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FURTHER CONTRIBUTIONS TO THE “TWO-ARMED BANDIT”
PROBLEM

BY ROBERT KEENER!
University of Michigan

A version of the two-armed bandit with two states of nature and two
repeatable experiments is studied. With an infinite horizon and with or without
discounting, an optimal procedure is to perform one experiment whenever the
posterior probability of one of the states of nature exceeds a constant £*, and
perform the other experiment whenever the posterior is less than £* with
indifference when the posterior equals £*. £* is expressed in terms involving
expectations of ladder variables and can be calculated using Spitzer series.

1. Introduction and main result. The version of the “two-armed bandit”
problem that will be studied may be described as follows. At each state n, a
researcher chooses one of two experiments using past information. Performing
this experiment, he observes a random variable Z,. Conditional on the value of
an unknown parameter 6 € {6,, ,} and the choice of experiment, the distribution
of Z, is independent of the past. Let A;(B;) be the distribution of Z, given 6 = 6;
and A (B) is performed. The only relevant information from an experiment is the
log likelihood ratio and we will define X, = log(dA,/dA;)(Z,) when A is per-
formed, and X, = log(dB,/dB.)(Z,) when B is performed. To allow the possibility
that A; and A, are not mutually absolutely continuous, performing A, X, will be
+ on the A;-null set where the Radon-Nikodym derivative is undefined and —oo
when (dA,/dA;)(Z,) = 0. Similarly for B. A;(B;) will be the distribution on
R U {400, —0} for X,, when 0§ = 6; and A(B) is performed.

If 6 = 0,, A is the preferred experiment and a cost ¢; > 0 is incurred each time
B is used. Conversely if § = 6,, a cost ¢, is incurred whenever A is used. A
Bayesian approach to this problem will be pursued, and an optimal procedure is
one which minimizes risk; i.e. expected loss. There is no horizon, i.e., the total
number of experiments is infinite, and except for Corollary 1, no discounting.
Let £ denote the prior probability that § = 6, and £, the posterior probability
that § = 6, after performing n experiments. In symmetric problems where
A, =B,, A, = By, and ¢; = ¢, (equality of ¢; and ¢, can be relaxed absorbing these
costs in the prior), an optimal procedure is to select A at state n + 1 if £, > %
and B if £, < % with indifference for £, = %. This was established by Feldman
(1962) and his methods are useful in our asymmetric problem in characterizing
the form of the optimal solution. Let T’} be the first strict ascending ladder epoch
for a (extended) random walk with steps distributed as A, (see Chapter 12 of
Feller, 1971, for definitions of these terms), and let T'; be the first weak
descending ladder point for a random walk with step distribution A,. Define T3
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similarly replacing A’s with B’s. Let
Wi = exp — 3o (1/n){AF" ([—x, 0)) + A" ([0, =])}

where * denotes convolution. Expressed in terms of the ladder variables, W, =
(ETZET7)". The mean of A, is a Kullback-Leibler information number and is
positive (by Jensen’s inequality) except in the degenerate case where A; = A,
(i.e. experiment A is completely uninformative). Excluding this case, from the
theory of random walks, ET} < o (see Lemma 2, page 610 of Feller, 1971).
Similarly ET; < o provided A; # A,. Define W5 as W, with B’s replacing A’s.

THEOREM 1. Any procedure which performs A whenever
WA/(]- - Sn)cz > WB/SnC}

and B whenever the reverse inequality holds is optimal (has minimal risk).

Bandit problems have received considerable attention in the statistical litera-
ture, in part because they address the fundamental question: When is a more
costly but more informative experiment preferable to a less costly but less
informative experiment? Since (1 — £,)c; is the “immediate” cost for performing
A, this theorem asserts that W, is the correct measure of the information content
of A in this problem. To some extent this theorem complements results of Gittins’
(1979) which show that in problems with discounting and independent arms, the
correct measure of the value of an experiment is a quantity called its dynamic
allocation index. For k independent arms, # should be a k-dimensional vector,
with independent components, and the distribution of the observation using the
Jjth arm would depend on 6 only through its jth component. With two states of
nature this possibility is precluded except in trivial cases.

When one of the experiments, B say, completely determines 0, i.e., B; and B,
are singular, Theorem 1 describes the optimal solution for a power one test with
two states of nature. This solution was first discovered by Lorden (1977). The
numbers W, also play an important role in his subsequent research (Lorden,
1984) leading to stopping rules asymptotically optimal to o(c) as ¢ — 0 (c is the
sampling cost) in a large class of composite testing problems with an indifference
zone. Our theorem may be useful in an asymptotic analysis of more general
bandit problems with an indifference zone.

Other articles about the two-armed bandit have appeared by Berry (1972),
Fabius and van Zwet (1970) and Chernoff (1972). The books by Whittle (1972)
give a good general discussion of dynamic programming. The chapter most
relevant to this research, on negative programming is from Strauch (1966).

