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ON A CLASS OF NONPARAMETRIC DENSITY AND
REGRESSION ESTIMATORS!

By V. K. KLONIAS
The Johns Hopkins University

A class of maximum penalized likelihood estimators (MPLE) of the
density function f is constructed, through the use of a rather general rough-
ness-penalty functional. This class contains all the density estimates in the
literature that arise as solutions to MPLE problems with penalties on f2 In
addition, the flexibility of the penalty functional permits the construction of
new spline estimates with improved performance at the peaks and valleys of
the density curves. The consistency of the estimators in probability and a.s.,
in the Lp(R) — norms, p = 1, 2, , in the Hellinger metric and Sobolev norms
is established in ‘a unified manner. A class of penalty functionals is identified
which leads to estimators which approach the optimal rates of convergence
predicted in Farrell (1972). Based on the above estimates, a class of MPLE
regression estimators is introduced which has the appealing property of
reducing to the classical nonparametric regression estimates when a smooth-
ing parameter goes to zero. Finally, a theoretically justifiable and numerically
efficient method for a data based choice of the smoothing parameter is
proposed for further study. A number of numerical examples and graphs are
presented. ’

1. Introduction. Let X;, ..., X, be independent observations from a
distribution function F with density f over R?, p € Z. and let F, denote the
associated empirical distribution function. The nonparametric maximum penal-
ized likelihood method of density estimation (MPLE) introduced by Good and
Gaskins (1971) and (1980), produces as the estimator of f the maximizer of the
log-likelihood minus a “roughness” penalty functional ®(v) which is usually
expressed in terms of the root density v = /2 e.g., 21 (v) = a [ (v')?, 2 (v) =
Bf @)+ af (v")?with a> 0,8 = 0. In DeMontricher, Tapia and Thompson
(1975), the existence and uniqueness of the MPLE’s were rigorously established
within the framework of Sobolev spaces W?* = {u € Ly(R): | u'” |2 < + o}, with
/ a positive integer; L, (IR) denotes the space of square integrable functions and
lull3 = [ u® They also introduced a class of MPLE with finite support and
penalties expressed in terms of f. For a discretized version of the MPLE problem
see Tapia and Thompson (1978) and Scott, Tapia and Thompson (1980). In
Silverman (1982) the MPLE problem is extensively studied in the case where
the “roughness” penalty is imposed on log f rather than f'/2, e.g. ®;(log f). For
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1264 V. K. KLONIAS

another penalty method for the estimation of the score function (and hence the

density), see Cox (1983).
The MPLE’s u of f/2we consider here, are solutions to the following optimi-

zation problem:

(1.1) maX{ i1 log u(X)® — A(27) P f | %1% dp, u € H}
subject to u(X;) =0, i=1, --.,n,

where ii denote the Fourier transform of u, H = {u € Ly(RP), [ | G|? du < + o}
and A > 0 is such that [ u? = 1. A unique MPLE u corresponds to each positive
measure u, dominated by the Lebesgue measure with density m(t), and is a spline
function, given implicitly by

(L2) () =\ Sk uX) k(= X, -, % — Xp), x ERP,

with mk, = 1. We then estimate f by f, = u® In Sections 3 and 4, where the
consistency of these estimators is discussed, we will let u depend on a parameter
h € R, so that m(t) = mo(hity, -- -, hptp), t ERP, with h; > 0,j =1, --. , p.
Then,

K,,(Z) = (hl M hp)_lk(zl/hly MR ) zp/hp)y zE @p,

where k is such that Em, = 1.
Note that if we set

(1.3) m(t) = Yi-o a;t¥,

with @y, a, >0and q;=0,j =1, ---, 7 — 1 for some positive integer #; by an
application of Parseval’s Theorem (see, e.g., Yosida, 1970, page 154) problem
(1.1) is seen to be equivalent to that treated in DeMontricher et al. (1975), giving
for 7 = 1, 2 the “first and second MPLE of Good and Gaskins”, corresponding
to ®;, ®; and being generated by kernels «, of the form

(a/2)exp{—a| x|}
and
[4]ab] (a® + b?)]'exp{— |ax|}[|b|cos|bx| + |a]| sin |bx|]

respectively. For # > 2, «, is a convolution of these two kernels.

In general, density estimators tend to underestimate the “peaks” and overes-
timate the “valleys” of the curves. This issue has been addressed in a number of
papers, see, e.g., Wahba (1976), Breiman, Meisel and Purcell (1977), Hall (1983).
The generality of the measure u we are allowed in Problem (1.1) and the fact
that f, = u® is nonnegative even if «, is not, permits the consideration of the
following approach to the construction of the “roughness” penalty, which seems
to improve the performance of the estimates at the “peaks” and “valleys” of the
density curve (compare e.g., Figures 1C and 3B).

