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ON SOME SHRINKAGE ESTIMATORS OF MULTIVARIATE
LOCATION?

By PrRANAB KUMAR SEN AND A.K.MD. EHSANES SALEH
University of North Carolina, Chapel Hill, and Carleton University, Ottawa

For a continuous and diagonally symmetric multivariate distribution,
incorporating the idea of preliminary test estimators, a variant form of the
James-Stein type estimation rule is used to formulate some shrinkage esti-
mators of location based on rank statistics and U-statistics. In an asymptotic
setup, the relative risks for these shrinkage estimators are shown to be smaller
than their classical counterparts.

.

1. Introduction. LetX;= (X;;, ---, X;;)’,i=1, ---, n, be n independent
and identically distributed random vectors (i.i.d.r.v) having a p(=1)-variate
continuous distribution function (d.f.) Fy, defined on the Euclidean space E”. F,
is assumed to be diagonally symmetric about its location 6 = (0y, - - -, 6,)’, i.e.,

(1.1) Fy(x) = F(x - 0), x€EP,

where F is diagonally symmetric about 0. Based on X;, ---, X,, let 4,
= (0n1, - - -, 0np)” be an estimator of 6, and consider a quadratic loss function

(1.2) L(sn, 0) = n(é, — 0)'Q(5, — 9),
for some given positive definite (p.d.) matrix Q. The risk is then given by
(1.3)  pn(s, 0) = EL(6,, 6) = Tr(QV,), where V, = nE(5, — 0)(s, — 0)’.

For normal F and p = 3, in view of the inadmissibility of the sample mean X, =
n™! Y2, X; (cf. Stein, 1956), a simple (nonlinear) admissible estimator was
proposed by James and Stein (1961). Since then, this theory has been extensively
studied (in a parametric setup) by a host of workers; a detailed account of these
developments is given by Berger (1980). For possible nonnormal F, the sample
mean X,, may not be very robust, and may even be quite inefficient for distribu-
tions with heavy tails. Robust rank based (R-) estimators of location in the
multivariate case have been studied by Sen and Puri (1969), Puri and Sen (1971),
and others. Also, preliminary test R-estimators were studied by Saleh and Sen
(1978) and Sen and Saleh (1979), among others. The object of the present study
is to consider suitable shrinkage R-estimators of 6, and also to present briefly the
shrinkage U-statistics which contain the sample mean as a special case.
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Along with the preliminary notions, the proposed shrinkage R-estimators are
introduced in Section 2. The general results on the asymptotic risks of these
estimators are presented in Section 3. The case of shrinkage estimators based on
U-statistics (not necessarily pertaining to the location model) is treated briefly
in the concluding section.

2. Shrinkage R-estimators. For every n(=1) and j(=1, - - -, p), we define
a set of scores by letting

(2-1) a:;:;(k) = E(bf(Unk) or ¢]+(EUnk), fOr k = 1, <ee,n,

where U,; < ... < U,, are the ordered r.v. of a sample of size n from the uniform
(0, 1) d.f,, and, for every u € (0, 1),

(2.2) oi (W) = ¢;((1 + u)/2), ¢;(u) + ¢;(1 —u) =0;

the ¢, are all assumed to be nondecreasing and square integrable. For every real
b, let R (b) be the rank of | X; — b| among | X;; — b|, ---, | Xn — b|,fori=1,
--,n,j=1, .-, p. Consider the statistics

(2.3) Tni(b) = n™' Y&, sgn(X; — b)ay(RE®), j=1,---,p.
Note that T,;(b) is \ in b (viz., Puri and Sen, 1971, Chapter 6), and we set
(2.4) 5nj = Ya(sup{b: T,;j(b) > 0} + inf{b: T,,;(b) <0}), j=1, ---, p;
(2.5) b = (Bn, -, )"

6, is an R-estimator and is known to be a robust, translation-invariant and
consistent estimator having the (coordinatewise) median-unbiasedness and other
desirable properties too. Let Fi; be the jth marginal d.f. corresponding to the d.f.
F(1<j=<p)andlet Fj;,, j# 7 =1, ---, p be the bivariate marginal d.f.s. We
assume that F};; possesses an absolutely continuous probability density function
fii1 and set

vi(w) = —fiL(FGi)/fin(Fiw), ve©,1), j=1,---,p.
Let then

(2.6) v, = J:w J_\m oi(Fijj(x) ¢, (Fin(y) dFin(x, y), J, /=1, ---, p;

