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CONSISTENCY OF AKAIKE’S INFORMATION CRITERION FOR
INFINITE VARIANCE AUTOREGRESSIVE PROCESSES!

By KEITH KNIGHT

University of British Columbia

Suppose {X,,} is a pth order autoregressive process with innovations in
the domain of attraction of a stable law and the true order p unknown. The
estimate p of p is chosen to minimize Akaike’s information criterion over the
integers 0,1,..., K. It is shown that p is weakly consistent and the consis-
tency is retained if K —» o0 as N — oo at a certain rate depending on the
index of the stable law.

0. Introduction. Consider a stationary pth order autoregressive [AR(p)]
process {X,},

Xn = Ban_l + BZXn—2 + .- +Ban_p + En,

where {¢,} are independent, identically distributed (i.i.d.) random variables. The
parameters B,, ..., B, satisfy the usual stationarity constraints, namely all zeros
of the polynomial '

p

zp — Z ﬁjzp—.]

J=1

have modulus less than 1.

Now assume that the true order p is unknown but bounded by some finite
constant K(N). Our main purpose here will be to estimate p by p where p will
be obtained by minimizing a particular version of Akaike’s information criterion
(AIC) [Akaike (1973)] over the integers {0,1,..., K(N)}. Because we should be
willing to examine a greater range of possible orders for our estimate as the
number of observations increases, it makes sense to allow K(N) to increase with
N. In the finite variance case with K(N) = K, AIC does not give a consistent
estimate of p. In fact, there exists a nondegenerate limit distribution of p
concentrated on the integers p, p + 1,..., K [see Shibata (1976)].

The term AIC is used somewhat incorrectly in this context. Strictly speaking,
use of AIC presumes that the distribution of the data is known up to a finite
number of parameters. For a given statistical model 2, with k-dimensional
parameter vector b, AIC is defined as

$(2;) = —2A(b) + 2%,
where A(b) is the maximized log-likelihood for the model ,. However, in the
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time series literature, AIC is usually defined in terms of a Gaussian likelihood
irrespective of the “true” distribution of the data, so for a kth order autoregres-
sive model, we will define AIC as

(k) = NIn6%(k) + 2k,

where 6%(k) is the usual estimate of the innovations variance obtained from the
Yule-Walker estimates defined in the next section. We will choose as our
estimate of p the order which minimizes ¢(%) for £ between 0 and K, that is,

p = i k).
p arg()g;@lg}(«#()

In the case where two or more orders achieve the minimum, we will take the
smallest as our estimate.

1. Infinite variance autoregressions. We will be interested in the case
where the innovations {¢,} are in the domain of attraction of a stable law with
index a € (0,2). This means that both

P(e,| > x) = x7L(x),
P(e, > x)

T2 _aefo
o e > =y ML)

where L(-) is a slowly varying function [see Feller (1971) or Davis and Resnick
(1985, 1986) for more background]. If E(Je,|) < oo, then we will assume that
E(e,) =0.

Given observations X, ..., X, and order / (which may or may not equal the
true order p), we will consider two estimates of the AR parameters, the least
squares (LS) [B(Z)] and Yule-Walker (YW) [B([)] estimates which satisfy the
matrix equations

CB(l) =% and CB(I) =%,

where

N
Cl(i’ J) = E Xn—-an—j,

n=I+1

N
Cl(i’ -]) = Z Xan-—|i—j|’

n=i—j|+1
N

f(i)= X XX,
n=I+1
N

i\l(i)= Z Xan—i'
n=i+1

For the LS estimates, §,(1),..., 8(1), where I > p, we have for § > a,
N'2(By(1) - By) =0,
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where B, =0 for k> p [Hannan and Kanter (1977)]. For YW estimates,
,81(l), ﬁ,(l), a slightly weaker result holds: Convergence to 0 is in probablhty
rather than almost sure. Davis and Resnick (1985, 1986) give results concerning
the asymptotic distributions of these estimates.