Since we use global penalties for “roughness” and since the square root is a
variance stabilizing transformation for the probability density estimation prob-
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lem, it seems preferable to control the “smoothness” of the root-density, as in
Good and Gaskins (1971) rather than the density estimator. Also, in view of the
over-and-under-estimation problems mentioned above it is desirable to penalize
lighter for “roughness” near the “peaks” and “valleys” of the curve, the location
of which is unknown. To this end, note that if we convolute u with a symmetric
around zero density », = h~'v(-/h), h > 0, we have that

(1.4) (W*rn)(x) — u(x) = h*(my/2v”"(x) + O(h*), x E R,

where m; denotes the ith moment of » and O(h*) is bounded in absolute value by
(ma/4") | u'||2h*. Since the dominant term on the RHS of (1.4) is negative at
the concave parts and positive at the convex part of u, at least for h small, the
“peaks” of u*v;, will tend to lie below and the “dips” above those of u. Then, u*»,
will be “flatter” than u at the places we wish to penalize lighter, and we propose
to penalize u*v, rather than u directly. This simply means using |7,|%m
for the weighted function in (1.1). To avoid the introduction of new modes we
can use a strongly unimodal » (see, e.g., Lukacs, 1970). Note that in the special
case that m(t) = exp{h’t/2}, h > 0 and v, is the log-concave density (and hence
strongly unimodal) with 7,(t) = (1 + h%?)~'/? (see Ibragimov, 1956), the MPLE
given by (1.2) is generated by «,(-) = h k(- /h), with k = ¢ — ¢” where ¢ denotes
the standard normal density. So that, in effect, the estimate is corrected by
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subtracting its second derivative. This seems to improve the performance of the
estimates at the “peaks” and “valleys” of the curve; see, e.g., Figures 1, 2. Clearly
any kernel of the form

k=¢ —cop”, ¢>0

makes sense in the context above (the choice of ¢ = 1 is suggested by an ad hoc
approximation argument). In fact for ¢ = %, [ x%k(x) dx = 0, so that the resulting
MPLE attains a higher rate of convergence (see, e.g., Proposition 4.1, and also
Fig. 2C). In Section 4 we show that the estimators of f based on kernels with s
zero even moments, s = 0, 1, - .., attain the enhanced rates of convergence of
kernel estimates based on such kernels. It should be noted that although the
MPLE u of f/*based on such a kernel may assume negative values, the estimator
u? of f will be a nonnegative density estimate.

Also, note that the added flexibility in the choice of u allows us to consider as
kernels k,in (1.2) a wide variety of symmetric densities as long as &, > 0, including
the family

(1.5) k,(x) = [20(1 + v )] 'exp{—|x|"}, xER, ¥ E[L, 2],

as well as kernels with finite support, e.g. x,(x) =1 — |x], x € (-1, 1) (see
Klonias and Nash, 1983a), which should require less numerical effort, a consid-
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eration of some importance for the algorithm giving the data based band-width
h (see Figures 3C and 4C) and for the MPLE’s of multivariate densities.

In Section 2 we show the existence and uniqueness of the estimators and
indicate the approach employed for their numerical evaluation. Details on the
algorithms will be reported elsewhere jointly with Stephen G. Nash. After some
preliminary lemmas in Section 3, we derive in Section 4, in a unified manner,
the consistency of the MPLE’s of f/2 and f in probability and a.s. in the L, (R)-
norms, p = 1, 2, o, The rates of convergence of the MPLE'’s given in Proposition
4.1 (ii), approach the optimal predicted by Farrell (1972), page 172, and Stone
(1980). For the MPLE'’s of Good and Gaskins and those in DeMontricher et al.
(1975) with support on R, we show in addition, that they also converge in Sobolev
norms. Similar results are obtained for the MPLE u of f*/2 In Section 5 we
present a number of numerical examples and propose an approach for a data
based choice of the smoothing parameters of the MPLE’s which seems to perform
well but needs further study. An efficient algorithm for the numerical evaluation
of h has been constructed jointly with Stephen G. Nash, details of which will be
reported elsewhere. In Section 6 we present a nonparametric regression estimator
based on the MPLE’s, see (6.1), which has the appealing property of reducing to
the classical nonparametric regression estimators when a smoothing parameter
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goes to zero. For other regression estimators based on penalty methods see
Reinsch (1967), Wahba (1975), Bartoszynski, Brown, McBride and Thompson,
(1981), Anderson and Blair (1982), and Rosenblatt (1983).

2. On the existence and numerical evaluation of the estimators. In
this section we obtain the spline function (1.2) as the unique solution to problem
(1.1), and indicate the approach employed for the numerical evaluation of the
estimators.

When the measure of L,(R"), p € Z., is different from the Lebesgue measure
we denote the space by Ly(u), u a positive measure on R” dominated by the
Lebesgue measure with density m(t). Let H = {u € Ly(RP): & € Lo(pn)}—a
Hilbert space—where i(t) = [ e~y (x) dx denotes the Fourier transform of
u, with corresponding inversion formula u(x) = (27) ™ [ge e”Txd(t) dt, t, x €E R”.
The measures u we consider here are such that there exists a symmetric around
zero function k, € L,(R”) with k,(t)m(t) = 1, e.g., m(t) = exp{h’t?/2} with k,(-)
= h7'¢(-/h), where ¢ denotes the standard normal density. To see that H is a
reproducing kernel Hilbert space (RKHS) with kernel «*(x, y) = «,(x — ¥), let us
denote the inner product of H by

(u, v) = (27)7" f ub dp,
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and the induced norm by
lul = (u, u)? = 2x) 2| m*%i | ;.

