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INEQUALITIES FOR A CLASS OF POSITIVELY DEPENDENT
RANDOM VARIABLES WITH A COMMON MARGINAL!

By Y. L. Tonc
Georgia Institute of Technology

This paper concerns a partial ordering of positive dependence of a class
of random variables which have a common marginal distribution and are not
necessarily exchangeable. The main theorem is obtained by applying a mo-
ment inequality via majorization. Inequalities for exchangeable random vari-
ables, for random variables whose marginal densities possess the semigroup
property and for the multivariate normal distribution are then obtained as
special cases.

1. Introduction and motivation. The general study of inequalities for
positively dependent random variables has played a central role in the develop-
ment of inequalities in statistics and probability and has yielded numerous
useful results [see, e.g., Tong (1980), Chapters 2 and 5]. When the random
variables have a common marginal distribution, an important case of interest has
concerned exchangeable random variables. In particular, Rinott and Pollak
(1980) proved an inequality for bivariate exchangeable variables and recently
Shaked and Tong (1985) studied inequalities via the partial orderings of the
“strength” of the positive dependence of exchangeable random variables. To
illustrate how such partial orderings yield inequalities, simply consider exchange-
able normal variables Y,,...,Y, (Z,,...,Z,) with means u, variances o2 and
correlations p, (p,). If p, > p; = 0, then the Y,’s tend to hang together more.
Consequently, one has EII” ¢(Y;) > EII” ,¢(Z,) for all Borel-measurable func-
tions ¢: # — [0, ) such that the expectations exist [Shaked and Tong (1985)].
For n = 2, one has corr(¢(Y)), $(Y3)) = corr(¢(Z,), $(Z,)) for all ¢ as previously
shown by Rinott and Pollak (1980).

In this paper we consider the case when the random variables are not
necessarily exchangeable but have a common marginal distribution. Our main
result, given in Theorem 2.1, depends on a representation for such a class of
random variables and an application of a majorization inequality. [For a com-
plete treatment of theory of majorization see Marshall and Olkin (1979)]. The
main theorem is then applied to yield moment and probability inequalities for
exchangeable random variables and for random variables whose marginal densi-
ties possess the semigroup property and to the multivariate normal distribution
as special cases.

2. The main results. For fixed n>2 let Y=(Y,...,Y,) and Z =
(Z,,...,Z,) denote two random vectors. Extending the definition in Rinott and
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Pollak (1980) we have

DEFINITION 2.1. Y is said to be more positively dependent than Z (more
precisely, the components of Y are said to be more positively dependent than the
components of Z), in symbols Y >, Z,if ¥,,...,Y,,Z,,..., Z, have a common
marginal distribution and if

(21) ETT4(Y) = ET]e(2)

holds for all Borel-measurable functions ¢: # - % such that the expectations
exist.

In certain applications ¢ may be assumed to be nonnegative. Thus Definition
2.1 can be modified as:

DEFINITION 2.2. Y is said to be more positively dependent than Z through
nonnegative transformations (Y >,,, 2)if Y,,...,Y,, Z,,..., Z, have a common

marginal distribution and if (2.1) holds for all Borel-measurable nonnegative
functions ¢ such that the expectations exist.

Note thatif Y > pa+ L then, by letting ¢ be the indicator function of a subset,
the inequality
(2.2) P[Y,€B,....Y,€B]l>P[Z, €8B,...,Z, € B]
holds for all Borel-measurable subsets of the real line. Thus probability inequali-
ties immediately follow once after the partial ordering of positive dependence is
established.

To obtain sufficient conditions for such a partial ordering we consider a
sequence of i.i.d. random variables {U;}?_,, another independent sequence of i.i.d.
random variables {V;}?_, and an independent random variable W as “building

blocks.” Then for a given Borel-measurable function g: #2 > # and a fixed
n-dimensional vector of nonnegative integers

k = (ky,..., k,,0,...,0),
(2.3) l<r<n,k;>1forj<r and Zr:kj=n,
, =
we define an n-dimensional random vector § = (§,,..., §,) given by
& =8U,V,W),.... & =&g(U,V,,W),
(2.4) 5k,+1 = g(Uk1+1’ Vas W)’---’ $k1+k2 = g(Uk,+k2’ Vs W),...,
Ene o rhr o1 = 8Uns i a1 Ver W),oos £, = 8(U,, V,, W).