We may also wish to consider AR models of the form

X, —p=B(X,y— )+ +B(X, , - )+e

where p is unknown and we retain the same assumptions on the 8,’s and {¢,}. It
can be shown [Knight (1987)] that if we center the observed series by subtracting
the sample mean X (i.e, X/ = X,— X) and estimate B,,..., B, using X,
n=1,..., N, we will still have Nl/s(ﬁk Br) =, 0 for 6 > max(l, a) for YW
estimates and the convergence is almost sure for LS estimates. More generally,
we can center the observed series by subtracting any reasonable (say VN -
consistent) location estimate fi and estimate the 8’s using the centered series.
Depending on the precise convergence properties of i we may be able to obtain
the full rate of convergence for the estimates of the AR parameters [Knight
(1987)].
We will consider a triangular array of random variables {X{™}, _ v,

X®
2 2
Xl( ) Xé )

XM XN XN,

where each row is a finite realization of an AR(p) process

p
XM = Y BMXN) 4 M),

j=1
The corresponding triangular array of innovations {¢"’}, _ 5 consists of row-rise
iid. random variables which are in the domain of attraction of a stable law.
Given a single ii.d. sequence {e,}, we could construct each element of the

triangular array as
o0
XN =3 ¢;(B™M)e,,,

J=0

where the c;(-)’s are the coefficients in the linear process representation of
(XM, We will require that B = (B{™),..., B{M)) are contained in a closed
(and hence compact) subset of the parameter space for all N. We can now shrink
B(N ) to zero as N goes to infinity and try to consistently estimate p at the same
time. Intuitively, it would seem that the smaller |3{"’| is, the more difficult it
should be to distinguish between a pth order and a lower order AR model. From
simulations, this does seem to be the case. This is the real motivation for
allowing the parameters to vary with N. Consider the following example.
Suppose we observe a pth order AR process which has B, very close to zero (say
B, = 0.1). To estimate the order of the process, we use a procedure which we
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know to be consistent. So for N large enough, we will select the true order with
arbitrarily high probability. However, for moderate sized N, the probability of
underestimating p may be very high. Conversely, if |8,] is close to 1, then even
for small N there will be a high probability of selecting the true order. So by
allowing B, to shrink to zero with N, we may get some idea of the relative
sample sizes needed to get the same probability of correct order selection for two
different sets of AR parameters. This approach is similar in spirit to considering
a sequence of contiguous alternative hypotheses to a null hypothesis as is done in
calculating the Pitman efficiency of hypothesis tests.

If we include unknown location p in the model, we will assume that it does
not vary with N. To have p vary with N may make sense in some situations but
we will not consider it here since p is essentially a nuisance parameter in this
situation. .

We will provide an answer to the following question: Under what conditions
(if any) on K(N) and (B{"™, ..., B™) will AIC provide a consistent estimate p
of p? If K(N) is allowed to grow too fast then we may wind up severely
overfitting much of the time; for example, p could equal K(N) with high
probability. The heuristic argument and simulations given in Bhansali (1984)
indicate that AIC will consistently estimate the order if K(N) varies slowly with
N. Bhansali (1988) shows that the FPE  criterion of Bhansali and Downham
(1977) consistently estimates the true order of an AR process for fixed K; FPE,
is asymptotically equivalent to AIC. In the next section, we give some considera-
tion to the rate at which K(NN) may go to infinity and still preserve consistency
of AIC.

2. Theoretical results. The main result of this paper is contained in Theo-
rem 7; the first six results provide the necessary machinery for Theorem 7. We
begin by stating two results dealing with rth moments of martingales and
submartingales.

THEOREM 1 [Esseen and von Bahr (1965)]. Let S, = X:..X,. If
E(X,S,.1) =0 for2<n<NandE(|X,|") < o for1 <r <2, then

B(S)) <2 3 E(X.p).

n=1
(Note that {S,; n > 1} is a martingale.)

THEOREM 2 [Cf. Chung (1974), page 346]. If {X,; n>1} is an L'-
submartingale for some r > 1, then

r r
E[ X ] < ( ) E(Xpl").
max |X,'] < | | E(Xn)

The following lemma will allow us to ignore the dependence on N of the
moments of {X{M)} by virtue of being able to bound the moments over any
sequence of admissible parameters within a compact set.
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LEMMA 3. Let (X, (B)} be a stationary AR(p) process with parameter B
and innovations {¢,} in the domain of attraction of a stable law with index a.
Let C be a compact set of the parameter space. Then for all 0 < § < a,

supE[|Xn(B)|8] < 0.
BecC

PROOF. X, (B) = LF.(c;(B)e,_; where c;(B) is a continuous function of B for
all j. Now

®
|X.(B) < X [c/(B)]len-)l
Jj=0
o0
< X ajle, )l
Jj=0
where a; = supgcclc;(B)|. However, it can be shown that |a, < const. JPx|?

where |x| <1 and so X7 gla,|* < o for all y> 0. Under this summability

" condition, it follows from Cline (1983) that the random variable
o0
X = Z ale)|
j=0

is finite almost surely with
P[X > x] s

lm ——m—= = *< 0.
L e R i A

This implies that E(X?) is finite for all 0 < 8§ < a and the result follows. O

The following lemma will allow us to treat moments of XX, the same as the
moments of ¥¢, when a > 1.