Then, setting k¥ (.) = «*(-, x) € H, x € R, we have that
ux) = (k*,u)Vue He (21)° f e = (¢) dt
RP

= (2m)7" f REE)E@E)mt) dt, ¥ u € H & iX(t) = e™*/m(t)

o kX)) = e " K, (L),

x, t € R, which by the inversion formula gives the result.
We can now obtain the spline function (1.2) as the unique solution to the
optimization problem (1.1).

PROPOSITION 2.1. The optimization problem
(2.1) max{[[]7, u*(X)Jexp{—A |ul?}, u € H}
subject to: u(X;) =0, i=1,2,---,n,
has a unique solution, given by (1.2) with k,m =1, A > 0.

PROOF. In view of the fact that H is a RKHS, the existence and uniqueness
of the solution is a direct consequence of Propositions 2.1 in DeMontricher et al.
(1975). The constraints cannot be active at the maximum and hence the station-
ary point of the Lagrangian of the problem, after taking logarithms, is given by:

2 Yau(X) (X)) - >\(21r)“’<{f miq + f mﬁﬁ} =0 VnEH
e {2}21 u(X;)™ f e~ Xig(t) dt — A f mlﬁ}
+ {Z,’Ll u(X)™ f “X5(t) dt — A f E} 0 VoneEH

IS Re{f [Br; w(X;)e™%i — X m(t)i(t)]7(t) dt} =0 Vg€EH

For the validity of this last identity it is sufficient to have:

f [Shy u(X;)e™ X — xm(2)i(t)]7(t) dt =0 V g € H,
e Yo u(X) e X — xm(t)iat) = 0
& U(t) = A7 B u(X)) e %k, (¢),

which by the inversion formula gives (1.2). That this is the only solution to
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problem (2.1) follows from Proposition 2.1 in DeMontricher et al. (1975) and is
a consequence of the fact that the second differential of the Lagrangian, given

by
“2'{25‘;1 u(X) 7 (Xi)? + A@2m) 7P f mlﬁlz},
is negative definite everywhere. [
The parameter X is chosen so that [ u? = 1. To obtain A, note that ¢ = \?u

does not depend on A and A = || q || 2.
For the numerical evaluation of the estimate, note that setting x = Xj, j =

1, .-+, nin (1.2) we obtain the system

(2.2) (X)) = 21 q(X) (X - X)), j=1,--,n.

To solve this system we equivalently minimize the convex function
g'Yg—Ykiloggiover (gER g =0,i=1,---,n},

where

g=qX)Yi=1---,n and }: = [« (Xi— Xj)] € R,

The algorithm we use is based on a truncated-Newton method, described in Nash
(1982). Then, the parameter A = ¥ Y, gigi(k, * «,)(X; — X;). For details on
the numerical evaluation of the estimators see Klonias and Nash (1983b) and for
a summary of the techniques see Klonias and Nash (1983a).

3. Preliminary lemmas. In this section we present four lemmas on which
the proofs of the consistency of the estimators—appearing in Section 4—are
based.

Let us denote by || - ||, the L,(R) norms p = 1, 2, » and let || - | denote the
norm induced by the inner product of H. The proofs of the consistency of the
estimators are based on the following lemma.

LEMMA 3.1. Let u, denote the solution to problem (1.1) for some X\ > 0. If
v=fY?€ H, then

lun -vlI? = A2 3 T v(X) (X)) k(X — X)) — 2(n/X) + v]%

PrOOF. Note that
L (X)) To(X) T (X)) — v(X:)? =2 0
o AT IL vX) TR (- —X) —un, un—0) =0
o (N IR vX) Tk (- =X) v, un —v) = Jun — 0%
Then, by the Cauchy-Schwartz inequality we have,
Tux = vl® = A7 B v(X) k(- =Xi) — v]®
=\ Ykt Yk 0(X) T (X)) Tk (X — X5) — 2(n/A) +Hv |2 a
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Next, let A\, denote the value of A such that [ uf = 1. The following lemma
describes the probabilistic behavior of A\,/n.
LEMMA 3.2. Ifv € H, then
| (An/n)* = 1|
< [kl Ty Tia v(X) 70(X) (X — X)) — 2+ [0 |2

PROOF. From Lemma 3.1, with A = n, we have that
(B1) Nu,—vl*=n? Tk T (X)) (X)) k(X = X)) — 2 + |0

Also, from (2.2) we see that A\%u(x;), i = 1, ---, n and hence A*?u do not
depend on \. Then, \Y?u, = n"?u,,sothat 1 = | u, [l2= (n/A) Y2 || tnll2, ie.,
(3.2) A/n = llugll3.

