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COMPLETE CLASS RESULTS FOR HYPOTHESIS TESTING
PROBLEMS WITH SIMPLE NULL HYPOTHESES

BY LAWRENCE D. BROWN! AND JOHN I. MARDEN?

Cornell University and University of Illinois at Urbana-Champaign

Hypothesis testing problems in which the null hypothesis is simple, the
parameter space is finite dimensional and the supports of the probability
_measures are independent of the parameter are considered. Essentially com-
plete class results are obtained for characterizing the limits of Bayes tests.
Conditions for tests to be admissible and the class to be complete are given.
Results are then specialized to exponential families, along with some illustra-
tive examples.

1. Introduction. We are interested in characterizing admissibility for hy-
pothesis testing problems in which there is a simple null hypothesis and a finite
dimensional parameter space, and the supports of the probability distributions
do not depend on the parameter. Cohen and Marden (1988, 1989) apply these
results to invariance reduced problems. The 1988 paper considers the multivari-
ate normal problems of testing for sphericity of a covariance matrix and testing
the equality of two covariance matrices. The 1989 paper deals with Bartlett’s
problem of testing the equality of several univariate normal variances. Applica-
tions can also be made to problems of testing other structural hypotheses on
covariance matrices and to combining independent two-sided tests. In Section 6
we present three examples: testing that the correlation is 0 in a bivariate normal
distribution when the means and variances are known, testing that the location
parameter of the shifted double exponential distribution is 0 and testing that a
bivariate normal distribution has zero means versus the alternative that one
mean is at least as large as the other in absolute value.

We assume a sample space 4, a parameter space ® C R? which contains 0
and a family of distributions {F,: § € O} on a o-field of Z. We wish to test

(1.1) Hy:0=0 versus H,:0€0 — {0}.
We assume that Py < P, for all 4,6’ € ©. Hence we can let
(1.2) fo(x) = dPy/dP,

be the density of P, with respect to the null measure P,, which we will
subsequently denote by ». Most of our results apply to fairly general densities fj,
but in Section 5 we specialize to the exponential case. That is, £ C R? and

(1.3) fo(x) = e?x—¥®),
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210 L. D. BROWN AND J. 1. MARDEN

The parameter space ® must then be contained in the natural parameter space
(1.4) N = {0 S Rplfeot"v(dx) < oo}.

Birnbaum (1955), Matthes and Truax (1967), Farrell (1968), Eaton (1970),
Ghia (1976) and Marden (1982) present complete class results in special cases of
the problem (1.1). The second and fourth papers also deal with problems
involving nuisance parameters. The restrictions these papers place on their
problems, however, are enough to rule out the problems mentioned in the first
paragraph above; e.g., they restrict to exponential families or demand that 0 and
© — {0} be topologically separated or require ® to be contained in a pointed
cone. See the introduction of Marden (1982) for a synopsis of these results. Kudb
(1961) presents an approach to cases in which 0 and ® — {0} are not topologi-
cally separated, but does not explicitly characterize the complete class. He also
considers what he calls locally complete classes.

In Section 2 we present assumptions and prove a general essentially complete
class theorem. This class contains extensions of the truncated generalized Bayes
tests of Farrell (1968) and Ghia (1976). In Section 3 we give some sufficient
conditions for a test to be admissible and for the class in Section 2 to be
complete. Section 4 contains a description of the local terms in the essentially
complete class. We specialize to the exponential family in Section 5 and in
Section 6 we present some illustrative examples.

Throughout, we represent tests by measurable functions ¢: £ — [0, 1] and use
the risk function

E,, if 6 =0,
(1.5) r(¢) = {1 — Eu, if0e0 - {0}

2. The essentially complete class. Our approach is to characterize the set
of proper Bayes tests and their weak* limits [see (2.27)], which, under certain
assumptions, yields an essentially complete class. See Wald (1950). When the
alternative hypothesis space is compact, the set of proper Bayes tests is itself
essentially complete. Problems arise when the alternative space is unbounded, in
which case the sequence of prior probability measures corresponding to a
convergent sequence of tests may place mass arbitrarily far from the null, and
when the closure of the alternative space intersects the null, in which case the
priors may concentrate mass arbitrarily close to the null. Assumption 2.3 is used
to deal with the former problem and Assumption 2.2 and the sets defined in
(2.18) to deal with the latter. We proceed with the definitions and assumptions
which lead to the essentially complete class in Theorem 2.4.

AssUMPTION 2.1 (Basic). There exists a positive function a(6) with a(0) =1
such that for each x € &,

(2.1) Ry(x) = a(0)fy(x)

can be extended to a function on @ (the closure of ® in R”) which is continuous
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for § € O and satisfies

(2.2) 0 <Ry(x) < oo forall § € 0.

AssuMPTION 2.2 (Local). For each x € &, Ry(x) has all first and second
partial derivatives with respect to 6 at § = 0. We denote these by

d
(2.3) Ux) = {li(x)}i;lr li(x) = ﬁRo(x)
and
@4) V) = {0 V) = 555 Re(x)

Let RY), i = 1,2, be the following remainders from Taylor’s expansion around
= 0:
RP(x) = Ry(x) — 1 - 8%(x);
(2'5) 2 ¢ 1 t
RP(x) = Ry(x) — 1 - 8%(x) — 1(66°,V(x)),

where (A, B) =tr AB if A and B are p X p matrices. For positive numbers
r < s, define

o(r)={6co00<)0<r}, ©O(r,s)={0€OIr<||f]<s},

(2.6) 0'(s) = {6 € 0| > s}.

Assume there exists a constant a > 0 such that for each x € &,

RP(x)

2.7 sup |——5—
(27) 161?

f0O(a)

< o0.

If there does exist a function a(6) which satisfies Assumptions 2.1 and 2.2,
then for any x, € %, the assumptions will hold for a(8) = (f,(x,)) .. Also, if
Assumption 2.2 holds for some a > 0, it holds for all a > 0.

For a Borel set & C R?, let 2(2), #(Q) and £f(Q) denote, respectively, the
set of probability, finite and locally finite Borel measures on .

ASsSUMPTION 2.3 (Asymptotic). There exists a collection % of closed subsets
of Z such that for any sequence {G,} C #(0), there exist a set C € €, a subse-
quence {i’} C {i} and G € £f(0) such that

(2.8) G, » G vaguely,
that is,

(2.9) [8(6)G.(d8) ~ [g(8)G(a0)
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for all bounded continuous functions g with compact support and
(2.10) fGR,,(x)G,.,(do) - /@Ro(x)G(dO) <o forxe intC
and

(2.11) L)Ro(x)Gi,(dﬂ) - o forx e C-.