2. Proofs. Let £4 and £5 be distributed as the posterior probability that
6 = 6; when A or B respectively are performed. For Borel f: [0, 1] — [0, =] define
the operator T by

Tf(¢) = min{co(1 — £) + E¢f(£4), c1é + Ecf(€B)}

where E; denotes expectation when P(6 = 6,) = £. From standard theorems in
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negative programming (Strauch, 1966) T™0 1 R pointwise as n — % where R is
the Bayes risk, T™ is T composed with itself n times, and 0 denotes the zero
function. Viewing R as the infimum of linear functions, it is concave and hence
continuous on [0, 1] (continuity at 0 and 1 holds because there exist stationary
policies with risk functions that approach 0 as £ — 0 or 1). In the proof of
Theorem 2.1 of Feldman (1962) it is shown that the function

A(¢) = E;T™0(¢p) + £c1 — E{T™0(£4) — (1 — £)cy

is increasing in £ for all n. Letting n — oo, this implies using dominated
convergence that

E:R(¢(p) + £c1 — E;R(£4) — (1 — &)ce

is nondecreasing. This function is continuous (dominated convergence) and varies
from —c; at 0 to ¢; at 1 and has a zero at some point £*. Consequently the
procedure 6* which selects B when £, < £* and A otherwise is optimal. To
complete the proof we will show that £* is given uniquely by

1) £¥/(1 — &%) = caWag/(c1 Wa).

Let N4 and Np be the number of times that A and B are performed using 6 *. Let
a; be the distribution for the first (a, strict, a; weak) descending ladder height for
a random walk with step distribution A;, and b; the distribution for the first
(b, strict, b, weak) ascending ladder height for a random walk with step distri-
bution B;. Define the renewal measures

U? = 2:=0 af” and U? = Z:=0 b,

where the initial term in these sums is a point mass at the origin. By Bayes
theorem, A; is the distribution for the change in the log odds ratio when A is
performed and 6 = 6;. Using the derivation leading to equation (4.19) of Keener
(1980) (being careful with the possibly discrete or extended character of the A;’s
and B;’s),
E TZ B * A
f2(§) = E;(Nal0 = 0;) = —— U3 ((s* — s — x, ) dU% (x)
. ETB R
and
ET%
ET
where s = log(é‘/(l — £)) and s* = log(£*/(1 — £*)). These functions f, and f, are
discontinuous at £ = £*. When the A;’s and B;’s are distributions for continuous
(possibly extended) random variables,

fi(§) = E¢(Np|0 = 6,) = fm Ut ((—o, s* — s — x)) dUT(x)

ET,
ET5g

lim, o fo(£* + &) — fo(E* — &) =

-

and
ET}
limeyo fi(£* + ) = AE* = &) = T
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This proves that £* satisfies (1) in this case because R(¢) = £fi(£)ey +
(1 — &) fo(€)cy is continuous at £*.

In the general case where some of A;’s and B;’s may have atoms in R, it is
still true that f; and f, are discontinuous at £*, and the discontinuities uniquely
determine £* by continuity of R. Lacking a direct way of evaluating these
discontinuities, we will proceed indirectly. Define A, = AIN(, ¢/2),
B, = B¥N(e, ¢/2), Ay = A¥N(—¢, ¢/2) and B, = BfN(—¢, ¢/2). These are the
distributions for the log likelihood ratio where, after observing the outcome
associated with A or B, we observe a normal variable with variance ¢/2 and mean
+e accordmg to whether 0 = 6, or 6,. Define £e , T, A and R, as ¥, T,Aand R
w1th A;s and B;’s replacmg A;’s and B;’s. By Jensen’s 1nequahty, if h is concave,
T h<Thand T. h < T, hfore >e, (for this assertion view T.,as Tand T, as
T.-., in the first assertlon) Since R0 = lim,_.T™0, R, < R. If h is con-
tinuous on [0, 1] (and consequently uniformly contmuous) then T.h — Th as
¢ | 0 uniformly on [0, 1]. By induction, 70 1 T™0 as ¢ | 0 and hence R. —> R
as ¢ | 0 uniformly. This implies that A, — A and since A is strictly (since £* is
unique) increasing at £*, £¥ — £* as ¢ — 0. The theorem now follows because

At ([, 0)) - Af"([—, 0)) + %AT"({0}) as &—0

and similar statements about A,, B, and B, show that £}/(1 — £*) —
¢cs Wg/(C, W,) (the identity A¥"({0}) = A$"({0}) is used to eliminate the 1%).
Suppose now there is a discount factor 0 < 8 < 1, i.e. the goal is minimizing

E Yo B e I{0 = 601, e, = B} + cI{0 = 05, e, = A}]
where e, is the nth experiment performed. This expectation is the same as
E 2 =1 [011{0 = 01, e, = B} + 021{0 = 02, en, = A}]

where @ is a geometric random variable independent of § and all the observations.
This problem is then the same as an undiscounted problem where at each stage
there is a chance 1 — 3 of stopping the experiment. Since stopping is equivalent
to learning the state of nature (i.e. no later costs are incurred) we can solve this
problem by replacing A; with AT P where P({0}) = 8 =1 — P({+}), and similar
substitutions for A,, B; and B,. This proves the following corollary.

COROLLARY 1. In the discounted case, any procedure which performs A

whenever
Va/(1 = £n)ee > Vp/Ena

and B whenever the reverse inequality holds is optimal. V, is given by
Vi = exp —Xr-1 BHAT"([—, 0)) + A5™([0, ])}/n
and Vg is the same with B; replacing A;.
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