That is, each of the £;’s depends on the common variable W and on a different
variable U,. Furthermore, the first 2, of them depend on the common variable
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V., the next k, of them depend on the common variable V, and so on. The vector
(1. .-, &,) will be denoted by §(k).

It is obvious that &,,..., £, have a common marginal distribution. Further-
more, the vector k plays an important role in the positive dependence of £(k). To
see two extreme cases, if one chooses (i) W to be a singular random variable and
(i) k = (1,1,...,1), then clearly §,,..., £, are ii.d. random variables; on the
other hand if one chooses (i) P[U; = u] = 1,i = 1,..., n,and (i) k = (n,0,...,0),
then P[§ = --- =§,]=1 so corr(§,, &) =1 for all i+ i’. Thus, for given
random variables (U}, {V;} and W, the strength of the positive dependence of
the components of £(k) can be determined via the diversity of the components of
k. In the following we state such a result via the notion of majorization.

THEOREM 2.1. For fixed n > 2 assume that (i) {U}}, {V.)} and W are
stochastically independent, U,,...,U, are i.i.d. and V,,...,V, are i.i.d., (ii)
g: R3 > R is any Borel-measurable function and (iii) k and k' are two real
vectors of the form given in (2.3). Let £(k) and &(k’) be the random vectors as
defined in (2.4). If k > K’ (that is, if k majorizes k'), then &k) >,,, &(K).

ProoF. For notational convenience let &, > 0 (k/ > 0) for i < r (for i < r’)
for some r (r’) and equal to 0 otherwise. Then for every given ¢ > 0 such that
the expectations exist one can write

Ei=l£[1¢(£,~)=Ejlle {ﬂ¢(g( s ,,W))I(Vj,W)}lw]

(2.5)
= Ejr;IIE[MI(‘G,W)lW]’

where

2.6) v (v, w) = E{9(8(U, V;, W))I(V;, W))

denotes the conditional expectation. Now for every given W = w the random
variables ¢(V,, w),..., ¥(V,, w) are i.i.d. and are greater than or equal to 0 a.s.
By defining p x; tO be the &; th moment of Y(V; w) and applying the inequality in
(1.3) of Tong (1977), it follows that l—[’,lE\lz (V, w) > TT;_,Ey J(V w) holds
true for every fixed w. Thus for (¢;,..., 5 ) = E(k’) we have

ETT4(5) - E,.I:IIEW'(‘G’ w)w] = E;I:IIE[VJ‘(",-, w)w] - ETT ().
O

In the following corollary we show that if the elements in k and k’ are even
integers (including 0), then the condition that ¢ > 0 can be dropped.

CoroLLARY 2.1. Let {U}}, {(V.}], W and g satisfy the conditions stated in
Theorem 2.1. Let k,k’ be two real vectors such that their components are
nonnegative even integers. If k > k', then §(k) >,, &(k’).
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ProOF. The proof follows as Theorem 2.1 since 1k > 1k’. O

In certain applications the special case k' = (1,...,1) is of great interest. In
the following corollary we show that if the vector k contains only even integers,
then again the condition that ¢ > 0 can be removed.

CoROLLARY 2.2. Let (U}}, {V;}7, W and g satisfy the conditions stated in
Theorem 2.1 and let k,k' be two n-dimensional real vectors such that

k' = (1;...,1). If the components of k are nonnegative even integers such that
Z?=1ki =n, then E(k) Zpd E(k,).