We are implicitly assuming a topology on % and assume that the sets C are
v-measurable. Note that ¢ always contains 2 and @. In exponential families,
these sets C are convex and satisfy certain monotonicity conditions dictated by
the structure of the alternative hypothesis space at alternatives far from the
null. See Birnbaum (1955), Matthes and Truax (1967), Farrell (1968) and Eaton
(1970). We treat this case in Section 5. Ghia (1976) presents similar results for
more general densities. See also the “almost exponential” case in Marden (1982).

The quantities A(H) and A, defined next reflect the structure of the alterna-
tive space near 0. See Section 4 for more details about these sets. For each & > 0,
let

(6,66%)

(2.12) Ae={f®(£) e H(da)|Hegr(@)andf@ 1

0110112

H(d8) < oo},

where

(6, 66') ) o "
o T 0 = (Lmnﬂnzmd(’)’/exenwnﬁ(da))'

Thus A, is a convex cone in R? X &,, where &, is the set of all p x p

nonnegative definite matrices. For a given H € #(0(a) — {0}), (A, M) e

R” X ¥, and ¢ € (0, a], set

(0,06
116112

(213) (A M) = (\(H), M(H)) = (M) = [ = H(dd).

Define A(H) C R? x4, by
(2.14) A(H) = {(X\, M)|(X,, M,) € A, for every ¢ €(0,a]}.

Since 66%/||0||% is bounded and continuous for 8 # 0, for given (A, M) € A(H)
we can set

t

2.15 M,= M- —_
(2.15) 0 f@m)—{m 116/

H(d6) = limM..
£l 0
Similarly, if we have that

1
(2.16 —H(df) < oo,
) /é(m—(o}llﬂll (df)
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then we can define

0
(2.17) Ag=A— f@(a)*(o}WH(dﬂ) = lim,
and write
(2.18) A(H) = {(A, M)|(Ag, M) € Ay},
where
(2.19) A= NA.
el0
Now define

Z={(A\,M,H,G,c) eR? x %, xF(0(a) — {0}) X Zf(0'(a))
XR|(A, M) € A(H))

and for each (A, M, H,G,¢c) € E, let

d(x) =d(x;\,M,H,G,c)

(2.20)

f_ MH(dﬂ)

1
= Mi(x) + —(M,, V(%)) +
(%) + 5 (Mo, V(=) o0y 01

(2.21)

+/(;)/(a)R,,(x)G(d0) —c.

Take @ to be the class of tests ¢ such that for some C € € and

(2.22) (A, M, H,G,c) € Z - {(0,0,0,0,0)},
(2.23) |d(x)] < o0 forx €intC
and
1, ifxéeC,
(2.24) ¢(x)={1, ifd(x)>0and x €intC,

0, ifd(x)<Oandx €intC,a.e.[7].

Note that if (2.16) holds, then we can write

1 ‘
d(x) = Nol(x) + §<M0’ V(x))
2 + [ M_—IH(aw) + [ Ry(x)G(d6) - ¢
8-y 0] o) '
It can be checked that the set ® does not depend on the constant a > 0. Thus
if ® is bounded, we can take a large enough that ©’(a) is empty and G is
unnecessary. If ® — {0} is topologically separated from 0, then we can take «

small enough that ©(a) — {0} = @, so that (A, M, H) is unnecessary, and we
can restrict ¢ to be nonnegative. This latter situation is treated in Farrell (1968)
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and Ghia (1976). In Remark 2.5 we present an alternative characterization of ®
which, under conditions, does not need separate terms for ®(a) and O'(«).

THEOREM 2.4. Under Assumptions 2.1-2.3, ® is an essentially complete
class.

Proor. By Wald (1950), an essentially complete class consists of all weak*
limits of Bayes tests, where each prior probability measure is concentrated on a
finite number of points. Suppose {7;} C #(0) is a sequence of such priors, {¢;} is
a corresponding sequence of Bayes tests:

(226) =) ={7) w [ ()md0) - m(©0){ 2}

and ¢ is a test which satisfies
(2.27) ¢; = ¢ in the weak* sense.

We will show that ¢ € ®, which proves the theorem. Our main tool is to show
that on a subsequence {i,},
¢;(x) > 1 ifx e Ccorx € intCand d(x) > 0,
2.28
(2.28) ¢;(x) > 0 if x €int Cand d(x) <0,

for some C € ¥ and d as in (2.21)-(2.23). Since 0 < ¢(x) < 1 for all x, (2.28)
implies that ¢ in (2.27) satisfies (2.24).

Now if 7,({0}) = 0 infinitely often, it is easy to see that ¢ = 1 a.e. Similarly, if
7,({0}) = 1 infinitely often, then ¢ = 0 a.e. In either case, ¢ € ®. From now on
we assume that 0 < 7,({0}) < 1 for all i.

Let (7, G, ¢;) € Z(B(a)) X F(O'(a)) X R be defined by
m = a(a)il'”iIG(a)’ G; = a(a)_l'”;le'(.x), ¢; = m({0}) — m(0(a)).
Then we can rewrite the right-hand part of (2.26) as
l‘(x)f 87,(d) + 5</ 00’77i(d0),V(x)>
B(a) BO(a)
(2.29)
+ [ RP(x)7(dl) + [ Ry(x)G(db) —c{ 2 )o.
L, FEGm(d0) + [ Ro(x)Gi(d8) — e X}
(See Assumption 2.2.) Now let
116117,
[ 1e177(de)
O(a)

7*, if 7,(0(a)) = 0,but O(a) # 2,
0, if O(a) = 2,

, if 7(8(a)) >0,
(2.30) H, =

13
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where 7* is an arbitrarily chosen element of 2(0(a)). Thus
(2.31) H =0 if0(a)=9, He?(0O(a) ifO(a)+ o.
We can now rewrite (2.29) as

t

14 O oy do) + : % h(d8), v
% x)fe<a>||0||2 3 2 femuan? (df), V(x)

RP(x)

2.32
(2.32) +f9(a)WHi(d0)}

+ [, Rol)G(a0) = B{ Z o,

where
(2.33) G,€e#(0'(a)) and (a;,B;) el ={(r,s)r=>0,r+|s|=1}.

