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OPTIMAL GOODNESS-OF-FIT TESTS FOR LOCATION/SCALE
FAMILIES OF DISTRIBUTIONS BASED ON THE SUM OF
SQUARES OF L-STATISTICS!

By VINCENT N. LARIcCIA AND DAviD M. MASON

University of Delaware

A class of goodness-of-fit tests based on sums of squares of L-statistics is
proposed for testing a composite parametric location and/or scale null hy-
pothesis versus a general parametric alternative. It is shown that such tests
can be constructed optimally to have the same asymptotic power against
sequences of local alternatives as the generalized likelihood ratio statistics
[G.L.R.S.] and, in fact, under suitable regularity conditions to be asymptoti-
cally equivalent to the G.L.R.S. One advantage of the proposed test statistic
over the G.L.R.S. is that only an estimate of the scale parameter is needed in
the computation of the statistic. No other parameter estimates are required.
Also, an example of the practical implementation of the proposed hypothesis
testing procedure is given.

1. Introduction. Let X;, ..., X, be independent random variables with
common distribution function F((x — u)/s, 6), depending on location and scale
parameters —»o < u < o and 0 < ¢ < o and a vector of additional parameters
6 = (6, ---, ;) €O, where © is an open subset of R* which contains the zero
vector 0. Write @ = (—oo, ®) X (0, ) X ©.

Suppose we are interested in testing the composite null hypothesis

Ho: (g, 0, ) € (=, @) X (0, ®) X {0} = Q
versus the composite alternative hypothesis
He: (g, 0, 6) € (=o0, ) X (0, ®) X {0 — {0}} = Q..
Assume that F((x — p)/s, 6) has a density function ¢~ 'f((x — u)/s, §) and set
Lu(p, 0, 0) = o™ TI1 f(Xi = w)/o, 6).
Let

Lo,» = sup{La(g, o, 6): (u, o, §) € Q}

and
Lo = sup{Ly(p, o, ): (g, o, §) € Q}.

The classical test procedure of H, versus H, is based on the generalized likelihood
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316 LARICCIA AND MASON

ratio statistic [G.L.R.S.]
A = LO,n/La,n,

where H, is rejected at significance level « if —2 In A, is greater than its upper
a-critical value. It is well known that under suitable regularity conditions, when

Hj is true,
—21In An =4 xi,

where x 2 denotes a Chi-squared random variable with k degrees of freedom. (For
this plus certain optimality properties and distribution results under local alter-
natives of the G.L.R.S., refer to Wald, 1943; Davidson and Lever, 1970; Haya-
kawa, 1975; and Dzhaparidze, 1977.) Two competitors to the G.L.R.S. are the
Wald test and the Rao scores test. (Refer to Rao, 1973, pages 418-420.) Under
suitable regularity conditions, these two statistics have the same asymptotic null
distribution and asymptotic power against “local alternatives” as the G.L.R.S.
(see Silvey, 1959).

For each n = 1 let X;, < --. < X, , denote the order statistics based on
Xy, -+, X,. Let w = (wy, ---, wy) denote a vector of k real valued measurable
functions defined on (0, 1). We will consider test procedures of H, versus H,
based on sums of squares of L-statistics of the form

Tn(lj)) = ;—1 C?z(wt)/o'n,
where for each 1 =i < k, C,(w;) is the L-statistic
Co(wy) = n72 32y wi(j/(n + 1)) Xn

and 4, is a consistent estimator of ¢. Here, H, is rejected at significance level o
if T, () is greater than its upper a-critical value. (We consider this version of
the statistic here for the sake of mathematical convenience. In actual practice it
must be adjusted slightly for finite samples. See Remark 7 below and the example
in Section 4.)

We will show that under appropriate regularity conditions & and 4, can be
chosen optimally so that T,(w) has both the same asymptotic null distribution
and the same asymptotic power against sequences of “local alternatives” as
—2 In \,. We also discuss when our statistic is asymptotically equivalent to the
G.L.R.S. Refer to Remark 5 below.