1
(2.7) &= fo ¢i(wi(w) du, j=1,---,p;
(2.8) v = ((v)), &=Diag(t, ---, &);
(2.9) T = ((vj,) = £
Then, it is known (cf. Puri and Sen, 1971, Chapter 6) that
(2.10) n'*(@, — 8) = (0, I).

In a shrinkage estimation problem, one has, a priori, some reason to believe
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that 6 is likely to lie in a small region containing a specified point 6y; without
any loss of generality, we may set 6, = 0. In a preliminary test estimation (PTE)
problem, one sets to test for this hypothesis first, before choosing the estimator,
while in a shrinkage estimation, the test statistic is itself incorporated in the
estimator to adjust for possible shifts from the specified 6,. In either case, we
need a suitable test statistic, and towards this, we define M} = ((m};,)) by
letting

(2.11) myj, = n"t ¥ a7(RF(0))an z(0))sgn Xjsgn Xi,,
for j,# =1, ---, p. Then, as in Sen and Puri (1967), the test-statistic used is
(2.12) < = n(T,)' (M7)~(T,)

where T, = (T,.1(0), ---, T,,,(0))’ and (M)~ is a (reflexive) generalized inverse
of M}. Following James and Stein (1961), one may consider then the estimator

(2.13) 858 = {1 — a/ £},

where a is an appropriate constant. Since %, may assume the value 0 with a
positive probability, there may be a small technical problem with the computation
of the risk of 625. Moreover, 625 may not dominate over 6, unless in (1.2),
Q =I'"™. To eliminate these problems, we consider the following formulation of
shrinkage R-estimators of multivariate locations.

Parallel to (2.1)-(2.2), we let a,;(k) = E¢j(Uys) or ¢;(EUp), for k=1, ..., n,
j=1, ..., p, and define M, = ((m,;,)) by letting

(2.14) My = n7' Yy ai(Rj)a.,(Ri,), j, 2 =1, ---,p,

where R;; is the rank of X; among Xyj, ---, Xy, fori=1,---,n;j=1, .-+, p.
Then M, is a translation-invariant, consistent and robust estimator of » (cf. Puri
and Sen, 1971, Chapter 5). Also, we define &, = Diag(é,1, - - -, £,p) by letting

(2'15) gnj = nl/z{Tnj(énj - n—1/2a) - Tnj(énj + n—l/2a)}/(2a)’ ] = 1, s Py
where a is some pre-fixed positive number. Let then
(2.16) I, = £;'M,.£;"; d, = smallest characteristic root of QT',.

Analogous to the normal case, treated in Berger et al. (1977), one may consider
aconstant c: 0 <c¢ < 2( p — 2) and (for p = 3) consider an estimator of the form
(I - ¢d, <7 Q' TY)6,. However, in view of the fact that &, may be equal to
0 with a positive probability, we consider the following shrinkage estimator:

~ 0, L i A<,
(2.17) 0n = {(1 - cd, Z'QTIN,, if L =,

where ¢ (>0) is an arbitrarily small number, and 6, and ., are defined as before.
Note that in a PTE case, one takes the estimator 85T which is equal to O or 6,
according as %, is < or > 4, ,, the upper 100a% point of the null distribution of
%,. Thus, the proposed shrinkage estimator adapts the James-Stein rule along
with the PTE, though ¢ need not be equal to 4, .. We actually recommend e to
be small, while 4, , is not so.
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3. Asymptotic risk of shrinkage R-estimators. With respect to the loss
(risk) function in (1.2) ((1.3)), we intend to study the risk of the shrinkage
R-estimators, and to compare the same with that of the classical R-estimator 6,
in (2.5). We shall confine ourselves to some asymptotic setup where simple and
meaningful results can be derived under quite general regularity conditions. In
this context, we need some moment convergence results on 6,, which are pre-
sented first. We assume that for some positive b (not necessarily =1),