There are two cases to consider, depending on the behavior of

0
2.34 Aa)= [ —H,(dF).
(234 (0= [, o (@)
Case 1. lim sup;_ [|]A;(a)|| = . Since [A;(a) — A(e)|| < &7},

limsup; _, ||1A;(¢)|| = oo for each & € (0, ). Thus we can find a subsequence of
{i}, which we relabel {i}, such that
A A .
\ 1 i(a) — 1(7)
Al
i

for each i. Dividing both sides of (2.32) by «;||A;(1/%)| + |B;| yields

(2.36) yi{l‘(x)}\i(%)/“)\i(%)

1
and -
i

<

+ Q] + (o Ro()Gi(d0) 8{ 2 )0,

?,2}1;;(; G/ € #(0'(a)) and (v;,6,)eT
and ‘
a-|/3] _l[z«x)(xi(a) (3]
1 09
(2.38) +5<fe(a)WHi(d0), V(x)>

RP(x)
* Jowo 107 H“(do)]'
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Now @ = o(1) as i = oo by (2.35), (2.31) and the fact that the two integrands are
bounded [see (2.7) for the second integrand].

Now apply the Asymptotic Assumption 2.3 to {G/}, which yields a subse-
quence {i’} for which (2.8), (2.10) and (2.11) are satisfied. By (2.9), we have
G € Zf(©'(a)). We can find a further subsequence {i"”} C {i’}, A\* € R?, with
IA*|l = 1 and (v, 8) € T such that

N (1/i")
IA:(1/i")]]

(since T is compact). On this subsequence, we have by (2.10) and (2.39) that if
x € int C, the limit of the left-hand side of (2.36) is

(2.39) A* and (v,,8,) = (v,8)

(2.40) yA*(x) + / R,(x)G(db) — 8,
Q'(a)
bounded. If x ¢ C, then (2.11) shows the limit to be c0. Thus (2.11), (2.36) and
(2.40) show that (2.23) and (2.28) hold, where d is given in (2.21) with
(A, M, H,G,c) = (y\*,0,0,G, §).

Since |A*|| =1 and v + |8] = 1, (A, c) # (0,0), hence (2.22) holds.
To complete this part of the proof, we need to show that

(2.41) (A,0) € A(0).
Since (2.16) holds, by (2.18) it is enough to show that for each ¢ > 0,
(2.42) (A,0) €A,.

Define H;* € #(0(1/k)) by

1
Hy = Ak(;) HkIG(l/k)
and let
(0,60
(A, M) = ———HX*(df).
ko TR fe)(l/k) 101> #(df)

By (2.12), (A,, M) € A, for k>¢e" ' By (2.39), A, — A*. Also, trM, =
IA(1/k)||” "H,(®(1/k)), hence by (2.31) ‘and (2.35), tr M, — 0. Thus (A*,0) € KE,
hence (2.42) holds since A, is a cone.

CASE 2. limsup,_, ||A;(a)|| < . Apply the Asymptotic Assumption 2.3 to
(G,} in (2.32). Let

t

96
(2.43) M,(e) = fe(e)WHi(dﬂ)

and recall (2.34). If O(a) = @, then by (2.31) the bracketed term in (2.32) is 0,
and we can take B; = 1 since in (2.29), ¢; = m,({0}) > 0. Thus (2.10) and (2.11)
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prove via (2.32) that along the sequence {i’}, (2.28) holds with (A, M, H,G, ¢) =
(0,0,0,G,1) in (2.21) and (2.22) and (2.23) hold.

If ©(a) # I, (2.31) shows that we can take {H;} to be a subsequence in
P(0(a)) and that tr M;(a) = Hy(O(a)) = 1. Also, limsup,_, ||A;(a)|| < w0 and
(a;, B;) € T. Thus there exist a subsequence {i”} C {i’}, H* € #(0(a)), \* €
R?, M* € &, and (a* B*) € T such that

H, —» H* weakly,
(2.44) (Ai(a), Mi(a)) > (X, M*),

(2, By) = (a*, B%).

Let

(2.45) Hy* = H*Ig (o) € #(0(a) — {0}).
Now for each ¢ > 0 with H*(||0]| = ¢) =

(2.46) (Mee), Mo(e)) = (AE(HS), M*(Hy)

from (2.13), since the integrands 6/|6||*> and 66°/||0 ||2 are bounded and continu-
ous over O(¢, a). Thus by (2.12), the limit in (2.46) is in A_, hence (\*, M*) €
A(H) by (2.14).

Assumptions 2.1 and 2.2 show that R$(x)/||0]|? is bounded and continuous in
O(«) and equals 0 when 8 = 0. Thus

RP(x) RP(x)
(2.47) /e(.,) o He (db) - j@(a) T — " Hx(df), bounded.

Hence (2.5), (2.10), (2.44) and (2.47) show that the left-hand side of (2.32)
approaches, along {i"},

RY
a*[lt(x)x* + %(MO*,V(x)) + j@ —ngm(l—fZHo*(d())
(2.48) ()= (0

+ j@ . )R,,(x)G(dﬁ) — B*, bounded, if x € int C

and (2.11) shows that it approaches + oo if x € C°. Thus (2.28) holds with
(A, M, H,G,c) = (a*\*, a*M*, a*H, G, B*)

in (2.21). Since (A*, M*) € A(H*), o*(A*, M*) € A(a*H*). Also, since H; €
P(0O(w)), tr M;(a) = 1 by (2.43), hence

tr Mg + Hy(0(a) — {0}) =
Thus (Mg, Hg*) # (0,0), and since a* + |B*| = 1, (M,, H, ¢) # (0,0,0), proving
(2.22). This ends the proof of the theorem. O

The next result shows that the set = in (2.20) is, in some sense, minimal. It is
also useful when proving admissibility as in Section 3.
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LEMMA 2.5. Given (A, M, H,G, ¢) € &, there exists a sequence {J;} C % (0)
such that for each i,

fe o o) () Ji({0})

=l i H,/(d§ . oo ——H(df),V
@49) =l [ GEHde) + | [ sH(d), V(x)
R{(x) -
+ oo A Td0) + [ Ro(x)G(d8) = e=di(x),
where H, € #(0(a)), G; € F(0'(a)),
(2500 [ g(6)H(ad)~> [ g(6)H(dd)
6(a) 6(a)— {0}
for any continuous bounded function g with g(0) = 0
(9,00
2.51 ———H,(d#f A M
(251) oo T TA0) = (O 20
and ‘
(2.52) G, —» G vaguely.

Assumptions 2.1 and 2.2 are enough to guarantee that for any x,

R(2 (x) RSZ)(x)
/9() o e = fo(a)—(o} o )

Thus if we have that
[ Ry(x)G(d8) = [ Ry(x)G(dB),
0'(a) O'(a)

then d,(x) of (2.49) approaches d(x) of (2.21).