LEMMA 4. Let {X,} be a zero mean stationary AR( p) process with innova-
tions {¢,} in the domain of attraction of a stable law with index a > 1. Then for
anyl <r<a,

N r
(2) E|| X X,| |=O(N),
n=1
m r
(b) E| max | Y X,| | =O(N).
l<m<N n=1
ProoF.
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where |Ry| < (max, . . ,|B:)P(p + 1)(max, _, ., < v Xil)- Thus

n=1 n=1
where C = (1 — £f_, ;). Thus by Minkowski’s inequality,
N r l/r N r 1/"

<CE + CE[|RN]Y".

L X,
n=1

Xe,
n=1
Now note that

1E
N

1X," > xl dx

X, <—+——
—pskle kl] N-/

— 4+
NN

-0 asN—-> wand ¢t - o©

and so E[|Ry|"] = o(N) and part (a) follows by applying Theorem 1.
Part (b) follows similarly from Theorem 2 by noting that

5 x S e

n=1 n=1

—psksN

ft P[IX," > x] d

< C max + CRy

l<ms<N

lsmsN

and using Minkowski’s inequality. O

The following theorem deals with uniform convergence of both LS and YW
autoregressive parameter estimates in the case where location is known.

THEOREM 5. Assume known location u. Let K(N) = O(N?®) for§ <1 — a/2
and let ||\v|| denote the Euclidean norm of the vector v. Then

(a) mps?;aI?(N) "B(l) - B(N)" “p 0,
(b) N | _max [B() - BO| =, 0.

Note that the vectors are not fixed length but may vary with N.

ProoF. (a) The style of proof will mimic Hannan and Kanter (1977). For
convenience we suppress the notation indicating the dependence of {X,}, {¢,}
and B on N. For [ > p the LS estimating equations can be expressed as

él(é(“ - B) =rf,

where
N

rl*(i) = Z ean—z

n=Il+1

Fix 8§ <1 — a/2 and set K = K(N) = O(N?). For each I, C, is nonnegative
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definite and so it suffices to show that for some k < 2/a,

() leasx NY27"r¥| -, 0,
(ii) min min N~ v'Cv—> 00.

. p<I<K(N) |ivli=1
If (i) and (ii) hold, then clearly
N B(1) - 0.
‘/_p??_fxu B(2) - B| —»
To prove (i), it suffices to show that

Y

1| N
Ey=E| max [N'7"2Y | ) ¢X, ; -0
psisK j=1|n=1+1
for some vy < a/2.
Now
K N 2y
Ey<NO 2y E| max | ), X, ;
j=1 | 155K a1
[ 2
K l v N Y
< N2 Y El{ max | ) ¢,X, ;| + Y e X,
Jj=1 1<i<K|p— n=1
K l 2y N 2y
< N2 Y {E| max | ) €,X,_ +E|| Y &, X, ;
j=1 1<i<K|p-1 n=1
J 2y71/2 N 2y 7172
+2NA-26) Z E| max | ) ¢, X, ; E|| Y e.X, ;
j=1 |1si=K|p=1 n=1

K
= ¥ NO20(Vy Wy, + 2Vi/*Wa/?).
j=1
If 2y < 1, then by the so-called c,-inequality

Ve < E[ 5 (e X |] - O(K(N))

n=1

uniformly over j between 1 and K(N).
If 2y > 1, then a > 1 and so S, ; = Xk_.¢,X,_; is a martingale for each J.
Hence |S,, ;| is an L?'-submartingale and so by Theorems 1 and 2,

Vy, < CE[|S, 1] <2c Z E[le X, /*] = O(K(N))

n=1

uniformly over j.
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Similarly it can be shown that for all permissible values of v, WN = O(N)
uniformly over j between 1 and K (). Thus for a given sequence K(N) = O(N?%)
by taking « sufficiently close to 2/a and y sufficiently close to a/2, we will have