Also, note that 1 = m(t)k,(t) < m(t) || k.| 1, so that
(3.3) I3 =< Nl - 02
and hence, using also (3.2), we obtain

[ a/m)2 = 1] = | llunllz = N2 < ltn — vz = Il llun — v,

which along with (3.1) give the result. [

Henceforth we consider RKHS H with kernel «*(x, y) = x,(x — y), with
k,(+) = h7'k(-/h), h > 0 and take h = h, = O(n™") for some t € (0, %), so that
(1.2) takes the form

(3.4) ux) = A" Ik w(X) R R((x — Xi)/h), x ER.

LEMMA 3.3. Under the assumptions:
A;: E|X|'<+xforsomer>(1—t)""te(0,%),

Ag: Joe*? |, <+ o, wheres =0, 1, 2, - - - denotes the number of even moments
of the kernel k which are zero, we have that

|n72 Bt B 0(X) 0 (X) hTR(XG — X)/h) — 1]
= Op(n-—(l—-a—f-l_t)) + Op(n—(1/2+(2+s)t)) + O(n—2(1+s)t)
for 6 > 0.
PROOF. Let Y;=v""(X)v™(X)h~k((Xi = X;)/h),i,j=1, -- -, n. Note that
k(0)*hY;=f'X;),i=1, ---, n, are i.id. random variables and under our

moment assumption E{f"(X)} < + o for r < (1 + 7). Then, from the
Marcinkiewicz’s version of the SLLN (see, e.g. Loéve, 1977, page 254), we have

(3.5) RO 'n 2 38, fUX) = O(nY7*?)  as,,
so that we need only deal with the term ), Y Yi;.
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Since EY? = +, in order to study the convergence of the series we will use a
truncation technique. For i, j with i # j, let Z;;= X; — X,

76 = +oo if | X;| >c; and | Xi| > ¢
Y Z;; otherwise,

with ¢; = if for { > 77}, and define Y¢; = v }(X;)v"(X;)h'k(Z{;/h). Note that
Y,;# Y§ if and only if Z;;# Z;. Hence V h > 0,

P(Y; # Y§jio.) = P(Z; # Z§; i.0.)
< lim, Yin Xizm P> Xi| > c)P(] X;| > ¢))
= {limn, X2 P(| Xi| > ¢)}2

But from Chebyshev’s inequality (see, e.g., Chung, 1974, page 48), we
have that P(|X;| > ¢;) < E|X|"|c;|™ = E|X]|"i"*" and hence the series
Y2, P(| Xi| > c;) converges. Then, V h > 0, P(Y;;# Yi;i.0.) = 0. Then, setting
S, =3" 3% v N X)v N (X;)k(Z;;/h,) and defining Sy, similarly through Zf;, note
that for all positive integers n

[S, — S5l = ke {Zica v HX

where A remains a finite set and P(v(X;) = 0) = 0 since f is continuous. Hence,
for any sequence a, — 0 as n — ®

a,| S, — S;| - 0 as. asn— o,

i.e., the series a,S,, @,S% are convergence equivalent and hence it is enough to
show the result for the truncated random variables.
Next note that,

+0o0 +o0 +oo —¢; —c; —¢; —¢; +00
T R MR

[h7R((x — Y)/R)f2(2)fYA()] dx dy.

|f f h_lk(x—;—z>f”2(x)f‘/2(y) dx dy|
B (e x — 1/2
S{f f h™ k( hy) | fx) dxdy]r
T -1 xX—Yy
{f f h k( h >

< Ikl1[1 = F(e)]"’[1 — F(e)]"*

But,

1/2
f(y) dx dy}

= |k P(1 Xi| > ¢)*P(| X;| > ¢))**

< |kILE|X|"G)™"
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and the same bound is similarly derived for the other three integrals, so that
(3.6) |EYy — EYyo| < 4 | kILE| X|"Gj) ™7,

and hence we have that

(3.7) [n(n — DI7ELY S Y5) = EYs + O(n™).

Then, in order to obtain the rate at which the bias vanishes it is enough to
check the following term:

|EYy, — 1] = ‘ ffh“k(x;y>v(x)v(y) dxdy—l’

= I f fk(z)v(x)v(x + hz)dxdz —1 ’

- (%)

“\2
h2 7|2 2

S(;) v ||2f2 | k(z) | dz.

Also, note that if [ 2*°k(z) dz = 0 for some positive integer s, we can carry the
Taylor expansion above further to obtain

2(s+1)
e | k) e

, he (0, h)

szk(z) f v/ (x)v’(x + hz)dx dz

IEY12_1| =

Hence we have that
(3.8) | EY12 — 1| = O(h*¢*D).

Then, in view of (3.7) and (3.8), to conclude the proof we need only show that
3.9 [n(n— D] T T (Y5 — EYS) = 0,(n7?h**) + 0,(n " CPh712),
for which, by the Chebyshev inequality, it is enough to show that
(3.10) E{[n(n — D] X Ti (Y5 — EY{)}E = 0(n7j**™) + O(n™*"R7).
First, note that

Y Y E{YE)?