Proor oF LEMMa 2.5. If ® — {0} is topologically separated from 0, then we
can choose a so that ®(a) = & and ¢ > 0 as mentioned above Theorem 2.4.
Since G € Zf(0O’'(a)) there exists a sequence {G;} € #(0O’(a)) such that (2.52)
holds, and the lemma follows by taking

'Ji = a(o)_lGi + 080’

where 4, is the measure placing point mass 1 at y.

Below we assume ©® — {0} is not topologically separated from 0. We can still
take {G,) as above. Also, since H € %#(0(a) — {0}), there exists { H/} < #(O(a))
such that

(2.53) : H! > H weakly.
Since (A, M) € A(H), (2.12) and (2.14) guarantee that for each ¢ € (0, a], there
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exists a sequence {H,,} C #(0(¢)) such that [g.,(1/110]|*)M;(d8) < oo for each i
and

9, 06!
(2.54) /e)(e)( 10]12 )Hie(do) - (A, M,).

We can now choose a sequence {¢;} C (0, a], ¢; |0, such that (2.51) holds for a
subsequence of {H;*}, where

(2.55) Hl* = Hil‘:‘ + Hi/IQ(E,,a)'
We show that (2.50) holds, too.
Take g as in (2.50), and 8 > 0 with H(||#|| = §) = 0. Then

lim sup
i— 00

[, gm0 - [ ao)an)

(2.56) < limsup

i— 00

[, g@)H(a0) - [ e(0)H(d0)

- f@(s)lg(ﬁ)m(dw

< (M) sup |g(6)|+ [ |g(8)|H(db),
00(8) 0(8)

since (2.51) implies that lim;_, H*(©(a)) = trM and (2.53) and (2.55) imply
that

lim
i— o

f g(0)Hi*(d0)—f_ g(ﬁ)H(d0)‘=0,
O, a) (8, )

Since § can be chosen arbitrarily close to 0, the limit superior in (2.56) equals 0,
proving (2.50).
Now since 0 € 8, there exists a sequence {§,} C ©(a) such that ||§;| — 0. Let

(2.57) H; = H* + 16]*(~¢) " 80,

where z*= max(z,0). It is clear that (2.50) and (2.51) also hold for {H,}. Define

1
(2.58) c,=c+ | —
' o 10117

By (2.57), ¢; = 0. Thus the lemma follows by setting

H,(db).

(2.59) J;=a(8) " [1611°H; + G;] + ¢:5. o
We conclude this section with some remarks.

REMARK 2.6. Suppose a*(8) is another function which satisfies Assumptions
2.1 and 2.2 and let R}(x), etc., be the corresponding functions from (2.1) and
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(2.3)—(2.5). Then we can rewrite d in (2.21) as

Ry®(x
d(x) = N(x) + (Mg, VH(x) + [ —(—-)—H*(dﬂ)

O(a)— 0 2

+ [ Ry(x)G*(d8) - ¢,
0'(a)

where
H* =[a(8)/a*(6)|H, G*=[a(6)/a*(0)]G, (X*, M*) € A(H*)

and c* is given below.

To prove (2.60), we first note that the final integrals in (2.60) and (2.21) are
equal. In Lemma 2.5 we present a sequence {H;} € #(0(a)) such that

im [ 2D 2Ly gy < iy + 2oy Vix))
i=o o 0] 2
(2.61)
RY(x)

0
+
fé(a)—{m 11617

H(d®9).
If we let H* = [a(8)/a*(6)]H,, then

(2.62) fe R—”(-");lHi(do)=j mHi*(d())+bi*,

@ 1917 o 6]
where
a(0)/a*(0) — 1 — 61, 0
2.63) b* = H/(do) + 1} ——H,(df),
(2.63) fe(d) 911> (d8) 0-/;3(01)”0”2 (df)
where

, { 3 a(B) }"
0 = _ *
36, a*(8) | ,_, o
Assumption 2.2 holds for R, and R}, hence for R,/R} = a(8)/a*(0). Thus the
limit of the first term on the right-hand side of (2.62) is the sum of the first three
terms on the right-hand side of (2.60) as in (2.61). Also, the limit of b} in (2.63) is
finite. Thus (2.60) holds with ¢* = ¢ — lim,_, _b}*. Now take ¢ in (2.24) and

11— 00

suppose int C is nonempty. With x, € int C and a*(6) = f; *(x,), we have
a(0)/a*(0) = Ry(x,),

hence by definition of G*, and since (2.23) holds,

(2.64) G*(©'(a)) < oo,

which occurs, e.g., in the exponential family case of Section 5. Then we can
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combine the O(a) and O'(a) terms in (2.60) to obtain
d(x) = A0 (x) + (Mg, V*(x))

(2.65) RyO(x)
+ —————H**(df) + (const.),
/5 © lo? ( )
where H** = H* + ||0]°G* and A** = \* + [5,,0G*(d0), so that (\**, M**) €
A(H**) defined with @ = co and Mg** = Mg*.

REMARK 2.7. Suppose the testing problem (1.1) is invariant under a finite
group K. It is easy to obtain @, an essentially complete class of K-invariant
tests, from Theorem 2.4. Take

(2.66) Ry(x) = L Ry(gx).

#ngK

Then I_io(x) satisfies Assumptions 2.1-2.3 if R,(x) does. The local terms (2.3)
and (2.4) are

@67)  i(x)= o L lex) ad V(x) - 5 ZKV(gx)

and the set & consists of the invariant sets in #. Then ® is given as in (2.24)
with the barred quantities, where H and G can be taken to be invariant
measures.

REMARK 2.8. It may happen that /(x) = 0. For an example see the problem
of testing sphericity of a covariance matrix in Cohen and Marden (1988). In such
cases, Theorem 2.4 is useless since by taking (A, M, H, G, c¢) = (A,0,0,0,0) for
any A # 0, we see that any test ¢ is in ®. However, a slight modification of the
proof of the theorem shows that when I(x) = 0, we can replace (2.22) with

(2.68) (M,H,G,c) € Ayy X F(O(a) — {0}) x £f(®'(a)) X R.

Here, A,, is the projection of A, in (2.19) on the M-space. We now show how
this result can be proved.

Follow the proof of Theorem 2.4 until (2.33). At this point, the behavior of
Ai(a) in (2.34) is irrelevant since I(x) = 0. Now skip to line (2.43). Proceed
through to the end of the proof eliminating the “A” terms, replacing KE by 525,
where A,, is the projection of A, on the M-space and replacing A(Hg*) and
A(H*) by Ay,

3. Admissibility and the complete class. In this section we present condi-
tions on a test ¢ € ® adequate to prove that
(3.1) ry(¢’) < r(¢) V8= ¢=29¢ ae.forany test ¢'.