L| N 2\ "
E NS Y e Xl | | =o()
psisK j=1|n=t+1

as desired.
To prove (ii), we define X, , ¢, , as

K
X v Z Dan—k
k=1

K

en,o = Z Vr€p_k>
k=1

with |v||2 = £X_,02 = 1. It suffices to show

N
min (N} X?2 } -, oo.
vii=1 -

Now note that X, ,=X?_,8,X,_; , + ¢, ,. By the triangle inequality,
N 1/2 N P 2) 172
{N_" Z Xr%,o} 2 {N_K Z ( E Ban—k,o) }
n=K+1\ k=1

n=K+1
N 172
- 2
- {N ¢ E en—k,v} .

n=K+1

Now

N P 2 P P N
N % (Zkan-k,u) <Y N Y
n=K+1\ k=1 Jj=1 k=1 n=K+1

p N
Z Z X XD, +0,1).
J=1 k=

1 n=K+1

It remains only to show that N™*Xe% , —, co uniformly. If this is true, then
N—*LX? —, 0 uniformly since the probablhty that this quantity stays
bounded clearly must tend to zero:

N N K k-1

N~* Z 8721,0=N—~ Z {kasn k+2z zvvke —jn k}
n=K+1 n=K+1 \ k=1 k=2 j=1

Now

Z Z vksn B2 NiK

n=K+1 k=1 n=K+1
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Thus
N K
N~* z z vl%en—k _)p S
n=K+1 k=1
since
N-K
N Y &> o
n=K+1
Thus we need only show that
K k-1

I\ z Z zvvke—Jn k_)O

n=K+1 k=2 j=1

Now
K k-1 N K k-1 N
U v; Z n—j€n—k Z [0l Z |j Z €n—j€n—r|
k=2 j=1 n=K+1 k=2 = n=K+1

Now take y < a and note that j # k. If y < 1, then

N Y - N
E z Sn—jen—k < E[ z |8n—j8n—k|7:| = O(N)'
n=K+1 n=K+1

If y > 1, then necessarily @ > 1. Thus S, = ¥\, _x 1€, €, is an L'-martingale

and hence

N Y

Z en—js'n—k

n=K+1

E = O(N)

uniformly over j # k by Theorem 1.

Now
N k-1 N 4 \
N Yol X vl Y EnjEni = O(Nl_“yK(N) y) =o(1)
k=2 J=1 n=K+1

since |v,| < 1 for all &.
(b) From the definitions of G, C, #, and ¥, it is easy to see that

(1) Ty= max max |é(l J) - Cl(i’ j)|S ZX;?"' Z Xr?
1<l<K ].Sl ] n=1 n=N-K+1

and

K

2 Sy = - X2,
@) y = max max |#(i) - £(i)] < El .
"Thus using (1) and (2) and noting that

K N
z er =d Z X,?,
n=1

n=N—-K+1
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we have

(3) N~*Ty = 0,(1/N)
and

(4) N™'Sy = 0,(1/N)

for k < 2/a. Now using some elementary facts about vector and matrix norms
and (3) and (4), we get :

() max N75|C, = Gl = o,(K(N)/N) = 0,(1)
and
(6) max N, = £l = o,(/K(N) /N) =0,(1/VN),

where the matrix norm is that which corresponds to the Euclidean vector norm.
Now from the definitions of B(Z) and B(1), we get

N~C,(B(1) - B()) = 0,(1/VN)

uniformly in I by (6). Finally we must show that the minimum eigenvalue of
N~*C, tends in probability to infinity uniformly in / since ||(N~*C;)"!|| is (in the
case of symmetric positive definite matrices) merely the reciprocal of this
minimum eigenvalue. Note that for unit vectors v

N'“v'é,v = N*vCyv + N"‘v’(é, - é,)v
> N*vCv - NC-CJ| -,

uniformly over / and unit vectors v by condition (ii) of the proof of part (a) of
this theorem and (5) above. Therefore

”(N_"éz)—l" =, 0
as required. O

In the case where we have an unknown location parameter and we estimate it
with some location estimate {i, we can obtain the following corollary.

COROLLARY 6. (a) If (i — p)® = O,(N") for y < min[(2/a — 5/2 + a/2),0]
uniformly over all compact subsets of the parameter space, then Theorem 5 still
holds. For a > 1, the sample mean, X, satisfies this condition.

(®) If « <1 and i = X and K(N) = O(N?) for 8 < }, then conclusions (a)
and (b) of Theorem 5 hold.