5 oo _ c; +oo —_
<Y D {Ic J:m h_2k2<x h y) dx dy + »[ j:w h2k2<x h y> & dy}

=2 |kI3h7' Y S (ci + ¢) < 4 | k3R R,
so that,
(3.11) [n(n — ]2 Y S E(Y§ — EY5)? = O(h7'n724),

The remaining nonzero term of (3.10) is a triple sum of the terms we bound




1274 V. K. KLONIAS

below:
|Eij Jc‘/— EijEYfA
(3.12) < |EY;Y;,— EY;Y;/| + |EY;Y;,— EY;EY;/
+ |EYS,| | EYS; — EYvo| + |EYys| | EYS,— EYyo].
But, after setting I, = [—c;, ¢;], we have that
|EYS;Y; — EY;; Y/

-[{L L LI
.[h—%("—;—y)k(y - z)v(x)v(z)] dx dy dz

= {f L* f,cf . Hh"lu k| * |k|><" - y)v(x)v(z)] d dz

< |RIZP(X] > e + P(1 X| > )%,

and hence
(3.13) |EY5YS, — EY;Y; | < |RIZE| x| (#7572 + i™%7%).
Next, note that for a kernel k with s =0, 1, 2, - - - zero even moments, k * k has

s zero moments and
M3e2 = 2Mogys,
where m,, m* denote the rth moment of k and k = k respectively. Then,

EY;Y; - EY,EY;,

= J: J: h~Y(k = k)(x 'I; y)v(x)v(y) dx dy

- {[w _[w h—1k<x ;y>v(x)v(y) dx dy}

= — sﬂ_ﬁz__ * (s+1) |12 2s+4

1+ (-1) @5 + 2)! mie| vV )3 + O(h*™)
— —1)s+1 __h_%rf_ (s+1) |1 2 2s+4 :
1+ (-1 @s £ 2)] Masra |0V )3 + OR®*

so that,
(3.14) EY;Y;,— EY;EY;, = O(h**®).
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Then, (3.6) and (3.12) through (3.14) with {r > 2, imply
(8.15) [n(n— 1] % 2 3 E(Y5Y:, — EYSEYE) = O(n™®) + O(n~*h*+%),

i A
which along with (3.11) imply (3.10), and the proof is complete. 0

Note that the optimum rate in Lemma 3.3 is achieved when 1 -0- rTi—t=
2(1 + s)t, i.e., when t = (1 — 6 — 771 /(3 + 2s), in which case 2(1 + s)t < (¥&) +
(2 + s)t. Thus we obtain the following corollary to Lemma 3.3:

COROLLARY 3.1. Under assumptions A, and A,, we have that

In72 Ty T v(X) 7o(X;) ThTR((X: — X5)/h) — 1| = 0p(n7),
wheret=1—7""=t, t=[1-7"YY/(8+2s)]7,5=0,1, ---.

REMARK 3.1. Note that if f has all its moments finite, e.g., f has compact
support, then the result of Corollary 3.1 is valid with ¢ < (1 — ¢) and ¢t <
B3+28)L,s=0,1, ---

LEMMA 3.4. Under assumptions A, and A, Lbe have that w.p.l:

[n™2 ¥k i v(X) (X)) ThTR(X: — X)/h) — 1
= O(n—(l—é—f_‘—t)) +0(n %) + O(n—2(1+s)t);
for6>0and &' <[(%4) + (2 + s)t] A [(34) — 771 — (¢/2)].

PRrROOF. In view of (3.5) through (3.8) it is enough to show the a.s. version of
(3.9) with the present rate. To simplify the notation we define

Wi = v (x))v"(X;)hk(Z/h), Uk = Wi - EWE

and
Sn(h) = X, Ub.

i)
Next, let n2 < m < (n + 1)2 (it turns out that from the subsequences [n"] the
optimal corresponds to n = 2). Then

(3.16) | Sn(hm) | = | Sp2(hn) | + Dy,
where D,, = sup{| Sp(hn) — Spz(hn) |: n®> = m < (n + 1)%. From (3.10) we see
that

E{[nz(nQ - 1)]—1m£‘Sn2(hm)}2 = O(n—Q—(8+4s)t+4£’) + O(n—4+2§+2t+4£’),
sothat if =2 — (8 + 4s)t + 4£’ < —1and —4 + 2{ + 2t + 4¢' < -1, i.e,,
(3.17) £ <[(%4) + (2 + s)t] A [(34) — (& + ¢)/2),
by the Chebyshev inequality and the Borel-Cantelli Lemma, we conclude that
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forn?<m=<(n+1)?and £ as in (3.17), w.p.1
(3.18) [n3(n? = 1)]7'm¥ S,2(hn) = o(1).
Also,
E[Sn(hm) = Sw(hm)]?
= E{2 Y2241 Y0 U(hn) + SPwrarim Srnter Uy(hm)}
=4 Y20 S EUR(h,) + 4 T z 221 EUyj(hm) Ui (h)
+ 4 Bt Tt Y21 EUy(hw)Uj(hm) + E{SEme1 Yner Ui(hm)}?
+ 8 Y22 Y21 Y21 EU(hi) Ui (i)
= 0(n®*%*%) + {0(n®) + O(n*" )} + {O(n®) + O(n*~®+)))
+ {O(n®*2+%) + O(n®>C+9) + {O(n®) + O(n* &)
= O(n3+%+2%) 4+ Q(nbB+)),

where the rates indicated above, were derived using (3.6), the inequality used in
(3.11), and (3.12) through (3.14), and proceeding as in the proof of (3.10). Then,