Typlcally, the G.L.R.S. is calculated by the formula,

>\ = Ln(ﬂO, 0o, O)/Ln(l"‘a’ Oa, a)a

where /i and g, are the maximum likelihood estimators [M.L.E.s] of u and o
computed assuming that Hy is true and f,, 6, and 4, are the M.L.E.s of u, ¢, and
¢ determined subJect to the constraint that (, o, 9) € . In the computation of
the Wald test only j,, d,, and 5 are needed, whereas the Rao scores test only
requires /i, and G,. One advantage of our proposed test statistic T,(i0) over these
three statistics is that the only parameter estimate required is a suitably consist-
ent estimate of the unknown scale parameter ¢.

For the special case of testing for normality against a particular class of
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alternatives, La Brecque (1977) has proposed a test statistic which turns out to
be a special case of our class of statistics. While no asymptotic distribution
theory or optimality results are presented in his paper, his test is shown to have
good finite sample properties. Another example of the practical implementation
of our hypothesis testing procedure is given in Section 4.

2. Preliminaries and motivation. First, we must introduce some nota-
tion and assumptions in order to properly motivate our optimal choice of T,(w).

For each § € © and u € (0, 1) le} Qu, ) = inf{x: F(x, 6) = u} denote the
inverse or quantile function of F(x, ). Notice that for arbitrary u, o, and 6 the
quantile function of F((x — u)/o, 0) is given by

Q, 1, 0, 6) = u + oQ(-, 0).
Let N C 0 denote an open neighborhood of the zero vector 0.
(A) Assume that for each u € (0, 1)
Di(u, 6) = (8/86)Q(u, 6) for i=1, ..., k;
and
D;;(u, 6) = (3%/00,00)Q(u, ) for 1=<i, j<Ek

exist and are continuous for d € N. .

Write Qo(*) = Q(*, 0), Di(*) = Di(*,0) fori=1, ---, k, D_; =1 and Do = Qo.
Let F, denote the distribution function corresponding to .

For each n = 1 let Uy, ---, U, be independent uniform (0, 1) random varia-
bles and let U,, < --- < U,, denote their order statistics. It is well known
that if X, ---, X, are independent random variables with common quantile
function Q(¢, u, g, g) then Xin, -+, X,n» have the same joint distribution as
QUi n, 1, o, 6), -+, QUnn, u, o, 6). To simplify the presentation that follows, we
will from now on use the latter distributionally equivalent version of the order
statistics X;, fori =1, ---, n.

For any @ and choice of —0o < y <o and 0 < ¢ <  let

f/n’#’,(lI)) = (Ln,y,o'(wl)’ Sty Ln,#,d(wk))
denote the vector of linear combinations of order statistics, where 1 <i <k
Lno(w) =072 Ty wi(G/(n+ 1)) (1 + 0Qo(Ujr)).

For any two measurable functions h, and h; defined on (0, 1), let

(hy, hg) = J; hi(u)ho(u) du,
and

({1, ha)) = fo j; (u A v — u)hi(W)h2(v) dQo(v) dQo(v).

We will use the convention that whenever we say that (hi, h.), respectively
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({(hi, hy)), is finite, we will also mean that (|h;|, |hs|), respectively
({lh1l, [ h2]}), is finite.

Let # denote the class of & such that
I (Wi, 1) = (w;, Q) =0 for i=1, ..., k;
(I1) (wi, wy)) = by,
where 4, ; equals one if i = j and zero otherwise;
(III) foreach —®» < u<owand 0 < ¢ <o

Ly o) —4 N(O, %1,
where I, denotes the & X k identity matrix;
(IV) foreachl < a,B8<k
n™t Y% w(j/(n + 1))Dg(U;,) —p (w,, Dg) (finite);
and
(V) foreachl<i<k ,
nt T lwi(j/(n + 1)) | M(Uj,) = 0,(n*?),
where for each u € (0, 1)
M(u) = maxi<;j=ksupien | D;j(u, 0) |.

