asymptotically equiva-
lent to the variance of the best linear unbiased predictor (6.3). Also, the ratio of
the actual variance of the prediction error e,(N) to what we believe the variance
of e,(N) is if we assume K (-, -) is the correct covariance function tends to c as
N increases (6.4). The assumption in (6.2) says that the best linear unbiased
predictor is consistent, which will be true, for example, if f(x) is continuous on
R, K (-, ) is continuous on R X R, the linear functional being predicted is z(x),
and x is a limit point of {x,}32, [Stein (1987b)]. Theorem 3 does not apply if x is
not a limit point of {x;}3,. We note that Theorem 3 does not assume that z(-)
itself is Gaussian, but only that the Gaussian measures on R with zero means
and covariance functions K-, -) and cK,(-, -) are equivalent. Further results,
including some bounds on the rates of convergence in (6.3) and (6.4), are given in
Stein (1987b).

Theorem 3 says that to obtain asymptotically efficient kriging predictors
(relative to the best linear unbiased predictor), it is sufficient to use a covariance
function K (-, ) such that cK,(-,-) is compatible with the true covariance
function on R for some ¢ > 0. To obtain asymptotically consistent values of the
prediction error variance, then we also need to know the constant c. Relating
this result to Theorem 1, we see that for a vector p not proportional to e, while
we cannot estimate p’6 consistently, for purposes of linear prediction, we can get
p'0 wrong and still get good predictions [in the sense that (6.3) and (6.4) hold],
since as noted in Section 1, there exist § and 6* such that p'd # p’6* but K,
and K,. are compatible. Furthermore, from (6.4), e’6 will asymptotically control
the ratio of the actual mean square prediction error to what we think the mean
square prediction error is, and we can estimate e’6 consistently. Thus, for a
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Gaussian random field, the one linear combination of # that has a nonnegligible
impact asymptotically on linear predictions is the one linear combination the
MINQE(U, I) estimates consistently. Of course, since K, and K, in Theorem 3
are fixed covariance functions, this result does not directly apply to the problem
of kriging with an estimated covariance function.

These results can be viewed as an example of what Dawid (1984) calls
Jeffreys’s law, which might be paraphrased as saying that aspects of a model
which cannot be estimated consistently will, under appropriate conditions, have
a negligible asymptotic impact on predictions. A mathematical embodiment of
this law is given by a theorem due to Blackwell and Dubins (1962), which shows
that, in great generality, equivalent prior distributions yield asymptotically
indistinguishable conditional distributions. In fact, an alternative proof of Theo-
rem 3, as well as some generalizations, can be obtained using their result. This
connection will be further explored in future work.
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