ED: < Zi,',’;'}}il E[Sn(hn) — Sn2(hy)]? = O(n*+2+2%) 4+ O(nb®+4)),
s0 that
E{[n2(n2 — 1)]—1m5'Dn}2 = O(n—4+2{+2t+4£’) + O(n—z—(8+4s)t+4£'),

and hence, for ¢’ as in (3.17), by the Chebyshev inequality and the Borel-Cantelli
Lemma, we have that w.p.1

(3.19) [n3(n? — 1)]'m¥ D, = o(1).
Then the result follows from (3.16) through (3.19). 0
COROLLARY 3.2. Under assumptions A; and A,, we have that w.p.1
In™2 T D v(X) 7o(X) TThTRIX — X5)/R) — 1| = o(n7"),
where £’ = (%) — 71— (t/2), with
t=[(8—47"Y/(10+ 8s)]” if s=<5(1—47r7")7/2
and t =[(1 — 277Y)/(5 + 2s)] ~ otherwise,s =0, 1, - - - .

REMARK 3.2. Note that if f has all its moments finite, e.g., f has compact
support, then the result of Corollary 3.2 is valid with ¢’ = [(3%4) — (¢/2)]” with
t=[3(10 +8s) " if s<%and t = [(5 + 2s)7'] ifs>%,5s=0,1, ---.

4. On the consistency of the estimators. In this section we establish the
consistency in probability and a.s., of the MPLE’s u of f*/? and of the density
estimators f, = u?, in the L,(R) norms, p = 1, 2, o, and in Sobolev norms, in a
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unified manner. Also, we indicate the optimal rates of convergence that our
proofs allow in each case. We denote the MPLE’s of'v, f by u and f, =
respectively, the normalizing parameter A, by A and set h = O(n™%), t < V.

THEOREM 4.1. Under the assumptions of Lemma 3.3 and v € H, we have
that:

(i) 1(\/n)=1]=0,(n""" 6—T"l_t)/2) + 0,(n742) + O(n=6+%),
i) Ju—-vl]:=0 (n’“ 1" —t)/2) +0, (n—e/2) + O(n=6+),
(i) Ju—vl.= O (n~a-é-r'-2n/2) 4 0 (n~ED72) 4 Q(n-Cs+er2)

with £ =% + (s + 2)t for convergence in probability and
E=[%+ (s+2t)AN[% — 771 = (¢/2)]

fOI’ a.s. convergence.

ProOF. Ifkis a probability density, it has characteristic exponent g = 2, i.e.,
lim,o(1 — &(t))/| t|? = ¢4, a finite nonzero constant (e.g., see Tapia and
Thompson, 1978). In the case that [ 2*k(z) dz = 0, s € Z,, then ¢ = 2(s + 1).
Then, using Parseval’s Theorem for the Fourler transform we have that |u |2 =
(27) 7' | & ||3 and hence

h_2(3+1)(" v "2 -1 = (27',)—1 f I o (t) |2t2(s+1)E(ht)—1 %)’;(5?1%)_1 dt

ol it

as h — 0, by virtue of the dominated convergence Theorem and Proposition 8.44
in Breiman (1968). Hence,

(4.1) loll* = 1 = O(h***).

Then, (i) is a consequence of (4.1) and Lemmas 3.2 and 3.3 For part (ii), note
that

lu—=vl?=< (m/N)*n™2 Tt Ii v (X U X)hR(X; — X;)/h) — 1}
+ [(n/X) =17 + v |? = 1;

the result then follows from (3.3), (4.1), part (i) and Lemma 3.3.
Next, note that «*(x, y) = h™'k((x — y)/h) is the kernel of the RKHS H and

|| k¥||> = k(0)h~, where «*(-) = k*(-, x). Then,
lu) —v@) | = (¥, u—v) =h™ |kleu-vl,

giving part (iii) as a consequence of (4.1), (4.2), part (i) and Lemma 3.3. The a:s.
convergence results follow similarly using Lemma 3.4 instead of Lemma 3.3. 0

(4.2)

COROLLARY 4.1. Under the assumption of Theorem 4.1, we have that f,
converges to f in probability and a.s., in the L, (R) and L,(R) norms with the rate
in part (i) and in the sup,.-norm with the rate of part (ii) of Theorem 4.1.
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PRrROOF. These results are consequences of Theorem 4.1 and the inequalities:
I = fli=2lu—vls
Ifo=fle=@llvle+ lu—-vie)llu—vl.,
Ifo=fle=@lvle+ lu—vle)llu-vl.,

respectively. 0

Note that the optimal rates of convergence for the results of Theorem 4.1 and
Corollary 4.1, can be deduced from Corollaries 3.1 and 3.2. In the following
proposition we summarize the maximum rates which our proofs allow, and in
order to simplify the notation we assume that f has all its moments finite, e.g.,
has compact support. .