(3'1) EFIXij|b<°°, for j=1’...’p_

Further, as in Sen (1980b), we assume that for each j(=1, ---, p), ¢\"(u) =
(d"/du¢ij(w), r =0, 1, 2, u € (0, 1) exist almost everywhere, and there exist
positive constants K and 6(<%), such that

(3.2) 169w | = Kfu@ — W)™, 0<u<l1, r=0,1,2
Finally, we assume that the derivative f{;; is bounded almost everywhere and
(3.3) sup, fii(xX){Fiy(x)[1 — Fjj(x)}? " <o, 1=<j=<p,

where 6§ is defined in (3.2) and 5 > 0. Then, from Theorem 2.2 and (2.49)-(2.50)
of Sen (1980b), we conclude that for each j(=1, ---, p), as n — oo,

(3.4) nY2{(0,; — 0;) — £ T0i(0;)} = wnj — 0 almost surely (as.);
(3.5) Elw,l*—> 0, VE:kE<(1-—20)/6 (>2);
(3.6) nE@, — 0)(0, — 0)’ > T = £ ™,

In passing, we may remark that (3.2) holds for the Wilcoxon scores (6 = 0),
Normal scores (6 arbitrarily close to 0) and all the other commonlx used scores.
Note that by (1.2), (1.3) and (3.6), for the classical R-estimator 6,

(3.7  limp..p.(d, ) = Tr(Q lim,_.nE@, — 0)(6, — 6)’) = Tr(QL).

We intend to study the asymptotic risk of the shrinkage R-estimator 65 and
compare the same with (3.7). First, we discuss briefly the case when 6(0) is held
fixed in this asymptotic setup. Note that by (2.17),

n(07 — 6,)' Q3 — 6,)

= (£, < nb;Q0, + I(Z, = e)c?d2 <2 nf,17'Q 7' T,
where I(A) stgnds for the indicator function of the set A. Since, by (2.12),
(89) P{L <k} < ming,P{| Tnji| < n2kY3, for every k>0,

it follows from Theorems 1 and 3 of Sen (1970) that under (3‘2)1 wbenever
0 # 0, the right-hand side of (8.9) is O(n™?), while, by (3.4)-(3.6), 6,Qf, has a
bounded expectation. Thus, by some standard analysis, we conclude that the first
term on the right-hand side of (3.8), for any (fixed) 8 # 0, converges in the first
mean to 0, as n — . For the second term, we note that

(3.10) nd20;1.'Q 1Y, = (nf,QH,){d%(0:T7' Q' 16,)/(6,Q6,)} =< nb;QF,.
As such, using (3.4)-(3.6) and (3.10), it follows that for every fixed 6 # O, the

(3.8)
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second term on the right-hand side of (3.8) converges in the first mean to 0, as
n — oo. Hence, for every fixed 0 # 0, as n — oo,

(3.11) lim sup,_.E{n(@5 — 6,)'Q(05 — 6,) |0 # 0} = 0,

so that they are asymptotically risk-equivalent. The situation is, however, different
for local translation alternatives, as will be discussed now.

Note that shrinkage estimators work out well only for shrinking neighbour-
hoods of a specified point (here 0). In the asymptotic case, this shrinking
neighbourhood coincides with the usual Pitman-type local translation alterna-
tives. For this, we conceive of a triangular array {X,;, 1 =i < n; n = 1} of row-
wise ii.d.r.v. with the d.f. {F}, and, by reference to (1.1), we consider an
alternative hypothesis K, that for the given n, § = 0, = n™/2), where X\ belongs
to a compact subset C (containing O as an inner point). Note that by virtue of
the translation-invariance of 6, and the fact that X,; — n~/2\, has, under K,,, the
d.f. F in (1.1), which does not depend on n, we conclude that (3.7) holds under
{K.} as well. The main theorem of the paper is the following.

THEOREM 3.1. Under the assumed regularity conditions, for ¢ chosen ade-
quately small, for every c: 0 < c< 2(p — 2), the shrinkage estimator 63 dominates
over the classical R-estimator 0,, for local translation alternatives {K,}, uniformly
in \ in any compact set C (containing 0 as an inner point).