Any such test ¢ is clearly admissible. In addition, if all tests in ® satisfy (3.1),
then @ is a complete (in fact, the minimal complete) class: Take ¢’ admissible.
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By Theorem 2.4, ® is essentially complete, hence there exists ¢ € ® such that
ry(¢) = ry(¢") V 6. But then (3.1) shows that ¢ = ¢’ a.e., hence ¢’ € ® since @ is
defined only up to null sets.

We present an additional assumption.

AssUuMPTION 3.1. The test ¢ € ® with its attendant C € ¢ and
(A, M, H,G, c) € = satisfies the following:

(i) The set C has the property that for any vy, ¢/,

(3:2) YE®(C) and () <n(y) Vo= ea(C),
where ®(C) consists of all tests ¢’ such that
(3.3) v({x|¢'(x) <1} N C°) = 0.

(ii)) There exists a sequence {J;} € % (0) such that

(34) d,(x)= f@_{O}Ro(x)J,-(dﬂ) — J,({0}) >d(x) forx € intC

and

(3.5) lim [ (6(x) = 9u(x)) di(x)r(dx) =0,

where ¢, € ®(C) is Bayes with respect to <J; among tests in ®(C):
1, ifx¢&C,

(3.6) ¢;(x) = (1, ifdi(x)>0and x €intC,

0, ifd/ (x)<0andx €intC.
(i) »(3C) = 0.
(iv) »({x|d(x) = 0}) = 0.

The requirement (i) is a fairly strong one on C. It implies that if a test in ®(C)
is admissible among tests in ®(C), then it is admissible among all tests. Thus, for
example, the test 1 — I, is admissible since any essentially different test in ®(C)
will have strictly greater risk at § = 0.

The next result shows that (ii)—(iv) are sufficient to apply Blyth’s (1951)
method to show that ¢ is an admissible‘limit of Bayes tests in ®(C).

LEMMA 3.2. Suppose Assumptions 2.1-2.3 hold, and ¢ € ® satisfies As-
sumption 3.1. Then ¢ satisfies (3.1).

PrROOF. Suppose that for the test ¢/,
(8.7) r(¢) < () V8.
Thus by Assumption 3.1(1),
(3.8) p({xl¢'(x) # ¢(x)} N C°) = 0.
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Using the sequence {¢J;} in (ii), we have

0= limint [ (r(¢") = ra(#))Ji(d6) ~[by (3.7)]

= liminf [ (6(x) = ¢/(x))di(x)»(dx) [by (3.8) and (iii)]

1— o0

> 1igglf£ntc(¢(x) — ¢(x)) d(x)v(dx)

(3.9)
+ liminf fimc(qbi(x) — ¢'(x)) d;(x)r(dx)

i— o0

> liminf (¢;(x) — ¢'(x)) d;(x)»(dx) [by (3.5) and Fatou’s lemma]

intC i~
= [ (6(x) = ¢(=) d(x)s(dx) [by (3.4) and (36)].

The application of Fatou’s Lemma is valid since by (3.6), the integrand is
nonnegative a.e. on int C. By (2.24), the final integrand in (3.9) is nonnegative,
hence for (3.9) to hold it must be that

(3.10) v({x|¢'(x) # ¢(x)} N {x|d(x) # 0} Nint C) = 0.
Thus (3.8), (3.10), (iii) and (iv) prove that ¢ = ¢’ a.e. O

4. More on A(H). Lemma 2.5 shows that A(H) of (2.14) is the minimal
subset of R? X &, which we need for Theorem 2.5. In this section we give some
characterizations of the sets A(H) and A, or at least sets which are only slightly
larger.

In Section 2 we showed that (2.16) implies (2.18). If (2.16) fails, it may still be
that on a sequence {¢;}, ¢; |0, for (A, M) € A(H),

(4.1) A, = Ao

for some A, € R”. For any such limit we must have that (A, M,) € A, as
defined in (2.19). On the other hand, if

(4.2) Al = oo,

then we can look at the sequence (A, M, )/||IA, ||. Since tr M, < trM < oo for all
i, on any subsequence for which A, /||A; || has a limit, say X;, (X,,0) € A, since
Ay M)/IIA |l € A, for each i. Thus the set A, is central to the very local
structure of A(H).

For e > 0,let A;, CR” and A, C %, be the projections of A, on the A- and
M-components, respectively. Then

(4.3) A, c A, XA,
Note that A,, = K*(0(¢)), where for a set 2 C R?,
K () = smallest cone containing Q;

4.4
(44) K*(Q) = smallest convex cone containing Q.
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Thus if (A, M) € A(H), by (2.12), A, € K*(0(e)), hence

(4.5) A S NEK*(8(e)) = K.
el0

Next, consider

09¢
(4.6) M(Q) = {fQ"g”ZH(d(mH ez (Q- {0})}.
As above, we have that
(4.7) Ay C Q}](@(e)).

Since the integral in (4.6) depends on 8 only through 6/||6||, we have that
(4.8) M(Q) = #(K(Q)) =4 (K(Q) N {6]16]| = 1}).
Using the following lemma, we can prove that
(4.9) M(K(Q)) = #(K(Q)).
LEMMA 4.1. If K is a closed cone, then #(K) is closed.

Proor. By (4.8) we have that #(K) = #(KN{0]|0|| = 1}) and, since K is
closed, that KN{6|||f|| = 1} is compact. Thus from (4.6), #(K) is closed. O

An immediate corollary of this result is that if K, D K, D --- is a sequence
of closed cones, then NA#(K,) = #(NK,). Hence (4.7)—(4.9) show that
(4.10) Ay C M (K,),
where
(4.11) K,= rDOI?(@(e)).

Often, A,, can be given more precisely than in (4.10). For a cone K, let
(4.12) K,=KNn-K={ff€Kand -0 K}.
We will show that
(4.13) By CM(KS,),

where K§, =N, (K5(0(e)); cf. (4.5). Thus using (4.10), (4.13) and Lemma 4.1
show that A,, € #(K, N K¢,), hence by (4.3) and (4.5),

(4.14) Ao C KX X M(KyNKL).

The inclusion in (4.14) can be strict. See Example 6.1. The verification of (4.13)
will follow the next two lemmas.
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LEMMA 4.2. If K is a closed convex cone in RP, then there exists a y, € R?
such that
(4.15) Kc{0y# <0} and K,=Kn {6]y'6,=0},
and vy, = 0 if and only if K = R”.

