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The authors are to be congratulated on this interesting and thought-provok-
ing paper. They have raised a number of important. questions and issues con-
cerning additive model methodology. We will discuss some of these below.
Throughout, our comments will be restricted to the case of symmetric smoothers
having eigenvalues in [0, 1].

1. Exact and approximate concurvity. This paper contains a thorough
treatment of the fundamental issues of existence and uniqueness of solutions for
the normal equations arising from additive model estimation. The authors show
that these equations will have multiple solutions in certain cases. This raises
questions as to how analyses should proceed in the presence of exact concurvity.
Results from linear models would suggest that if f represents any solution to the
normal equations, then one should only examine functionals 1’f of the solution
that are “estimable” in the sense that 1°g = 0 whenever Pg = 0. Such function-
als are invariant under all choices of solutions to the normal equations and will
have unique expectations. According to Theorem 5 of the paper, “estimable”
functionals are provided by np-vectors in the orthogonal complement of the
linear span of vectors g‘ = (g3,...,g5) with g; € My(S;) and g, = 0. In particu-
lar we see that f, is derived using “estimable” functionals.

Another approach to solving the normal equations for linear models of less
than full rank is to reparameterize to obtain a full rank model. This is essentially
what the authors have accomplished in Section 4.4 by extracting the projection
parts from the smoothers, if linear dependencies are also eliminated from
M(8S,) + -+ +My(S,). The f; are therefore obtained using “estimable” func-
tionals and ;perhaps they are what should be studied when there is exact
concurvity.

However, it seems to us that instances where an analysis should actually
proceed in the presence of exact concurvity without some type of remedial action
are rare. For example, in the case of smoothing splines, M;(S;) is the linear span
of the constant vector and x ;. By Theorem 5 the concurvity space consists only
of the constant vector unless the x; are linearly dependent. In this latter case at
least one of the variables should be dropped from the analysis to obtain
meaningful estimates.

The real issue here seems to be approximate concurvity. As before we will
draw an analogy with the linear regression case. In that setting approximate
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concurvity means multicollinearity. Its presence causes difficulties in separating
effects in the model with the consequence that parameter estimates may be poor.
An investigator wishing to understand specific effects in a model with a high
degree of multicollinearity is almost forced to consider partial regression fits and
to study the effects of adjusted variables, perhaps with some variables omitted.
We believe that this paradigm may have some merit in nonparametric additive
models as well.

An example where a partial regression type approach has been suggested in
the additive model framework is the semiparametric model discussed by the
authors in Section 5.4. In that application, one variable, x,, is exactly linear
while another is nonparametric. The backfitting algorithm converges to f =
&I - 8,)x,) " 'x{I — 8,)y and f, = Sy — x,8). An algorithm attributed to
Denby and derived independently by Speckman (1988) ‘leads instead to estimates
of the form g = x{I - S,)(I — Sy)x,) 'x¥(I — S,)\I — S,)y and f,
So(y — x; B). The latter approach can be motivated by partial regression
methodology. Let x,., = (I — S,)x,; denote the residuals of X, after smoothing
by S,. Thus x, , represents the information from x1 that is unique to that
varlable If yo=(—-3S,)y, then g = (x!.9%,.,)7'x¢ ,y.,, the estimate that
would be obtained from the partial regression residual plot of y., on x, ,.

Surprisingly, the two estimators of the linear regression coefficient turn out to
be different with respect to their bias. One of us [Speckman (1988)] has analyzed
this case for kernel smoothers and has found that in situations where there is
concurvity between x, and x,, the partial regression estimator is generally root-n
unbiased. In contrast, the estimator obtained by backfitting has a bias rate that
is more typical of nonparametric estimators and is usually larger than root-n.
[See also Rice (1986).] This can be of practical significance when inference about
B is the goal.

In view of these results we wonder if the following approach might be useful
in cases of high concurvity. Order the variables with respect to their importance
as X, Xy, ..., X,. Any linear terms should be last for reasons of bias as discussed
above. Flrst ad_]ust x; for x; to obtain x ., = (I — S))x;, 2 <j < p, and adjust y
for x, using y,; = (I — S;)y. Now let S, ; be the matrix defined for smoothing on
X,.;- The contribution to the overall fit from x, , will then be f,,=5, 1Y For
3<j<p, let x; =-S5 )Xy, Y12 = — S.,)y,; and define f3-12
S;.12¥.12- Proceed in this fashion until all variables have been fit. If at some stage
the assumed model is linear in x ;. , replace S;, ; , ... ; by projection ontox ;... ;.
One could check the norm of the adjusted fit and if it is “sufficiently” small, the
variable can be considered unimportant and dropped. The final.smooth is
f=Sy+S.y:+Suynt

This procedure can be motlvated from a least squares on populations perspec-
tive where the variables X ;1) .15..; = X;; — E[X; | X,..., X;], 1 <j<p—
1, are used rather than the ongmal ones. It can also be viewed as a type of
projection pursuit where, instead of taking directions which are linear combina-
tions of the independent variables, nearly orthogonal directions are used. These
directions are constructed by a Gram—Schmidt process where smoothers are used
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rather than projections. In the case where all variables enter the model linearly
the method reduces to ordinary least squares.

One possible objection to the above approach not present with ordinary
regression is that the fit in general depends on the order of the independent .
variables. This is not the case when all smoothers are projections. To compensate
for this, one could use a stepwise method of adding variables, choosing the
adjusted variable which decreases residual sum of squares the most at each stage.
Such a method would probably be computationally intensive, but that should
not be a deterrent in the future if the method has other merit. We would be
interested in the authors’ views on some of these proposals.

2. Inference and diagnostics. A key tool used by Buja, Hastie and
Tibshirani in establishing many of their results is the'relationship they establish
between estimation in additive models and penalized least squares. In this
section we point out another way this connection might be exploited. .