PrROOF. Note that by (2.17), we have under K,,,
n(6% — 6,)'Q(3 - 6,) = I(£, < a)(\'QN)
(3.12) + 1% > ) {n(0, — 0,)'Q0, — 0,) — 2¢d, L n(, — 8,) T,
+ 22 0T Q T 0,).

If we denote by H,(-; A) the noncentral chi-squared d.f. with p degrees of freedom
(DF) and noncentrality parameter A(=0), then, from the results in Sen and Puri
(1967), we have

(3.13) lim, .»P{%, < x| K,} = Hy(x; N'T™'\), Vx=0.

Therefore, the first term on the right-hand side of (3.12) converges to
(MQMN)H,(e; A'T™'\), uniformly in X in any compact subset C; the latter result
follows from Huskova (1971). Also, proceeding as in Section 4 of Sen and Saleh
(1979), with adaptations from Huskova (1971), we claim that uniformly in A in
C,

lim o E{( = )10, = 6,)' Q0. — 6,) | Ko}

(3.14) = {1 — Hp.s(e; A)JTr(QT)
- (>‘/Q>‘){Hp(e; A) - 2Hp+2(e; A) + Hp+4(e; A)}’
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where A = N'T7IA. Further,
| n(8, — 0,)'T7%6, - du|
= |n"2(f, — 6,)'T5V2 . T7Y2n"%%, - d,|
(3.15) < {[n(6, — 6,)'T7' @0, — 0,) - d,l[d.nb, 170,132
< {n(d, — 0.)’Q(0, — 0,) - nh, Qb
< %{n(0, — 0,)'Q(6, — 6,) + nb.Qb}.

Notice that because of the translation invariance of 6,, (3.4)-(3.6) hold under
{K.} as well (with 0 being replaced by 6,), so that, for every k(>0), under K,,, with
n adequately large, (n(),,QOn)k and (n(6, — 0,) 'Q(b, — 0,,))" are integrable (uniformly
in \). Hence, by (3.4)~(3.6), we obtain that under {K,}, uniformly in X belonging
to a compact C, as n — o,

(3.16) S = nhiT70, + ns; 1. — 0, in probability (or a.s.).
Therefore, on the set { <, > ¢}, ¢ > 0, under {K,}, uniformly in A € C,
(3.17) L — (nbr6,) " —,0, as n— o,

Finally, under {K,}, by (3.4)—(3.6), uniformly in A € C,

(3.18) nV2r 2%, —g #(I7V2\, 1), as n — o

the uniformity result (on the T,) due to Huskova (1971) is utilized here too.

Let us now denote by W a p-vector having the multinormal distribution with
mean vector w = I\ and dispersion matrix I,. Also, let x2; be a r.v. having
the noncentral chi-squared d.f. Hy(-; 8). Therefore, using (3.10), (3.14)-(3.18)
along with the uniform integrability results (considered above), we conclude that
for every ¢ > 0, uniformly in A € C,

limy o E{I( S, = €)dn L7'n(, — 0,)' T30, | K.}
= chy(QT){E(xpiz,a) — E[I(W'W < &)(WW) "W},
lim, . E{I( %, = e)nd2 <720,17'Q 174, | K.}
(3.20) = {ch,(QD)}* - {Tr(Q'T™)E(xpiz,a) + A*E(xp¥s,a)
- — E[I(W'W < &)(W'W)2W’AW]},

where ch,(A) stands for the smallest characteristic root of a p X p matrix A and
where A = NI\, A* = A'T7'Q'I" ! and A = I'"'2Q™'T"/2, Now

| EI(W'W < &)(WW)'W o} |

(3.19)

(3.21) < BE{I(W'W < &) (W' W) V2(o'w)/2} = AV2 f x~V2 dH,(x; A)
0

< (T(p/2)2P/?) A2 (P~ 1/2e=(1/DA0~) > 2 0 <e< 1.