PROOF. (a)(i) Assume without loss of generality that p = 0. We can again
reexpress the LS estimating equations as

él(ﬁ - B) = rl*’
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where now
N
C;l(l’ J) = E (Xn—i - ﬁ)(Xn—j - ﬁ)
n=I[+1
and

()= 3 ( raf1- zﬁk))( L+ h)

n=I[l+1 k=1
() + (N - z)(l - % ﬂk)m.

By similar methods to those used in the proof of Theorem 5, it is easy to show
that for some k < 2/a,

max N'/27%|je**|| -, 0.
p<l<K

(The term involving Y. X,,_; is killed using Lemma 4.)
In addition, using the conditions on i,

N/2-*K( N )Np? -, 0.
Finally, it follows easily that

min min N~ v’Cv—> 0.
p<i<K |v||=1

(ii) Defining T, and Sy analogously to the proof of Theorem 5, we again get
that for some k < 2/a,
N~*Ty = 0,(1/N)
and

and the rest of the proof follows as in the proof of Theorem 5.
(b) Everything follows from the fact that for any 0 < y < a,

Y
max Z X,| | =0(N),
1<i<K n=I+1
which implies that
N
X |=O,/(NY"),
115nla5XK n=zl+1 " p( )

So by taking y close to « and « close to 2/a, we get

N
Y X,| -,0

n=I[+1

N1/2- "K(N)—— max
Ni<i<

and conclusions (a) and (b) of Theorem 5 follow directly from this. O
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THEOREM 7. If liminf N|B{™M[?> > 2p and conclusions (a) and (b) of
Theorem 5 hold for some K(N) and if p minimizes AIC, then

b -, p.

ProoF. First we note that since p is integer-valued, p —, p is equivalent to
P[p =p]—1(as N—> ). From here on, we will refer to K(N) as K and to
BEN) as B,, thus suppressing the dependence on N.

Moreover we will assume that the observations X,, are already centered, that
is, we have subtracted out the location estimate fi (if we are assuming unknown
location).

We now use the fact that

k
6%(k) = 62(0)l=]_11(1 - B3(1)) fork=1,

where
2 1 g" 2
6%(0) = — X;.
Nn=1
Now ‘
P[p<p] =< P[Ogggqu(k) < o(p)|
and since

Oggﬁ(k) > Nj;llln(l - B2(1)) + N Iné¥(0),
we can write
P[p<p]l<P[n(1-B%p)) = -2p/N]
= P[(1 - B%(p)) = exp(—2p/N)]
< P[NBX(p) < 2p].
However,
NBX(p) = (VNIB,| + 0,(1))’

and so
lim sup P[Nﬁj(p) < 2p] =0
N- oo

since liminfyN ™| > /2p. Thus P[p < p] - 0.
We also have that

P[p>p]l <P[é(k) <o(k—1)forsomep <k < K]
< P[Npggrle In(1 - f2(k)) < —2]. |
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If the conclusions of Theorem 5 hold, it follows that
N 2(k 0
pgﬁt}(ﬁk( ) =5

and hence

N min In(1 - B2(k)) —,0.

p<k=<K
Therefore, P[p > p] = 0.
Thus P[p + p] — 0 and so P[ p = p] — 1 which implies that 5 —, p. O

3. Simulation results. The “practical” implication of Theorem 7 is that if
N is large, with high probability / will equal p provided that |B,| is not too

TABLE 1
Frequency of selected order for AR(1) process. N = 100, a = 0.5.

Estimated AR parameter

order 01 0.5 0.9
0 89 0 1

1 4 91 87

2 4 3 2

3 (1] 1 1

4 1 0 0

5 (1] 3 2

6 1 1 2

7 0 0 3

8 0 0 1

9 1 1 0

10 0 0 1

TABLE 2
Frequency of selected order for AR(1) process. N = 900, a = 0.5.
Estimated AR parameter

order 01 0.5 0.9
0 0 0 0

1 93 95 91

2 (1] 0 0

3 0 0 1

4 (1] 0 0

5 0 0 0

6 0 0 0

7 4 0 0

8 1 5 2

9 0 0 1
10-15 2 0 5
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TABLE 3
Frequency of selected order for AR(1) process. N = 100, a = 1.2.

837

Estimated AR parameter

order 01 0.5 0.9

0 70 0 0

1 15 86 86

2 7 7 4

3 3 3 3

4 1 1 3

5 0 1 1

6 0 0 0

7 2 0 2

8 2 1 1

9 0 1 0

10 0 0 0

TABLE 4
Frequency of selected order for AR(1) process. N = 900, a = 1.2.

