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ESTIMATING A DISTRIBUTION FUNCTION WITH TRUNCATED
DATA

By MiCHAEL WOODROOFE"?

The University of Michigan and Rutgers University

Let £ be a finite population with N = 1 elements; for each e € & let X,
and Y. be independent, positive random variables with unknown distribution
functions F and G; and suppose that the pairs (X,, Y.) are i.i.d. We consider
the problem of estimating F, G, and N when the data consist of those pairs
(X., Y.) for which e € & and Y. = X.. The nonparametric maximum
likelihood estimators (MLEs) of F and G are described; and their asymptotic
properties as N — o are derived. It is shown that the MLEs are consistent
against pairs (F, G) for which F and G are continuous, G™(0) < F~(0), and
G™'(1) < F~(1). YN X estimation error for F converges in distribution to a
Gaussian process if [§ (1/G) dF < », but may fail to converge if this integral
is infinite.

1. Introduction. Consider a finite population & whose size N is large, but
otherwise unknown. For each element e € & let X, and Y, denote independent,
positive random variables with distribution functions F and G, say; and suppose
that (X., Y.), e € & are i.id., as (X, Y), say. Finally, suppose that one observes
(only) those pairs (X,, Y.) for which Y, = X,, but not the labels e € & The
problem considered is that of estimating F, G, and N. Nonparametric maximum
likelihood estimators (MLEs) of F and G, described in (8) and (9) below, have
been derived by several authors, listed below, from different perspectives. Here
the asymptotic properties of the estimators are studied, and still another deri-
vation suggested.

This model arises in astronomy. The absolute and apparent luminosities of an
astronomical object are defined to be its brightness at a fixed distance and as
observed on earth; and magnitude is defined to be the negative logarithm of
luminosity. In some models, the redshift z and the absolute magnitude M of
astronomical objects are assumed to be independent random variables which are
related to the apparent magnitude m by the equation

1) m = f(z) + M,

where f is a known function, or at least a nearly known one. For example,
Hubble’s Law specifies that f(z) = 5 log 2, and Segal’s Chronometric Theory
specifies that f(z) = (5/2)log[z/(1 + 2)]. See Segal (1975). Of course, one can
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only detect objects which are sufficiently bright, say m < m*. Then, letting X =
exp[—f(2)] and Y = exp[M — m*] yields the model described above.

In other applications, the X, may be the sizes of hidden objects for which one
searches for one unit of time and T, = Y,/X, might be the time at which one
would find the object e, if the search were continued indefinitely. Then the
conditional probability of finding object e given X, is G(X.), an unknown but
increasing function of X,. For example, Barouch and Kaufman (1975) have
described models for exploring for petroleum reserves in which the probability of
finding a given pool is proportional to the pool’s size. Letting X denote a pool’s
size and T denote the time at which it would be found in an infinite search yields
a model which is closely related to Barouch and Kaufman’s (1975).

Starr (1974), Starr, Wardrop, and Woodroofe (1976), and Kramer (1983) have
considered a class of optimal stopping problems in which one searches for hidden
objects and receives a reward depending on the objects found, say the sum of
their sizes, less a cost of sampling. Assuming a known stochastic model and
certain other conditions, these authors obtain explicit solutions to the optimal
stopping problem. In addition, they propose adaptive procedures for use when
the total number of objects N is unknown. The estimators studied here may
allow implementation of adaptive procedures in which other quantities, like F,
are estimated sequentially.

Nonparametric MLEs of F and G were derived by Lynden-Bell (1971), who
described another application to astronomy. See also Jackson (1974). Nicoll and
Segal (1980) derive the MLEs for grouped data; and Bhattacharya, Chernoff, and
Yang (1983) derived MLEs from a conditional likelihood function of certain
counts, given the observed X-values. The latter paper also computes the infor-
mation matrix for its model. Bhattacharya, et al. (1983) construct nonparametric
estimators of regression parameters in models like (1), and show asymptotic
normality of estimation error, properly normalized; and Bhattacharya (1983)
considers the asymptotic distribution of a goodness of fit statistic with a view
towards testing hypotheses about regression parameters. None of these papers
give conditions for the consistency and asymptotic normality of the MLEs of F
and G, however.

Here asymptotic properties of these estimators are studied as N — . In
Section 2, the conditional distributions of X and Y given Y =< X are related to
the unconditional distributions F and G. The estimators are described in Section
3. Section 4 considers consistency; if F and G are continuous and if the lower
and upper endpoints of the convex support of G are individually less than or
equal to those of F, then the estimators converge to the true distribution functions
F and G in probability as N — . Sections 5 and 6 consider normalized estimation
error for the distribution functions. Here VN X estimation error for F converges
in distribution to a Gaussian process if [§ (1/G) dF < oo; but the asymptotic
variance may be infinite if this integral diverges.