REMARK 1. Conditions on @& and @, which imply (III) can be found in
Shorack (1972), Stigler (1974) and Mason (1981) and the references therein;
while conditions on w and the D;’s which imply (IV) are given in Wellner (1977),

van Zwet (1980) and Mason (1982).
For each n = 1 let o, denote a measurable function from R" to R. We will

require the following definitions:

DEFINITION 1. Let —» < p < ®, 0 < ¢ < o, and § € R* — {0} be fixed.
Suppose for each n = 1, it is assumed that X{®, - .., X{® are independent random
variables with common quantile function

. Q(.9 M, O, .61/\/59 MY 6/@/\/;)
Any such sequence is called a sequence of local alternatives.
DEFINITION 2. ¢, will be called a consistent estimator of scale under local

alternatives if for any choice of —» < u < », 0 < ¢ < ® and constants 8, - - -, B,
6, converges in probability to o, where for each n = 1, ¢, denotes the function o,

evaluated at

Q(l]u M, O, .61/‘/";7 M) .Bk/\/ﬁ) for i= ]-’ s, N

REMARK 2. Under assumption (A) such estimators of scale typically exist.
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The reader can easily construct examples of M-estimators, L-estimators, and
maximum likelihood estimators that are consistent estimators under local alter-
natives.

Choose any fixed constants 8, -+, Bp, 0 < pu<o,0<g<coandw € %
Set
Apo(@) = (Apuowr), -+, Anyo(w),
and
By yo(id) = (Bppo(wi), -+, Boyo(ws)),

where foreach1<i<k

S | B B
An,n,o(wi) =n /2 Z]=1 wt(n + 1>lﬂ + OFQ([]J,ny‘ \/_r; ’ ) \/ﬁ)} ’

and
B,,.(w) =n"2 ¥, wi<n—i—1>{ﬂ + 0Qo(U;,n) + on™2 $h_i 8,D,(Ujn)}.

Also, let m denote the 1 X k vector with ith component m; equal to
S=1 Bi(wi, D).

The following lemma will be essential to our discussion later on.

.

LEMMA 1. Choose any fixed constants 81, +++, By, =0 < u < o, and 0 < ¢
< o, Whenever assumption (A) holds with w € %, then

A, ,..(h) —4 N(om, ¢°I,).

PROOF. It is easy to see that conditions (III) and (IV) imply that
B,,.,(0) =4 N(om, o*I).
Therefore it is enough to show that foreach1 =i <k
| An,p,o(W)) = By, o(w) | =5 0.

Assumption (A), in combination with a two-term Taylor expansion and an
elementary bound, implies that the above expression is less than or equal to

on 2 37 n7H wi(j/(n + 1)) | M(U; ) (Zk=1 18, 1)%,
which by (V) converges in probability to zero. [
Let o, be a consistent estimator of scale under local alternatives. Choose any

w € ¥ Observe that under Hy, X;, = u + 06Qo(U,,) fori=1, ..., n and some
—o < u <o and 0 < ¢ < ., Hence, by condition (IIT) and the fact that

Cn(wi) = L,,,,‘,.,(w,-) for 1= 1, ..., k’
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we have that under H,
T, (W) —q x3.

Now consider any sequence of local alternatives determined by fixed — < y
<, 0< o< and§ € R — {0}. Lemma 1 implies that

T.(0) —a Y1 (Z; + m)?

where Z, - - -, Z;, are independent standard normal random variables; or in other
words, the asymptotic distribution of T,(&) under any sequence of local alter-
natives as given by Definition 1 is that of a noncentral Chi-squared random
variable with k degrees of freedom and noncentrality parameter A(w, 3) depend-
ent on 3 and o given by

AGD, B) = Tk (Zha B(wi, Dy))
Set the & X k matrix R(w) equal to
" (wl’ D]) " 5,j=1,-- k-
Observe that A(D, 8) can be written equivalently as
AGw, B) = BR'(W)RW)F’,
where ’ denotes transpose.