PROOF. For every fixed W = w the function ¢ defined in (2.6) satisfies [again
by (1.3) of Tong (1977)]

4 . n/2 n
[TEW(V, w) = [Ey*(Vi, )] ™" 2 [Eg(Vi, w)]".
j=

The proof then follows by unconditioning. O

As a special consequence, we observe that:

CoROLLARY 2.3. Let {U}}, {V;}7, W and g satisfy the conditions stated in
Theorem 2.1 and let &(k) be the random vector defined in (2.4). If k =
(n,0,...,0),k" = (1,...,1), and i n is a positive even integer, then £(k) > pa §(K).

Note that if n is not an even integer, then the statement in Corollary 2.3 no
longer holds true. A counterexample is easy to construct and is omitted.

In certain applications to be discussed in Section 3 we restrict our attention to
a family of random variables such that £(k) is obtained by choosing k =
(s,1,...,1,0,...,0) in (2.4). For notational convenience we shall denote the
random vector £(k) (with such a k vector) by &(s). Corollary 2.4 shows how the
positive dependence of the components of £(s) depends on s. Its proof follows
immediately from Theorem 2.1 and is omitted.

COROLLARY 2.4. Let {U}}, (V;}1, W and g satisfy the conditions stated in
Theorem 2.1. For given s >1 let &(s) = (¢,,...,¢,) be the random vector
obtained according to (2.4) by choosing

(2’7) kl =S, k2 = = kn—s+1 = 1’ kn—s+2 = = kn =0.

Then (a) &(s + 1) 2,4, &(s) holds for all n and all s < n and (b) &(s + 2) 2,4
£(s) holds for all nonnegative even integers s < n — 2 and positive even inte-
gers n.

3. Applications to special families of random variables and distribu-
tions. In this section we apply the main results in section 2 to yield inequalities
via partial ordering of positive dependence for several families of random
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variables and distributions. The applications will be given for illustrative pur-
poses only and obviously are not exhaustive.

3.1. Exchangeable random variables. An infinite sequence of random vari-
ables {X,}2, is said to be exchangeable if (X,,..., X, ) and (X,,..., X,,) are
identically distributed for every subset (,,...,m,) of {1,2,...} and every finite
n [Loéve (1963), page 364]. Random variables X,,..., X,, are said to be ex-
changeable if it is a finite subset of an infinite sequence of exchangeable random
variables. It is well known that (by de Finetti’s theorem) X,..., X, are ex-
changeable if and only if they are positively dependent by mixture [as defined in
Shaked (1977)]. Note that exchangeability is stronger than permutation symme-
try. For more details see the discussion in Tong [(1980), pages 96-97].

Now for a finite n let us consider the random variables defined by, for
i=1,...,n,

(3'1) £i=g(l]i7V17W): gz/ =g(l]i7 ‘/nW)

Then £,,..., £, are exchangeable and §/,..., {, are exchangeable. But for k =
(n,0,...,0) and k' =(1,...,1) one has &k) =, (§,...,§,) and §&Kk) =,
(&{,...,&.). Thus a partial ordering of positive dependence can be obtained by
applying Theorem 2.1 and the related results given in Section 2.

When applying this result to the exchangeable normal, ¢, chi-square, gamma,
F and exponential variables, many useful inequalities follow as special cases. The
multivariate normal variables will be treated separately in this section. The
exchangeable exponential variables can be obtained by taking g(u,v,w) =
min(u, v, w) as considered previously by Marshall and Olkin (1967) and have an
important application in reliability theory.

3.2. Distributions with the semigroup property. Let {f(x): 8 € Q} denote a
family of density functions and assume that 2 is an interval of real numbers or
an interval of integers. It is said to possess the semigroup property [see, e.g.,
Proschan and Sethuraman (1977)] if 6’,0” € Q implies §’' + 8” € @ and
foAx)* foAx) = fg ,9(x), Where “ *”” denotes convolution.