PROPOSITION 4.1. Under the assumptions of Theorem 4.1 and 7 = +%, we
have:

(1) "fn _flll = Op(n_ﬂ)
(i) |fa—fllz2=0p(n™)

(iii) fo = flo= 0p(n™*2), ,
where p = (&) — (4s + 6)7%, with t = [(2s + 3) ']~ for convergence in probability,
and for a.s. convergence p = (%) — 3(40 + 32s) ' with t = [3/(10 + 8s)] " if s <2
and p = (%) — (20 + 8s) with t =[(5 + 2s) '] "if s = 3.

REMARK 4.1. Note that ||u — v|; = 2 and | f, — f|l, < 2 and hence by the
dominated convergence Theorem, part (ii) of Theorem 4.1 and part (i) of
Proposition 4.1, we obtain the convergence of u in IMSE and of f, in integrated
mean absolute deviation, i.e.,

Elu-vli=0(n"%), E|f.=fli=o0(n™),

where p = (%) — (4s + 6) 7}, with t = [(2s + 3)7"]".
In the case that the norm of H is defined through a measure p, with density

(43) m(ht) =1+ Z;=s+l (ht)2j, s = O» 1’ R ) = 1’

the corresponding MPLE’s u of v = f'/? are equivalent to those treated in Good
and Gaskins (1971) and DeMontricher et al. (1975). Note the penalty defined
through (4.3) leads to a kernel k symmetric around zero with

Et)=1—(m(t) — L)m(¢)*

and hence k has s even moments equal to zero. Since k& > 0, the consistency
results of this section also apply to these estimates and in fact the rate in part
(iii) of Theorem 4.1 can be improved slightly. Also, we show next that derivates
of the estimators f, as well as u corresponding to (4.3), converge in the L,(R)
norm. To simplify the statement of the theorem below, we take v = o as in
Proposition 4.1, although the proof is based on Theorem 4.1.
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THEOREM 4.2. For u, defined through (4.3) under the assumptions of Propo-
sition 4.1, we have that in probability and a.s.:

129 = 09, = Op(n~r=ie+™),
where p is as in Proposition 4.1 and j < s.
PrROOF. From (4.2) we have that
hz(s+1) " u(s+1) - v(s+1) "%
< Ju-v]|?
(4.4) = (n/N)*n7? Ty T v v HX)DATR(X; — X;)/h) —1)
+ [(/A) =1 + Zjeen B 093,
Also, as in Lemma 3.2, we have that
|(AMn)2=112= {n"2 3% 3 v XDv {(X)hTR(X: — X;)/h) — 1}
+ Yfmorr B¥ 093
Hence, as in Theorem 4.1, we have that
45) [(0/N) = 1P, lu=vl* = Opy(n™ 77 + Op(n™) + O(n~>e*D),
with the £ of Theorem 4.1. Then, from (4.4) and (4.5) we conclude that
(4.6) Tut*? = vy = Op(1).
Next, note that | g ||2< | gV, g¥*?| 2, g € H, so that
lu? = 0Py < Ju = | F7e07 ubr — plerv | ferv™
which, along with (4.5), and (4.6) and Lemmas 3.3 and 3.4, give the result. The

rate has been obtained as in Proposition 4.1. [0

COROLLARY 4.2 Under the assumptions of Theorem 4.2, we have that in
probability and a.s.: )

o = Il = Op(n=r0=+0™),

where p is an in Proposition 4.1.

PROOF. Note that
Ifn=Ffles oY+ lu—vla)lu =0 s+ v lellu—vle,
and the result follows from Theorems 4.1 and 4.2. 0
Similar results can be derived analogously for higher order derivatives.
The strong consistency in the Hellinger distance and in the L;-norm of the

subclass of MPLE’s based on kernels (1.5) can be shown (with reduced rates)
without the assumption that v € H. For completeness we sketch the ideas here;



1280 V. K. KLONIAS

for details see Klonias (1982a). Setting

v, (x) = f h*k(" - y)v(y) dy,

we have that

llv*llz=fll7(t)l215(ht) dt =< |kl

ie., v, € H, and hence, as in Lemma 5.1 in Klonias (1982b), with v, in place of
v, we have

4.7) f falog f < f log u?dF, < f flog f + f log u%d(F, — F),

(4.8) 0<1- (\n) = f flog f — f falog f + f log u2d(F, — F),

where f, is the kernel estimate based on the R.K. of H. Also, under the assumption
that E| X|” < + o, 7 > 4, we have that for d <27'—y (¢t + 277'), as n — o,

(4.9) f log ud(F, — F), f (fa — Plog f = O(n™) ass,
where the last convergence is a consequence of the a.s. convengence of

I (Fn = P/F )25

see Bickel and Rosenblatt (1973), page 1073.
Then, from (4.7), (4.8) and (4.9) we have that

Nn =1, f log udF, — f log fdF = O(n™9),

and hence (see Lemma 5.3 in Klonias, 1982b),

lu=vlls Ifa=Fflli=0@m""".