Estimated AR parameter

order 01 0.5 0.9

0 0 0 0

1 80 87 90

2 6 3 3

3 6 0 1

4 1 4 3

5 1 2 0

6 0 0 0

7 2 2 1

8 1 0 0

9 0 0 0

10-15 3 2 2

TABLE 5
Frequency of selected order for AR(1) process. N = 100, a = 1.9.

Estimated AR parameter

order 01 0.5 0.9

0 57 0 0

1 25 76 71

2 5 8 10

3 2 5 9

4 3 6 6

5 2 1 2

6 3 1 0

7 1 1 1

8 1 0 0

9 0 0 1

10 1 2 0
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TABLE 6
Frequency of selected order for AR(1) process. N = 900, a = 1.9.

Estimated AR parameter
order 0.1 0.5 0.9
0 5 0 0
1 78 74 75
2 7 14 9
3 2 2 7
4 2 5 2
5 1 1 2
6 1 1 0
7 3 1 3
8 0 0 0
9 0 0 1
10-15 1 2 1
TABLE 7

Frequency of selected order for AR(1) process. N = 100, normal distribution.

Estimated AR parameter

order 01 0.5 0.9
0 63 0 0

1 25 75 75

2 4 3 12

3 1 6 2

4 0 7 5

5 2 2 2

6 2 4 3

7 1 0 0

8 1 1 1

9 0 2 0

10 1 0 0

TABLE 8

Frequency of selected order for AR(1) process. N = 900, normal distribution.

Estimated AR parameter
order 01 0.5 0.9
0 0 0 0
1 83 79 80
2 3 3 11
3 4 4 3
4 4 6 0
5 2 3 3
6 0 0 0
7 0 4 0
8 4 1 1
9 0 0 2
10-15 0 0 0
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small with respect to N. In other words, for fixed (but large) N, the probability
of selecting the correct order decreases as |3,| decreases.

For illustrative purposes, a small simulation study was carried out using four
symmetric stable innovations distributions with a = 0.5, 1.2, 1.9 and 2.0 (the
latter being the normal distribution). The underlying processes were AR(1)
processes with the AR parameter 8 = 0.1, 0.5 and 0.9. The stable random
variables were generated using the algorithm of Chambers, Mallows and Stuck
(1976); normal random variables were generated using an unpublished algorithm
of Marsaglia. The sample sizes considered were 100 and 900. For N = 100, the
maximum order K was taken to be 10 while for N = 900, K was taken to be 15.
100 replications were made for each of the 24 possible arrangements of a, 8 and
N. The results of the study are given in Tables 1-8. The results are much as
expected. We can see that for N = 100 and B, = 0.1, AIC underestimates the
true order with high probability. For N = 900, the probabilities of selecting the
true order increases over those for N = 100.

4. Comments. Bhansali and Downham (1977) propose a generalization of
AIC which amounts to minimizing ¢’(k) = N In6%(k) + yk where y € (0,4). It
is easy to see from the proof of the above result that their criterion will also lead
to consistent estimates of p under similar conditions on K(N) and B{™. In fact,
if y=vy(N)> 0 satisfies y(N)/N — 0, then the criterion corresponding to
¢"(k) = N 1In6%(k) + y(N)k will consistently estimate p. Specifically, with
known location, the estimate will be consistent provided

N
s (N))2
hl\llrilgf y(N)pr ?>p
with y(IN) bounded away from zero and with the same conditions on K(N).
With an appropriate choice of y(IN), this criterion will also be consistent in the
finite variance case. However, if y(IN) grows too quickly with N then the
criterion may seriously underestimate the true order p in small samples in both
the finite and infinite variance cases. In an application such as autoregressive
spectral density estimation (assuming now finite variance), underestimation is
more serious than overestimation since, if the order is underestimated, the
resulting spectral density estimate may be lacking important features which may
indeed exist.

Throughout this paper, we have assumed that the innovations {¢,} are in the
domain of attraction of a stable law. This assumption is somewhat stronger than
necessary; all that is really needed is the condition that for ¥ < 2/a,

N
N~ ) & -, oo,
n=1
where now
(7) a = sup{8: E(je,|’) < o0}.

A sufficient condition for this is that {e,} are in the domain of attraction of a
stable law. The conclusions of Lemmas 3 and 4 still hold if we define a as in (7).
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