Notice that the asymptotic power of T,() at any significance level « against
any sequence of local alternatives is a strictly increasing function‘ of A(w, ﬂ).
Also T,(w) will have asymptotic power greater than level « for all § € R* — {0}
if and only if A(i0, 8) > 0 for all 8 € R* — {0}, which in turn happens if and only
if
VD) R(w) is nonsingular.

Let % denote the subclass of w € %, which in addition to (I) through (V),

also satisfy (VI), and let & = {T.(w): w € Z}. In the next section, we will
describe how to choose a fixed vector of weight functions W, € ¥ such that

A(ibg, B) = A@, B)

for every i) € % and choice of 3. T,(il) will then have optimal asymptotic power
against local alternatives among all statistics in & Moreover, T,(,) will be
shown to have the same asymptotic power against local alternatives as the
G.L.R.S.

3. The optimal choice of wv. In addition to (A), we require the following
assumptions:

(B) Assume that F, has a density function fo, which is strictly positive on the
support of Fj.
Foreachi=-1,0,1, .-, &, let

&i(*) = Di(*)fo(Qo(*)).
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Assume that for eachi=-1,0,1, ..., k

(C) g; is absolutely continuous inside (0, 1) with derivative g/, which is also
absolutely continuous inside (0, 1) with derivative g/ (c.f. page 328 of Hajek,
1968);

(D) g! is square integrable on (0, 1) such that lim,jug/(u) = 0 and
limyy:(1 — u) g/ (u) = 0; and

(E) &(0+) =g(1-) =0.
Also, assume that for each -1 <, j <k
(F) limung'(u)gi(u) = limuTlgj,(u)gi(u) = 0.
Let _7 denote the (k + 2) X (k + 2) “information matrix”
I8!, &) Nijmmryoe
(G) Assume that _7 is nonsingular.

Finally, we assume that for each —1 <i,j <k

(H) (1 87 ()] fo(@o()), | 87 (*)] fo(Q(+)))) < co.

OBSERVATION 1. Assumptions (B) through (F) and (H) allow us to apply
Fubini’s theorem to show that foreach —1 < i, j <k

(&7 ()fo(Qo(*)), &7 (*)fo(Qo(*)))) = —(&:, &),

which, by applying integration by parts equals g/, g/) (finite).
We will now construct the optimal . Let A, denote the (k + 2) X k matrix

0..-0
0..-0
I

and let B, denote the inverse matrix of A;_#'A,. Since B, is symmetric and
positive definite, we can write B = CjC; for an appropriate nonsingular & X k
matrix Ci. Let © denote the (B + 2) X 1 vector with ith component equal to

—8i2(*)fo(Qo(*)). Set

Wi = CLAL 70, and W = (wo,1, -+, Wou).

Ak=

’

Notice that f)y Observation 1,
(1) I (v, Di) Nijm1,e e = Z

Hence the k X (k + 2) matrix
00

I (Wo,is Dj) Nima,--pijm1, -k = || = = Ca
0 0
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Thus, since D_; = 1 and Dy = @

(2) (wO,i’ 1) = (wO,i’ QO) = 0 fOl‘ i= 17 Tty k'
Observe that R(i) = Cj, hence we have for any § € R*
(3) Ao, B) = Tk (Tho Bi(wo,i, Dj))? = BCLCwB" = ABiB’.

Also, it is easily checked using Observation 1 that ({wo,, wo;)) = 6;;. Therefore
Wy satisfies conditions (I), (II) and (VI).
The following theorem shows that, in fact, i, is the optimal choice of 0 € %

whenever W, € %

THEOREM. Whenever conditions (A) through (H) hold and 1w, € ¥ then for
any B € RF
Ao, B) = BBrB’ = max{A(W, B): w € £}.