5. Examples and data based choice of the smoothing parameter. In
this section we present a number of numerical examples as well as a data based
approach for the choice of the smoothing parameter h, concentrating on the
univarate case.

In all figures the underlying density is represented by a dotted line. For the
identification of the other curves, see the legends of the figures. For the purpose
of uniformity, all MPLE’s, except the one in Figure 2C, were constructed with
kernel £ = ¢ — ¢”, where ¢ denotes the standard normal density (see the
Introduction for a rationale), although a number of more complicated kernels
performed slightly better in the estimation of bimodal curves. The kernel esti-
mates Figures 1B, 2B, presented for comparison, are based on k= ¢. We generated
two normal samples of size 100 each, using the IMSL random number generator
GGNML with DSEED’s 255866175 and 1949292845 respectively, and used the
first sample for the estimation of the normal, Figures 1, 3 and the combined
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sample for the bimodal density, Figures 2, 4. In all cases, except Figures 3C and
4C where h is data based, we selected the curves giving the best visual fit.

For the estimation of the smoothing parameter h, note that for the MPLE’s
we have a data based parameter A\ such that A\/n — 1 a.s., as n — « and for
k = 0, A < n. Also, the roughness of the MPLE, as measured by the Sobolev norm
Il -, is given by |ul||?> = (u, u) = n/A» — 1 as. as n — «. Based on these
considerations, we propose estimating h by the maximizer of A = A(h), subject
to A < n. In Figures 3C and 4C the estimates were constructed with the data
based h obtained by the approach described above. For sample sizes n = 100, the
CPU time on a VAX 11/780 needed for the construction of a data based MPLE
is of the order of one minute and for n = 200 of the order of 90 seconds. For a
given h the order of the CPU times becomes 10 and 20 seconds respectively.

6. A nonparametric regression estimator. For simplicity of notation
let us consider a bivariate random variable Z = (X, Y). We construct the
regression function estimator m(x) = [ yf.(x, y) dy/[ f.(x, y) dy, where f,(x, ¥)
= u*(x, y) and u is the solution to the optimization problem (2.1) over the RKHS
H(R? with kernel «,(x — x’, y — y’). An interesting feature of this estimator is
that if we take «, to be of the form (h,hs) ™ ki ((x — x’)/h1)k2((y — ¥’)/hs) the
regression estimator, after some algebraic manipulation, is given by:

(6.1) m(x) = {Xk1 X wi(Yi + Y)/2}/(Biey Xiar wyj),

where

w;

<

o (2= X x =X\, . Y- Y
= [u(X;, Y)u(X;, Y))] k1< I >k1< I )(k2 ko) <————h2 )

Note that the weights w;;being functions of the density estimate at the knots are
functions of the whole sample and not of Z;, Z; alone.

Furthermore note that if we let h, — 0, (6.1) reduces to the classical nonpara-
metric regression estimator based on a kernel estimate of the density; see Watson
(1964). To obtain this, note that for i # j we have

(6.2) lim(ko*ky)((Y; — Y;)/h2) =0 as hy — 0. ,
Also, note that dividing both the numerator and denominator in (6.1) by h,, we
can express the weights w;; in terms of g;(hy) = (\hg) ?u(X;, Yi),i=1, ---, n,

rather than u(X;, Y;). But as in (2.2), we have that

X — X; Y - Y, .
(6.3) Qj(h2) =ik qi(hZ)_lhl_lkl< . h )k2< . h ), Jj=1 ., n
1 2

Then, (6.2), (6.3) and the continuity of the functions involved, imply that
6:(0) = ¢;(0)hi ks (0)k; 0),
so that
(6.4) g(0) = (hT'R1(0)k(0))%, j=1,---, n.
Hence, from (6.2) and (6.4) letting h, — 0, we obtain as a limiting case of (6.1),
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FIG. 5. Regression Y = x + ¢, A: —— equation y = x. B: —-— kernel estimator with h = .65. C: ——
MPLE with h, = 1.5, h, = 50.

1 1 1 Iy

-4.0 L L L
24 0.0 2.4

FIG. 6. Regression Y = X + ¢, A: —— equation y = x. B: —-— kernel estimator with h = 1. C; —
MPLE with hy = h, = 1. :

the kernel estimate of the regression function given by

(6.5) mo(x) = {Zi1 ki((x — X)/m) Yi}/{Zia ki ((x — Xi)/h)}.

Note that the numerical evaluation of m (x) is straightforward after the density
estimator f, has been computed and for n = 100 the numerical effort is of the
order of 50 seconds CPU time on a VAX 11/780. As an example we applied (6.1)
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to the model Y = x + ¢, where the x’s were deterministic, uniformly spaced on
[—2, 2] and for errors we used the first normal data of Section 5. We used
ky =k, = ¢ — ¢”. We thought this example interesting because the uniform
density is not a member of W>' over R and certainly does not belong to the
RKHS H corresponding to k;. The estimates (6.1) and (6.5) appear in Figure 5.
The setting for Figure 6 is the same as above, but now X is random. For the x-
sample we used the second normal data of Section 5.
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