AppLICATION 3.1. Let X, ,,..., X, , denote ii.d. random variables with
density f,(x) and for fixed 6, and §, — § € Q let Xy, g denote another indepen-
dent random variable with density fg,~6(x). Then define an n-dimensional
random vector X(0) = (X,..., X,,)suchthat X, = X, ,+ Xy ofori=1,...,n.
If {fox): 8 € @} possesses the semigroup property and if 6,, 0, € Q,
0, # 0, implies |0, — 0,] € @, then (a) E,JI* ¢(X,) is a nonincreasing func-
tion of 8 for § < g, for all Borel-measurable functions ¢ > 0 (provided that
the expectations exist); (b) E,II” ,¢(X;) is a nonincreasing function of 8 for
0 < §, for all positive even integers n and all Borel-measurable functions ¢ and
(¢) B[X, € B,..., X, € B] is a nonincreasing function of 8 for 8 < §, for all
Borel-measurable subsets B C £%.
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PROOF. For every fixed 6,,0, € Q such that 6, < 0, < 0, define U, = X, ,,
V,=2Xy, 6, (i=1,...,n) and W= X, — X,. The proof follows by applying
Theorem 2.1. O

‘Note that Application 3.1 applies to the binomial, gamma and Poisson
distributions, and Poisson processes and several other distributions.

3.3. The multivariate normal distribution. In this section we show how the
positive dependence of a multivariate normal variable with a common marginal
distribution can be partially ordered via their correlation coefficients.

APPLICATION 3.2. Let 0 < p; < p, < 1 be arbitrary but fixed. Let k and k’ be
two vectors of nonnegative integers as given in (2.3) and define a correlation
matrix R = R(k) = (p,;) to be such that (for i # ;)

r—1
Py, ifl<i,j<k,k +1<i,j<k +ky..., Y k,<i,j<n,
Pi; = m=1
p;, otherwise.

(That is, the random variables X,..., X, are partitioned into r groups with
groups sizes k,, ..., k,, respectively; the correlations of the variables within the
same group are p, and the correlations between groups are p,.) Let X(k) ~
A(p, 62R(k)), where p = (g, ..., p), and let R(k’) and X(k’) be defined similarly.
(a) If k > k', then X(k) >,,, X(k') and (b) if k > k' and if the components of
k,k’ are even integers, then X(k) >,, X(k’).

ProoF. Immediate by choosing

(3.2) g(u,v,w)=u+a(\/l—p2u+\/p2—plu+1/aw)

in Theorem 2.1 and Corollary 2.1. O

ExampLE 3.1. Let X = (X, X,, X3, X,) have a multivariate normal distri-
bution with equal means, equal variances and a correlation matrix R(k).
Let k, = (4,0,0,0), k; = (3,1,0,0), k, = (2,2,0,0), k; = (1,1,1,1). Then
X(k;,1) 2,4, X(k;)fori=1,2,3. Note that here all correlations in R(k ) are p,
and all correlations in R(k,) are p,.

As a special case of Application 3.2, we observe:
APPLICATION 3.3. Let R(s) denote the correlation matrix such that (for

i#Jj)

P2, fOI'lSi,jSS,
P =

" |p,, otherwise.
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If 0 <p, <py<1, then Eg,II" ,¢(X;) is a nondecreasing function of s for
¢ > 0 (and for any ¢ and any even n and for s = 0,2,..., n).

Proor. Immediate from (s + 1,1,...,1,0,...,0) > (s,1,1,...,1,0,...,0). O

Finally by taking s = 0 and s = n in Application 3.3 we observe the following
fact as a special consequence for exchangeable normal variables.

AppLICATION 34. If (X|,..., X,) has a multivariate normal distribution
with means p, variances o? and correlation coefficients p > 0, then (a)
E T ,¢(X;) is a nondecreasing function of p for all Borel-measurable functions
¢ > 0 (and for all ¢ when n is even) such that the expectations exist and (b) the
probability B[X, € B,..., X, € B] is a nondecreasing function of p for all
Borel-measurable subsets B € #, and it is strictly increasing in p unless
P[X, € BlisOor 1.

This result was obtained previously by Rinott and Pollak (1980) for » = 2 and
by Shaked and Tong (1985) for general n.
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