Proor. First, notice that K, is a hyperplane of dimension ¢, 0 < ¢ < p,

which passes through 0. If ¢ = p, then K, = K = R”, so that (4.15) holds with
Yo = 0. If ¢ < p, then we can rotate K so that

(4.16) K=K, xR? and K,= {0} X RY,
where K, C R?77 is a closed convex cone which is pointed, that is,
0, K — {0} = -0, ¢K,.

Thus there exists a vector y,, € R? — {0} such that v/, <0 for all 6, €
K, — {0}. (Let —y,, be any vector in the relative interior of K,.) Now take

Yo = (Yg’) in (4.15). O

LEMMA 4.3. If for some y € RP and § > 0, ©(8) C {0]|y‘0 < 0}, then
(4.17) Ago C M (Ko {6]y%0 =0}).

Proor. If y = 0, (4.17) is (4.10). Otherwise, take (A, M) € A(H) and a = 4.
For ¢ € (0, 8), by (2.13) and since y0 < 0,

t
8)||f7||2

Since (A, M,) € A_, we have {H/} C #(0(e)) such that (2.16) holds. Take 8 < 0
and let

(4.18) YA = ¥\, + f H(d6) < v\

0
(4.19) {0|y ol B}.
Then by (4.18),
(4.20) Yy A<y, < hmmff Y‘tazHe’i(dﬂ) < ElimsupHé(@(e) N Ag)
imw Ja,nece 0] € s
and
M, = lim " (d6) + lim oo H/(db)
(4.21) RN i~ o0 Jocnag 0?2
=M, +M,,

where we may need to take a subsequence on the right-hand side of (4.21). Now
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from (4.20) and (4.21),

€
(4.22) tr M, = lim H,(0(e) N 4;) < Eytx
1— 00
(recall @ > 0 and y‘A < 0). Thus trM,; — 0 as € = 0, so that
(4.23) M, = lim M, = lim M,,.
el0 el0

But M_, € #( K(6(e) N Ag) since Aj is a closed cone, hence by Lemma 4.1 and
(4.11),

(4.24) M, e #(K,N AS).

Finally, take the intersection over 8> 0. Since Nz Az = {f|y'd = 0} and
K, c K(0(8)) c {6]y'0 < 0}, we obtain

M, e #(K,n {8]y8 =0}),
proving the lemma. O
Turn to (4.13). If K¢ = R?, then K§, = R” and (4.13) is trivial. Suppose

K} #+ RP. Take y, # 0 from Lemma 4.2 which corresponds to K§. For § > 0
small enough we must have that

(4.25) K*(0(8)) c {6178 < 0}.

Apply Lemma 4.3 to show that (4.17) holds with y = y,. But by (4.15), K, =
K} 0 {0]v{6 = 0}, hence (4.13) follows from (4.17).
We end this section with some examples.

EXAMPLE 4.4 (O is locally R”). Suppose that for some § > 0, ®(§) U {0} is
an open neighborhood of 0 in R”. Then for any H, A(H) is unrestricted in the
sense that

(4.26) A(H) = {(\, M)A € R? and M, € ¥,}.

The inclusion “ C ” in (4.26) holds always. The inclusion “ D ” will hold by (2.14)
if we show that for any ¢ > 0,

(4.27) A, =RP X9,

Take (A*, M*) € R? X %, and let H, G € #(0(9)) satisty
f OH(df) = \*, f 99'H(d6) = K*,
6(8) 0(9)

(4.28)
/ 6G(dd) =0, [ 66'G(d6) = M*,
0(8) (%)

where K* is arbitrary. Define

H,(df) = |16%H(id0) + |0]|%°G (id6) € #(8(8/i)),
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so that

(9, 66%)
(4.29) /@«8/ oy 160°

Hence (A*, M*) € A_, proving (4.27).

L H(d6) = (\*, M* + (1/i)K*) € A,.

EXAMPLE 4.5 (O is locally pointed). Assume that for some 6 > 0 K*(0(9)) is
pointed, so that for some 8 < 0 and v, # 0,

'Y()o
1611

Then K,, = {0} so that A,, = {0} by (4.14). Also, from (4.18), for (A, M) €
A(H),

(4.30) < B for 6 < 0(s).

4.31 Y\ < H(d8) < B —H(do
(4.31) 0 f a>||0||2( ) ew)non( )

Since y/A < 0 and B < 0, (4.31) shows that (2.16) holds. Hence A, = K§ in (4.5),

and we have equality in (4.14), so that A, = K¢ X {0} and by (2.18), A(H) =

{(A, M)|]\ € K, M, = 0}. We can now write d as in (2.25) without the

(M,, V(x)) term, which is the characterization given in Marden (1982).
EXAMPLE 4.6 (O is locally one-sided). Suppose that for some § > 0,

K¥(0(8)) = K, X RY
as in (4.16) with 0 < g < p. Examples 4.4 and 4.5 treat ¢ =p and q =0,
respectively. As in Example 4.5, if (A, M) € A(H), then

M,;,=0 and

2H(df)) <wfori=1,...,p—gq,
8- (0} 10l

while as in Example 4.4, (A, M{®) ranges freely over R? X #,, where A® is the
lower ¢ X 1 subvector of A and M is the lower right ¢ X ¢ submatrix of M,

EXAMPLE 4.7 (O is locally the axes). Suppose that for some & > 0, ©(8) =
{0)]16]] < 8 and exactly one component of # is nonzero}. Then K, in (4.11) is the
set of axes in R?, while K = R?. Then A(H) = {(A, M)|]A € R? and M, €
&P}, where &P is the set of diagonal matrices in %,

5. Exponential families. Assume we have an exponential family as in (1.3)
and take a(6) = exp{y/(0)} in (2.1) so that

(5.1) Ry(x) = exp{0'x}.

It is easy to show that Assumptions 2.1 and 2.2 hold with I(x) = x and
V(x) = xx'. A result in Brown [(1986), Lemma 7.17] shows that the Asymptotic
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Assumption 2.3 holds where % consists of all sets C € 2 which satisfy

(5.2) C= N {x|y‘x < sup{yyly € C}},
yEK N {0}116l1=1}

where

(5.3) K, = ) K(&'(N))
N>0

[see (4.4)].

Note that every set in € is closed and convex. If ® is a cone, then C € ¥ if
and only if it also satisfies the monotonicity condition

(5.4) x€C and y€ % withfly<fxVldec®=yecC.

See Birnbaum (1955) and Eaton (1970). If © = R?, the condition (5.4) is
vacuous, hence % consists of all closed convex sets.