278 P. K. SEN AND AK.MD. E. SALEH

Also, foreveryp=2and 0 <e<1,
E{IW'W < &)(W'W)2W’AW} < E{I(W'W < ¢)(W W) 'Tr(A)}
(3.22) =Tr(A) - E{I(WW < ¢)(WW)™
< Tr(A)( F(p/2)2p/2)—18(p—2)e—(1/2)A(1—e)_
Therefore, whenever p = 3, from (3.12) through (3.22), we obtain that
p*(85, N)
= lim,_.E{n(6S — 0,)'Q(65 — 0,) | K.}
= Tr(QT){1 — Hpso(e; A)} + (N QN{2H,42(e; A) — Hprale; A)}
(3.23) — 2c(ch,(QT))E(xpts) + c*(chy(QD))?
- {Tr(Q7'T)E(xpt2,a) + A*E(xpta,a)}
+ 2¢ - chy(QD)E{I(W'W < &)(W'W)'W'w}
— c%(ch,(QD))2E{I(W'W < &)(W/ W) ?W’ AW},

uniformly in A € C. Note that the last term is nonnegative, so that using (3.21),
we obtain after some rearrangements of terms that (uniformly in A € C),

p*(05, \) < {Tr(QT) — 2¢ - ch(QD)E(x;p%,0)
(3.24) + cX(chy(QT)) [A*E(xpisn)+ TrHQ'T™)E(xpi2.4)]}
+ O(eP7V72) 4+ O(eP?).

Now, by the results of Section 2 of Sclove, Morris and Radhakrlshnan (1972),
the leading term on the right-hand side of (3.24) is < Tr(QT') = p*(0 \), for every
c:0<c¢<2(p—2), and uniformly in A in any compact set C. This completes the
proof of the theorem.

Note that in the definition of the shrinkage estimator in (2.17), one has
to decide on the choice of ¢ and e. Though ¢ may belong to the interval
(0, 2(p — 2)), the choice of ¢ = (p — 2) has been found to be better in the normal
theory case and may also be recommended here. Further, from the results of
Berger et al. (1977), we are tempted to make ¢ dependent on n (i.e., ¢ = c,), where
¢, is nondecreasing in n and lim,_..c, = c exists (and belongs to the interval (0,
2(p — 2))). The existence of the limit ¢ of ¢, ensures the validity of the formulae
in (3.23)-(3.24), and hence, the conclusion of the theorem remains true as well.
Typically, for small values of n, ¢, should be taken small, while, for larger values
of n, it may be taken closer to (p — 2). Also, we recommend the use of a small
value of ¢ (e.g., ¢ = 0.05), though the choice of ¢ may depend on the value of p at
hand. Looking at (3.22) and (3.24) we observe that the higher is the value of p,
the greater is the range of the admissible values of ¢ (corresponding to a given
margin of the residual term): Basically, ¢»~"/2 should be chosen small. Finally,
the dominance result in Theorem 3.1 is of an asymptotic nature. The question
may arise whether the size of ¢ and n needed to ensure the dominance of 63
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depends on the underlying d.f. F. The answer to this query depends on whether
(3.17) and (3.18) hold uniformly in a class of F. The answer is in the affirmative,
and such uniformity results can be established through the uniform linearity
results on rank statistics, as have been studied in detail in Jureckova (1983,
1985). Since we are dealing here with the multivariate case, we need here the
additional condition that for F belonging to the given class, the convergence of
M to I''! is also uniform, and for this, apart from the assumed regularity
conditions in Section 2, it suffices to assume that ch,(T) is bounded away from
0, uniformly in the class of d.f. Essentially, (nearly) singular multivariate distri-
butions are excluded from this class, and otherwise, the distributions are abso-
lutely continuous with bounded and continuous density functions having finite
Fisher informations.

We conclude this section with a remark on the choice of the particular
estimator in (2.17). It is clear from (3.17) that in (2.17) one may also replace .,
by (n6.1%%,) and the asymptotic results would continue to hold. In the normal
theory case, these two forms are the same, while in the nonparametric case, they
are only asymptotically the same. As has been stressed after (2.17), the use of
%, makes clear the relationship between the PTE and the shrinkage estimator.
Further, in the nonparametric case, though <, can be justified on the ground of
permutational distribution-freeness, (nb.T:%,) is only asymptotically distribu-
tion-free (cf. Sen and Puri, 1967). Actually, the rank estimates are derived from
the associated signed rank statistics, and hence, it is more natural to use these
signed rank statistics in the construction of the test statistic. On these grounds,
we prefer to prescribe the use of ., in (2.17).