ProOF. By (3), it is enough to verify that

(4) BB:B’ = max{A@W, B): w € &)

Let £* denote the class of all @ such that conditions (I) and (VI) hold, each
({w;, w;)) for 1 <1i,j < kis finite, and the k£ X k matrix

V() = || ({wi, wi)) lij=1,---.k

is nonsingular. (Recall the definition of ((*, *)) given above.) .
Since & C £*, to show (4) it is sufficient to establish that for any 8 € R*

(5) fB.B’ = max{BR’ @)V '@)RW)B’: w € L*.
Let £¢ denote the subclass of £* such that
(6) R(lI)) = Ik.

An elementary argument shows that the right-hand side of expression (5) equals
max{fVI@)3": v € LE).

Notice that for any § € R* and 0 € L}

(7) supsert(B%')’/(EV(@)E') = BV~ (@)B'.

(See page 60 of Rao, 1973.) It is convenient at this point to introduce the

following ¢ontinuous time regression problem:
For any —o0 < y < o, 0 < ¢ < © and 8 € R* consider the Gaussian process

defined on (0, 1) by
Y(s, 1, 0, 8) = u + 0Qo(*) + iy B:Di(*) + B(*)/fo(Qu(*)),

where B is a Brownian bridge defined on (0, 1). Unless there is a possibility of
confusion, we will write
Y(e) = Y(-, p, 0, B).
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For any & € R*, (u, o, §) as above, and b € Z¢ set
b(:i’ lb’ Y) = Ef;l xi<Wi, Y)

We will use the convention that the random variables (w;, Y') are to be interpreted
as the limit in expected mean square as ¢ | 0 of the normal random variables

1—¢
f wi(w)Y(u, u, o, 8) du.

Note that the conditions of C§ imply that foreach 1 <i <k

1-¢
E(w;, Y) = lim,}o E(f w;(u)Y(u) du) = 6.

Hence b(%, w, Y) is an unbiased estimator of
6%, B) = Tk x:6:.

Keeping in mind our above convention, a straightforward computation shows
that

Var(b(%, w, Y)) = lim,}o Var(Z?.l X f w;(s)B(s) on(s)> = xV(w)x'.

Set
Wi = AL 7.
Observe that by (1)
()] | (Wois Dj) lli=1,.. . ksjmm1,. - & = Ak
It is easy to see that W, € ¥¥, with
V(i) = A} 7 1A,
We will now establish that for any £ € R* and w € €§
iV(o)E = EV@W)3,

that is b(%, 10, Y) is the best linear unbiased estimator of ¢(%, §), which by (7),
will imply (4).
A standard computation shows that

iV@)i' = Eb(%, b, Y) — b(%, wo, Y))?
+ 2 cov((b(Z, w, Y) — b(Z, wo, Y)), b(Z, o, Y)) + £V(io)%’.

To complete the proof, we need only show that the above covariance term
equals zero, or in other words that

9) ‘ P Zf=1 xi{(w; — Wo,is Wo,j) )% = 0.
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Since each i,; can be written as

Wo,j = 25212 Q@ sUs
for appropriate a;,’s, verifying (9) is equivalent to showing that foreach 1 =i =<
kandl=j<k+2

(10) ((w, - li)o,i, Uj)) =0.
The left side of (10) equals

1 1
- J; (wi(w) — tbo,i(u))[ J; (u A v— uv)gia(v) dv] dQo(w),

which by integration of the inner integral equals
(w; = Wo,i, Dj—s) = (w;, Dj—g) — (Wo,i, Dj-2).
This last expression equals zero by condition (I), (6) and (8).0

REMARK 3. The optimal choice of the & was motivated by the continuous
time regression ideas of Parzen (1961a, b). In fact, in the second half of the proof
of our theorem, we are essentially proving a special case of Theorem 7A of Parzen
(1961b). However, to use his theorem directly would have entailed introducing
more concepts and notation, which would have taken more space than the present
proof requires. Another method of motivating i, is outlined in Remark 5.