Turn to Remark 2.6. Suppose for test (2.24), int C is nonempty and take
Xy € int C. Then with a*(8) = exp{ —0',}, we have that (2.53) and (2.54) hold.
Hence we can write d in (2.25) as

1 t
d(x) = N(x = x0) + (Mg, (x = 1) (x = x,)")
(5.5)

+f exp{0x = x0)} ~ 1= 04 = %0) oy
8- (0}

e1°
Finally, let €* be the class of sets C € ¥ which satisfy (3.2). Define # to be

the subset of {# € R?|||f]| = 1} X [ — o0, o] such that for each (), ¢c) € #, there
exists a sequence {§)} C © and > 0 such that

@) [69] » 0 asi— oo,
(5.6) (ii) 10D — 16PN < 7 forall i,

(iif) L explrlislipy(dx) < oo,
where ‘
(5.7) D(A, ¢) = {x|Nx < c}.
Thus (5.6)(i) and (ii) imply that

P10

68 ey

We remark that if (A, c) € #7, then (A, ¢’) € #° for ¢ < ¢’; if the sequence
{0 — |6™|I\} is contained in a compact subset of the natural parameter space
(1.4), (A, c) € # for all c and if O is a closed cone, #'= ® X [ — o0, x].
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Define €** to be the class of all sets of the form
(5.9) C= () D(\co)

(A, )e¥
for arbitrary subsets #;, of # .
LEMMA 5.1. €** C €*.
ProoF. First we show ¢** C ¥. Take (\,c) € # and let {6} be the
corresponding sequence given in (5.6). Since K(®’(N)) is a cone,
99,169 € K(6'(N)) for |8 > N.

Thus by (5.8), A € K, of (5.3), hence by (5.2), D(A, c) € €. Since % is closed
under intersections, any C in (5.9) is contained in %, so that €** C €.

Next we show that D(A, c) satisfies (3.2). The lemma will follow since €* is
closed under intersections. We use Stein’s (1956) proof. As in (3.2), take ¢ €
®(D(A, c)) and suppose ry(y) < ry(¢) for all § € ©. Using (1.5), we can write

0> a(60D)exp{cll0DN} (rw(¥’) — r0(¥))

(5.10) _ fDO\’c)Ii(x),,(dx) + fD(}\,C)CIi(x)v(dx),

where

(511)  I(x) = ($(x) — ¥'(x))exp{I0Dl(Nx — c) }exp{(8D — 18DYA) %}
By (5.6)(ii) and (5.7)
(5.12) |I,(x)| < exp{7||x||} forx e D(X,c).

Thus by (5.6)(iii), the first integral on the right-hand side of (5.6) is bounded in .
Since Y(x) =1 a.e. on D(A, ¢)¢, I,(x) > 0 a.e. on D(A, c)’. Thus we can use
Fatou’s lemma on the second integral. Unless ¢’(x) = 1 a.e. on D(A, ¢)¢, too, the
limit infimum of that final integral will be + oo, violating (5.10). Thus ¢’ €
®(D(A, ¢)), proving (3.2) for D(A, ¢). O

We remark that #** may be a proper subset of #. For example, take
0 = {(6,, 6,0, € R, 8, = 62}. Then K, = {(0,0)|0 > 0}, so that % consists of
all sets of the form {x|x, < ¢} for ¢ > 0. However

16 = 11611(0,1)"|| > 67 - o as |6, - be,

hence no vector A can satisfy (5.6)(1) and (ii). Thus #” is empty, so that €** is
empty. Note that we have not said whether ¢* is empty.

6. Examples.

ExaMPLE 6.1 (Correlation with known variances). Suppose (Y;,...,Y,) is a
sample of independent bivariate normal random variables with means O,
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variances 1 and unknown correlation p. We wish to test
(6.1) Hy:p=0 versus H,:pe(-1,1) — {0}.

We have here a two-dimensional curved exponential family. After reducing by
sufficiency to x = (x,, x,)’, where

n
(6.2) n=3) ()’5 + J’i22) and x,= ) ¥,

i=1 i=1

and by rtaking a(p) = (1 — p?)*/2, we can write

(6.3) Ry(x) = exp(0%),
where
2

—p P
(6.4) b= ad b=
Here -

-0’ p
(6.5) ®={(1_—p2,1*—p2)lpe(—1,1)}

is a one-dimensional curve in R? as pictured in Figure 1.

F1c. 1. The parameter space ©.
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To find A(H), note that as 6, — 0,

(6.6) 0, = —062 + o(62).
Thus ignoring 0(68) terms, we have that, locally,
. -62\ (0 O
(6.7) (6, 66%) = (( 022)(0 022))
It can then be shown that
0,
6.8 A=A, — ——H(d#f
(6.8) e S PG
is finite, and
— 0 0 —
(6.9) A(H) = {(A,M)P\lo =-My, A\ €ER, M= (0 i ) and M, > 0}.
0

From (6.9) it follows that A, is not a product space, so that the inclusion in
(4.14) is strict in this case. The local terms in d(x) are now quadratics restricted
to be of the form

1 M
N(x) + §<M0, V(x)) = Apxy + TO(xg - 2x,)

+x, [ —ﬂ—H(d())

8- (03 161*
for (A, M) € A(H).

To obtain €, it is straightforward to show that from (5.3), K, N {6]||0|| =1} =
{1/ V2)(-1,1), 1/V2)(—1, —1)}}. Thus by (5.2), % contains all sets of the
form
(6.10) C = {x|x;, — xy > c; and x; + x5 > ¢y}

for ¢;, ¢, € [0, 0]. It is also easy to show that
w={= (-1, - (-1, -1 x[ ]
=y 7=\1, y = \—T 4, ™ b ) .
{«5 V2 } %%

Thus by Lemma 5.1, all C € € satisfy (3.2). It can also be shown that Assump-
tion 3.1(ii)—(iv) hold for all tests ¢ € @, hence ® is minimal complete. See
Marden (1981) for details in the one-sided case.

ExAMPLE 6.2 (Location parameter in the double exponential case). Suppose
(X,,..., X,) is a sample of independent observations from the double exponen-
tial distribution with location parameter 6, so that the density X; with respect
to Lebesgue measure on R is

(6.11) 8o(x;) = 3 exp{—|x, — 0]}.

We test (1.1) with ® = R. Since g,(x;) is not differentiable with respect to 9 at
0 = x,, we need to delete x; = 0 from the sample space in order to satisfy the
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Local Assumption 2.2. Thus let 2= [R — {0}]" Now (1.2) is

(6.12) fo(x) = exp{ = Lllx; - 0] - |x,/1}.
When |0| < min{|x;],..., |x,|}, fo(x) = exp(8T'), where

d -1, ifx,;<0
6.13 = ) ) = ’ t ’
(6.13) T iglsgn(xl) and sgn(x;) { 1, ifz,> 0.