We will utilize the same notation as in Section 4.4 of the paper with S,
i=1,..., p, the smoothers that have had the projections removed and set
S~p +1 = H, the projection operator for M(S,) + - -+ + M(S,). Let S; = UxiDo:lUfi
with D, a diagonal matrix containing the nonzero eigenvalues of S; which for
i < p are all necessarily in (0,1). A solution to the normal equations is provided
by the unique minimizer 8* of |y — E25'UB,1° + 2,84 Dy, — I)B;. Thus,
B* can be viewed as a Bayes estimator corresponding to the case where y,
conditional on B, is N(U,B, ¢%I), with U, = [Uw---» Ui, ps1], and B has a
normal prior that is partially improper over the 8’s corresponding to U, ;.
Under this Bayesian model, one can show that var(f, |y) = var(U,B8ly) =
o2U(UU, + A) U} = 0%V with A a block diagonal matrix containing the
D, ' — I and a zero matrix. One can also show that the unconditional variance of
the residual vector y — U,8* is 6% (I — V). As in Eubank and Gunst (1986) the
forms of the conditional variance-covariance matrices for the fitted values and
residuals under the Bayesian model are analogous to those from ordinary linear
regression and therefore suggest that we might mimic techniques from linear
regression when formulating methods for diagnostic and inferential analysis.
Even though the Bayesian model may not be tenable here, one can still proceed
as if it were and see how tools developed from the Bayesian framework perform
in practice. The results from doing this in other related settings have been
surprisingly ‘good.

To illustrate the idea, consider the problem of constructing confidence inter-
vals for the value of the true best additive approximation to the regression
function at the ith design point. The Bayesian model might lead us to use
fi: £ 26/v,; with f,, the ith element of the estimator f,, v;; the ith diagonal
element of V and 62 some estimator of o® such as the residual sum of squares
divided by tr(I — V) [cf. Wahba (1983)]. Interval estimates involving the f;, etc.,
can be derived similarly. Results in Wahba (1983) and Nychka (1988) have
shown that for ordinary spline smoothing this Bayesian approach to interval
estimation tends to account for estimation bias in a certain sense. Whether this
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would be true for additive models is an open question; however, the possibility
merits investigation. The Bayesian framework suggests that we could also use
similar diagnostic measures to those used in ordinary regression analysis: namely,
the leverage values v;; and Studentized residuals (y; — f,,)/6/1 — v;. These can
be combined in various fashions to obtain diagnostic tools including measures of
influence. Some specific proposals can be found in Eubank and Gunst (1986).

We have conveniently ignored the computational aspects of the proposals in
this section. Perhaps the authors can offer some insight into questions of this
nature.

3. Another possible smoother. Projection-type smoothers belong to the
collection of symmetric smoothers with eigenvalues in [0, 1] towards which many
of the results in this paper are directed. The authors point out that for some of
these types of estimator the effective dimension of the normal equations may be
much less than np so that direct solutions are possible using standard regression
software. We briefly mention here a “new” projection-type smoother which has
this latter property and is of potential value for additive model estimation.

Recently, Eubank and Speckman (1988) have studied the properties of a
smoothing method called polynomial-trigonometric regression (PTR). Assuming
that all predictors take on values in [0, 1], a generalization of PTR to estimation
for additive models is obtained by regressing y on polynomials of order d; in the
x; and the functions {sin(2wkx;),cos(2mkx;); k=1,...,A;} for i=1,..., p.
Usually the d; are treated as fixed with d; = 2 a standard choice. The number of
sine and cosine terms, A, i=1,..., p, are then manipulated to govern the
amount of smoothing.

Given choices of the d; and A, PTR smoothers can be readily computed using
standard linear models software. They provide an alternative to polynomial
regression smoothers that are more numerically stable and, in particular, avoid
the need for specialized tools such as orthogonal polynomials. Although con-
curvity may still pose a problem, it will be manifest as linear dependencies
among transformed predictors and can be handled in the usual regression
fashion.

While PTR smoothers lack the flexibility of more sophisticated techniques
such as smoothing splines they seem to give quite satisfactory results in many
cases and get high marks for their implementational simplicity. A smoother with
this latter quality will probably be required if additive model methodology is to
be adopted by the masses in the near future.

We have been able to show that in the case of only one predictor PTR is
capable of attaining mean squared error convergence rates that are comparable
to those of smoothing spline and (boundary corrected) kernel estimators. Thus
we are led to conjecture that results such as those in Stone (1985), with PTR
smoothers used instead of regression splines, may hold for the PTR method as
well. We pose this as another potentially interesting research problem.

4. Concluding remarks. Professors Buja, Hastie and Tibshirani have given
a masterful account of a number of topics in additive model estimation. A
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measure of the success of any article is provided not only by the number of
important problems that it solves but also by the number of new questions that
it opens for investigation. On the basis of both these criteria we must judge the
present article to be a solid success.
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The solution of linear algebraic equations arises in many situations in statisti-
cal computing. Most often the matrices are symmetric and positive definite and
they may have some structure that can be taken advantage of; viz., Toeplitz
matrices arise in time series and special algorithms are available for such
problems (cf. [3]). It is unusual for matrices to be structured and nonsymmetric
but this is the situation that arises in the paper by Buja, Hastie and Tibshirani.
In addition, the system (19) the authors describe is singular though the nullspace
can be determined without difficulty.

Very often for large structured systems, iterative methods are used. (We set
aside the fact that P is singular at this time.) Thus one might split P and write

P=M-N
and iterate as follows:

Given f,
For £ =0,1,...,

Mf**1 = Nf* + Qy (solve for f#+1).
It is important that solving the system
Mfk-l-l = zk (say)