REMARK 4. Forany6€0@and1 =<i<kset
gi(*) = Di(+, H)f@Q(-, 6), 6),
and let
8.i(*) = Q(+, H)fQ(-, 6), ),
and
g-1(*) = fQ(+, ), 0).

The information matrix of ¢~ f((x — )/, 6) is given by

= | 62740) o7 A(0)
T 0,0 =\ gl @) Aalb) ||
where
2110) = | (&li, 8/6) llij=1,0
Fio0) = || (&li, 813) Ni=—r,05i=1,- -k
and

Fo00) = 11 (8Ls, 816) Nijmr,-.
7Yy, o, §) may be written as
02_71'1(0:) 0_71’2@)
0_]1,2’(0) ]2,2(0) ’
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where in particular

(11) F2G) = (Fpa(0) — F12(0) 7 73(0) 712(0)) 7
Note that
7(0,1,0)= 7
and
(12) 770,1,0) = 77,

where _7 is defined as in (G).

Modulo regularity conditions, using the results of Wald (1943) pages 481 to
482, routine arguments show that under any sequence of local alternatives
depending on fixed —o < u < 0, 0 < ¢ < © and 8 € R* that —2 In )\, converges
in distribution to a noncentral Chi-squared random variable with % degrees of
freedom and noncentrality parameter

A(B) = BALT M (u, 0, 0)A)T'".
However, by (11) and (12)
AL 7 p, 0, 0)A, = Af 7 A,.

Hence
A(B) = AGdo, B).

This says that subject to regularity conditions that our proposed test procedure
and the G.L.R.S. have the same asymptotic distribution under H, and under
sequences of local alternatives, and hence have the same asymptotic power against
local alternatives.

In the following remark, we discuss when the G.L.R.S. and T,(i,) are
asymptotically equivalent in a stronger sense.

REMARK 5. Under certain regularity conditions, our test statistic is asymp-
totically equivalent to the G.L.R.S. in the sense described in Dzhaparidze (1977).
See especially page 110 of this paper. We shall briefly outline the details of

showing this.
Set .

Pk, 0, %) = (8/8p) log(a™((x = w)/a, 6)) | e,
pou, 0, x) = (9/d0) log(a7'f((x — w)/a, 0)) | (40,6,
andfori=3, -+, k + 2 set
pilk, 0, ) = (8/30i-5) log(a™f((x = /3, 0)) | -
Let P,( u, o) denote the 1 X (k + 2) vector with ith component equal to
Pin(p, 0) = n™2 31y pi(p, 0, X)), A
and P® (u, o) denote the 1 X 2 vector with ith component equal to P;,(, o) for
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1=1, 2. Also let Vn denote the 1 X (k + 2) vector with ith component equal to
‘/i,n = n_1/2 2}’=1 Ui(j/(n + 1))Xj,n,

where the v; functions are as above; and V¥ denotes the 1 X 2 vector with ith
component equal to V;, fori =1, 2.
A little algebra shows that T), (i) equals

U;Q{Vn.f_l(o’ 1, 0’) V': _ Vstl)jl_ll(d) V}zl)’}-

Now assume that X;, - -+, X, are i.i.d. Fo((x — u)/o). Typically, the conditions
on the v; functions are such that for each 1 < i < k + 2 we can write

Vi =-n"12 372 f v,-<F0<x = “))J I(X; < %) — F0<x—_—“>1- dx + 0,(1),
—00 g l o I

(refer for instance to Govindarajulu and Mason (1983)) which after integration
by parts equals ¢%P;,(u, 0) when i = 1, 2 and ¢P;,(u, 0) when 3 <= i< k + 2.
The above representation for V;, in combination with the assumption that o, is
a consistent estimator of ¢ yields after some manipulation that T, (i0,) equals

B.(u, 0).7 X, o, 0)P; (4, 0) — 6 2PV (n, 6) 7 O) PP’ (n, 6) + 0,(1).