The statistic T is the one used in the sign test. When

0] > max{|x;|,..., 1x,},  fo(x) = exp{ —n|f] + L [jad + (sgn6)x;]}.
Thus if we choose a(8) = exp{b(8)}, where

0, if 0] <1,
b(8) ={2n(|0)—-1), ifl1<|f <2,
n|é|, if 2 < 6],
we have from (2.1) that
exp{6T}, if 16| < min{|x,], ..., |x,l,1},

6.14 R =
(6.14)  Rolx) exp{ L|x,| + sgn0Y x;}, if 6] > max{|x,],..., |x,],2)
and is given by exp{b(8)}f,(x) in any case. Thus Assumptions 2.1 and 2.2 are
seen to hold, with

(6.15) I(x)=T and V(x)=T=2

Consider the Asymptotic Assumption 2.3. Note that for any x, Ry(x) is
bounded away from 0 and oo for all 6. Thus (2.11) holds for all x or no x, ie.,
¢= (2, Z}. If C = %, then limsup, , ,G,(0'(a)) < 0, hence there is a limit G
as in (2.9) for G € #(0'(a)) and (2.10) holds since R 4(x) is bounded. It need not
be that (2.54) holds with G* = G, hence we cannot always write d as in (2.55).

ExAMPLE 6.3 (Restricted normal means). Suppose Z;, and Z, are indepen-
dent, Z, ~ N(p,, 02), Z, ~ N(p,,0¢), with o and o; known. We have an
exponential family (1.3), where we take

2 /62
(6.16) - (ﬁl) x= ).
2 ‘ 2,/03
We suppose |p;| = |p,), so that
I
(6.17) 0= {(u;) |1y | = qul}-

It is straightforward to verify Assumptions 2.1-2.3. Take ¢ € ®. Assumption
3.1(i) holds since © is a closed cone; (iii) follows since each C is convex and » is
absolutely continuous with respect to Lebesgue measure on R2 To prove (iv),
look at d in (5.5). If (My*, H**) + (0,0), then d is strictly convex in at least one
x;. If (Mg, H**) = (0,0) but A** # 0, then d is either strictly increasing or
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strictly decreasing in at least one x;. Thus if (A*, M*, H**) # (0,0,0), (iv) holds.
If (A*, Mg, H**) = (0,0,0), then (A, M, H,G) = (0,0,0,0) in (2.2), so that
d(x) = —c and ¢ # 0. Hence the set in (iv) is empty.

To prove (ii), take G; = Glg;, in Lemma 2.5, so that (3.4) holds by the
Monotone Convergence Theorem and the remark following the lemma. Also, for
any a > 0, we can find a constant K < co such that

RP(x 22 22
0(%) sK(—Z+ —23)

0, 02

(6.18) sup
0€0(a)

611>

Since the upper bound in (6.18) is integrable with respect to », we can use the
Dominated Convergence Theorem together with Monotone Convergence Theo-
rem, to show that the limit and integral can be interchanged in (3.5).

Thus by Lemma 3.2 ® is minimal complete. We now look at some specific
tests.

First consider the test with acceptance region

(6.19) {xl2? + 23 < 6%} = {x|ofx} + ojx3 < 82}, §>0.

We will show that it is admissible if and only if 0 > 6. Since |g,| > |p,|in O, we
can show that

(6.20) (0,(":)“ 0 )) €4,

Mgo

for any m,, > my, > 0. Thus by taking in (224) C=%, H=0, G =0, and
(Ao, M,) as in (6.18), we have that any test with acceptance region

(6.21) {(xImyx? + mypx2 <8},  my 2 my >0

is admissible. Thus if o} > 67, (6.18) is (6.20) with (m,,, my,) = (0f, o4). Now if
0 < 6}, (6.20) cannot be written as (6.18). In fact, it cannot be written as in
(2.24), proving it inadmissible.

To prove this fact, we first note that the problem and test (6.18) are invariant
under the group G of sign changes: ge(x,,x,) = (e,x,, e,x,), where e, e, €
{£1}. Thus we can invoke Remark 2.7. It is easy to show that

" — 20
(6.22) i(x)=0, W(x)-= (xl 2)
. 0 x5
and
(6.23) Ro(x) = L(elmm 4 gmImlm)(glhalve + @=lnalzs),

Now suppose (6.19) is the test (2.24) with the quantities barred as in (6.21) and
(6.22). It is clear that 0 € C, hence we can write

Ro(x) - 1 —_—
———H(dp) - ¢,
e-{0} My t+ By

where 7, > My, > 0 and H € #(§ — {0}) is G invariant. By the nature of the

(6.24) d(x) = mx2 + Myx2 +
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set C in (5.2), where K, = 0, and since d(x) is continuous, we must have that
(6.25) d(x) =0 ifx e {x|ofx] + oxd = 8%} N {x]|x| < |x,|} = A.
Consider the points x, y € A, defined by

0 5
R R 1)

0_22 Joi + oy 1
Since 02 < 0f, Mypx2 < My y2 + Myyy if (Mg, Myy) # (0,0) and it can be
shown that
(6.26) Ry(x) <Ry(y) if6+o0.
Thus unless (7, My, H) = (0,0,0), d(x) < d(y), violating (6.24). If
(my,, Mgy, H) = (0,0,0), then d(x) =0, and (6.24) cannot hold. Thus (6.19) is
inadmissible.

We note that the test with acceptance region

2 2
! ) 82\ = 2,2 2,2 _ 82
.7C|'0—2 + - < = {x|olx1 + 0505 < }
1 2

is also admissible if and only if ¢ > of.
Now consider the Likelihood Ratio Test (L.R.T.). Its acceptance region is
given in Figure 2.

fal
S

Fic.2. The acceptance region of the L.R.T. when o = 2 and o} = 1.

REJECT

ACCEPT
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As in Birnbaum (1955), it can be shown to be admissible since it is 1 — I,
where for some «,

(et p
c=N {x|p1x1+u2x2£§(;—2+'—2 T oK)

6ec® 1 02

It is easily seen from (5.2) that C € ¥.
Now suppose we bound the parameter space, that is, consider the parameter
space,
®5 = (6 € 0|16 < B)

for some very large B. Then the L.R.T. will still be as above, but the set ¢ will
consist of only  and @ since K, in (5.3) is empty. To be admissible, the L.R.T.
would have to have acceptance region {x|d(x) < c}. But d is analytic in each x,,
and Brown (1986) shows that if d is analytic, there cannot be a sharp point like
Q. Thus the L.R.T. is inadmissible.
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