4. Shrinkage U-statistics. The sample mean X, is a particular case of
U-statistics. It may be of some interest to construct shrinkage estimators of
general parameters based on U-statistics and their (jackknifed) dispersion ma-
trices. In this context, we may not need the diagonal symmetry of the d.f. F, but
other moment conditions, not needed with the R-estimators, may be needed here.

Let % be a space of all d.f.’s belonging to a class, and for every F € %,
consider a vector § = 0(F) = (0,(F), - - -, 8,(F))’ of estimable parameters, where

(4.1) 0,(F) = Eple(X1, ---, Xm)}, FE F j=1, .-, pzl)

oj(x1, -+, xm].) is a kernel of degree mj(=1), symmetric in its m; arguments, for
j=1, ..., p.For n = m* = max{m,, ---, m,}, we may then define the vector of
U-statistics U, = (Up, - -+, Uy)’, by letting

-1

(4-2) Unj = (Z) 215i1<~~<im5n ¢j(X£1, Tty Ximj)’ ] = 1’ cey D
J

U, is a symmetric, unbiased and optimal estimator of §. We assume that the

kernels ¢; are all square integrable, and define

(4-3) ¢‘j,c(xh M) xc) = E¢j(x17 sy Xey Xc+1, ) ij)’ c= 0’ 1’ s, My

(4'4) g‘j/;c = EF{¢j,c(X17 Tty Xc)d)/;c(Xl, f Xc)} - 0J(F)0/(F)’
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forc=0, - -, min(mj, m,) and j, # =1, - - -, p. Then (cf. Hoeffding, 1948)
nE{(U, - 0)(U, — 0)'}

(4.5) e V.
() 22 () ) = v o

where
(4.6) r= (('Yj/)) = ((mjm, 5}/,1))-

Consider then the loss and risk function as in (1.2) and (1.3). We intend to
construct some shrinkage estimators which dominates over U,, at least asymp-
totically. For U-statistics, one may use the jackknifing to obtain a convenient
estimator of T' (viz., Sen, 1960, 1981). We write U, = U(Xj, - .-, X,), and, for
everyi:1 <i=<n,let

(4-7) Ugll = U(le Tty Xi—l, Xi+1, Sty Xn)7 Un,i = nUn - (n - 1)Ul(':ll'
Then, the jackknifed estimator of T is
(4.8) In=(n- 173 (Uni = U)(U, — U,

If we have reason to believe that 6 lies in a small neighbourhood of some specified
0o (which, without any loss of geperality, we may take as 0), then a test statistic
for this problem is %, = nU,I';'U,, and, as in (2.17), we may consider the
shrinkage estimator:

S — IO, R if A <e;
(4.9) Un =10 - cd, 7@ )0, it =

where ¢ and ¢ are positive numbers, defined as in (2.17) and d, is the smallest
characteristic root of QI',. In particular, if the X; are p-vectors, defined as in
Section 1, and if m; = ... = m, = 1, ¢;(X) is the jth component of X, j = 1,
-+, p, then U, = X,,, so that (4.9) is a natural extension of the shrinkage
estimator considered in Berger et al. (1977). For higher order moments (and
product moments) of F, similar U-statistics can be constructed, so that (4.9)
provides shrinkage versions for these estimates. There is an abundance of use of
U-statistics in nonparametric estimation problems, and (4.9) would provide
usable shrinkage estimators in these situations as well.

As in Section 3, for any fixed 0(%0), asymptotically, US and U, are risk-
equivalent. Also, for local alternatives: K,,: § = 8,y = n~'/2\, \ fixed, the conclusion
of Theorem 3.1 applies to (4.9) as well. Though the derivations of these results
follow an entirely different track, since the conclusions are similar, we omit these
details. However, we may refer to Sen (1984) for some of these mathematical

treatments.
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