If in addition we assume that the conditions of Theorem 1 of Dzhaparidze (1977)
hold (also see the discussion in Section 3 of his paper), when applied to our
particular hypothesis testing situation, we can conclude that the G.L.R.S. has
the same in probability representation as given above for T, (i0) when H, is true.
Refer in particular to his equation (2.17). Hence, we can infer that T', (i) and
the G.L.R.S. are not only asymptotically equivalent under H,, but by a contiguity
argument that they are also asymptotically equivalent under sequences of local
alternatives, and thus share the same asymptotically optimal properties. See the
comment immediately following the proof of Dzhaparidze’s Theorem 1. Finally,
since it is shown in Dzhaparidze (1977) that subject to regularity conditions the
generalized C,-test for this problem has the above in probability representation,
we can conclude more generally that T, (i) is also asymptotically equivalent to
the C,-test under suitable conditions.

It is apparent that we could have used the above procedure to derive our
statistic. We chose the continuous time regression approach to motivate our
statistic, since it can be easily adapted to construct optimal sums of squares of
L-statistics tests based on type II and randomly censored data, or based on a
finite number of optimally spaced quantiles. (These tests will be developed
elsewhere.) It is much less evident how to construct such statistics using the
second approach. Also, we believe that our approach gives a clearer picture of
how the class of optimal sums of squares of L-statistics tests arise. Finally, we
note that the two approaches lead to two sets of regularity conditions. It is not
clear how the two sets relate to each other.

REMARK 6. Our procedure can be modified to find optimal sums of squares
of L-statistics tests for location only, Q(¢, u, ) = u + Q(¢, 8), or scale only,
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Q(+, o, 6) = ¢Q(+, §) models. In the location only model repeat the above proofs
without an estimate for scale, whereas in the scale only model repeat the proofs
with the condition (w;, 1) = 0 suppressed. With obvious changes of notation, the
analogues of the above theorem and remarks remain valid for these models.

REMARK 7. Since foreachl<i<kandn=1
n~t ¥ woi(j/(n + 1))

need not be equal to zero, the statistic T,(io) will not always be location and
scale invariant. Also, in the special cases that we have looked at so far, for
moderate size n the asymptotic null distribution of T',(i0y) has not been a useful
approximation to its finite sample distribution. However, we have found that
with minor finite sample adjustments, a modified version of T',(iip) can often be
easily constructed, which is location and scale invariant and converges rapidly to
its asymptotic null distribution. An example of how this is done for a special case
is given in the next section.

4. An example. Consider the following hypothesis testing situation:
H,: (Exponential) Q(°, o) = aQo(*), where Q1) = —In(1 — u),
with 0 < ¢ < © unknown versus

H,: (Weibull) Q(+, ¢, 8) = o(Qo(*))*? with both 0 < ¢ < and -1 < f <
unknown.

Notice that this is a special case of the scale only situation described in Remark
6. Standard calculations show that the optimal weight function for the squared
L-statistic for testing the above H, versus H, is given by

wo(u) = —(¥6/7)(C + In Qu(w) — 1/Qu(w)),

where C = .577216 is the Euler constant. Since it is easily established that the
sample mean X is a consistent estimator of scale under local alternatives, an
optimal squared L-statistic for this hypothesis testing situation is given by

To(wo) = (7% Ty wo(i/(n + 1))X;.)*/ X2

Practical Implementation of the T,(w,) statistic. The results of a Monte Carlo
study indicated that for sample sizes n < 100, the distribution of T},(wo) is poorly
approximated by that of a x2 random variable. However, we found that with the
following small sample corrections, the modified statistic A, given below con-
verges quite rapidly in distribution to a x2 random variable:

Let Ey,, - - -, E, , denote the order statistics based on n independent exponen-
tial random variables with mean one. Set

bn = n_l ;l=l U)()(l/(n + 1))E(Ei,n)’

and
72 = Var(n™2 3%, (wo(i/(n + 1)) — bu)E; ).
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Let
Ln = n_1/2 2:l=1 (wO(l/(n + 1)) - bn)Xi,n-

It is easy to verify that under Ho, EL, = 0 and Var L, = ¢272. Consider the
modified statistic

A, = L?l/(T?XZ)‘

A, and T,(wo) can be shown to have the same asymptotic distribution both under
H, and under local alternatives. For the sake of brevity, we do not provide a
proof of this fact here. Also note that A, is scale invariant.

Table 1 gives simulated critical values for the statistic A, for sample sizes
n = 25, 50 and 100 with corresponding correction constants b, and 7Z. Each
critical value is based on 5000 replications. The numbers in parentheses indicate
the empirical a-level if x? critical values are used instead of the finite sample
critical values. Note that the asymptotic critical values provide a useful approx-
imation to the small sample critical values even for n = 25. We also mention in
passing that some recent work by Helmers and Huskova (1983) on Berry-Esseen
theorems for L-statistics with unbounded weight functions gives some theoretical
justification for the apparent rapid rate at which our statistic converges in
distribution under H, to a x? random variable.

For testing an exponential composite null hypothesis versus a general alter-
native, two among many omnibus goodness-of-fit tests are the statistics

E, = YL [Xin/X — Qu(i/(n + 1))F/Qo(i/(n + 1))
proposed by de Wet and Venter (1973), and
M, =3 [Xin/X — Qi/(n + D)P(n + 1 = i)/(n + 1),

recommended by Csorgé and Révész (1981). Table 2 displays the results of a
small sample simulation study comparing the power of the A, statistic against
Weibull alternatives to that of the statistics A\,, E, and M, at sample size
n = 100 and significance level o = .10. The critical values of each of these test
statistics for sample size n = 100 were determined by a Monte Carlo simulation
consisting of 5000 replications, and their power was estimated on the basis of
1000 simulations for each value of the shape parameter 6 considered. The numbers

TABLE 1
i, Simulated Critical Values for A,
Critical 2
Level .10 .05 .01 b, Th
n=25 2.6280 4.0132 7.0894 1144 .8416
(.0952) (.0544) (.0130)
n=>50 2.7366 3.8438 7.0577 .0647 8877
(.1014) (.0502) (.0126)
n =100 2.6440 3.8340 6.8600 .0360 9319
(.0940) (.0492) (.0122)

n=ow 2.706 3.843 6.637 .0000 1.0000
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TABLE 2
Simulated Power Comparisons for n = 100 and o = .10
[/ A, An M, E,
-.30 .995 .996 .981 .985
-.20 835 .833 .783 782
=10 .379 .356 .356 .347
-.08 273 .264 .281 .280
-.05 .169 .164 191 .182
-.03 .136 124 .139 125
.05 .198 218 .102 .073
10 .351 372 .188 117
.20 144 77 478 .397
.30 951 .962 .785 .736
40 995 998 ‘.950 934

in the columns indicate the fraction of rejections out of 1000 trials. The compu-
tations were performed on a Burroughs 7700 system, using I.M.S.L. subroutines
(I.M.S.L. Library, 1978).

As expected, both A, and A, generally outperformed the two omnibus goodness-
of-fit tests E, and M,. On the other hand, there was little difference between the
power of A, and \,. The numerical evidence indicates that A\, did a little better
than A, for values of # > 0 and A, a little better than A, for values of ~1 < 6 <
0, though these apparent small differences could possibly be due to random
variation in the simulation study. Finally, note that only one estimate of ¢ is
needed in the computation of A,, whereas A, requires two maximum likelihood
estimates of ¢ and one of 6.
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