There is some similarity between the estimators studied here and the estimator
of Kaplan and Meier (1958), and hence with the asymptotic results of Breslow
and Crowley (1974). There are also differences. The Kaplan Meier estimator
would be appropriate if X; A Y; = min(X;, Y;) and §; = I{X; = Y;} were observed
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for 1 = i < N; here both X; and Y; are observed if Y; = X, and nothing is
observed otherwise. In terms of the asymptotic distributions, this difference leads
to the possibility of an infinite variance for VN X estimation error.

There is also some similarity with recent results of Vardi (1982a, 1982b). He
considers generalizations of our model when G is known, and obtains both
nonparametric MLEs and asymptotic distributions.

2. A Transformation. Let X and Y denote independent, positive random
variables with distribution functions F and G, taken to be continuous from the
right. Let H, denote the joint distribution function of X and Y given Y < X; and
let F, and G, denote the marginal distribution functions of X and Y given
Y < X. Thus,

H(x,y) = a™ J; G(y A 2) dF(2),

F.(x) = H,(x,©) and G,(y) =H,(%o,y), 0<x,y<oo,

where o = [§ G(2) dF(2) = [¢ [1 — F(2—)] dG(2) is assumed to be positive. Here
y A z denotes the minimum of y and z for 0 < y, z < o; F(z—) = P{X < z} for
2= 0;and [5= [ for 0 < a < b =< «. There is little hope of finding consistent
estimators of F and G from the data described in the introduction, unless F, and
G, determine F and G. So, this question is investigated first.

If K is any distribution function on [0, ), let

ag=inf{z>0: K(z) >0} =0

2

and
bx =sup{z>0: K(z) <1} < o,

so that (ag, bx) is the interior of the convex support of K. Then o > 0 in (2) if
ac < br, and a = 0 unless ag < br. If > 0 and if F, and G, are related to F and
G by (2), then ar, = max{ar, ag}, br, = br, ag, = ag, and bg, = min{br, bs}. In
addition, it is convenient to have the following notation: let

= ((F, G): F(0) = 0 = G(0), «(F, G) > 0},
%={(F,G)€_%/Zacsap,b05bp},
T(F,G) =H,, (FG e

LEMMA 1. (i) Let (F, G) € % and let F, and G, denote the conditional
distributions of X and Y given X = ag and Y < br. Then (Fy, Go) € %, and
T (Fo, Go) = T'(F, G);

(ii) T(#) = T ().

PrROOF. Since Y =< Ximplies X = agand Y < bp w.p.1, T(F, G) = T (Fo, Go).
To see that ag, = ar, observe that ag, = ag, since (F, G) € %, and that
ap, = max(ar, ag) = ag = ag,. A similar argument shows that bg, < br, to complete
the proof of (i). Assertion (ii) then follows since %, C %
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Recall that the cumulative hazard function of a distribution function F' (with
F(0) = 0) is defined by

Alx) = J(: dF(2)/[1 — F(z—)], 0 =x < oo,

The cumulative hazard function A uniquely determines the distribution F by
the following algorithm; let D denote the set of x for which 0 = x < by and
Ax) = A(x) — A(x—) > 0; then

(3) 1- F(x) = {HZED,zsa:[]- - A(z)]}eXp[_Ac(x)]’ O=sx< bF1
where A.(x) = A(x) — Y.ep.<x A (2), 0 < x < bp.

THEOREM 1. Suppose that H, € T(%%). Then there is a unique pair
(F, G) € % for which T(F, G) = H,. Here the pair (F, G) is determined by the
conditions

@) AG) = £ dF,(2)/C(2), 0=zx<e,
and s
f dG(2)/G(2) = f dG,(2)/C(z), 0=y <oo,

where
Ci) =G, (2) — F,(2—), 0sz<m,

ProOF. By the lemma, there is at least one pair (F, G) € %, for which
T(F, G) = H,. It is shown below that (4) holds for any such pair, and it then
follows that there is only one such pair, by (3) applied to F and G;, where
Gi(z) =1 — G(1/2—), z > 0. The proof of (4) depends on the simple identity
C(2) = a™'G(2)[1 — F(z—)] for z = 0, which may be derived as follows:

aC(2)=P{Y=X, Y=<z - PlY=X X<2
=PlY=X Y=z= X}
=PlY=2-P{X<z Y=z =G| - F(z-)]

for 0 < z < . Since ag < ap, it follows easily that

fo dF,(2)/C(2) = f GG) dF(2)/aC(2)

= f _dF(@)/[1 - F(z-)] = Alx)

F

for all x = ar; and both sides vanish for x < ar. This establishes the first assertion
in (4) and the second may be established similarly.
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COROLLARY 1. Let (F, G) € % and let F, and G, be the conditional distribu-
tions of X and Y given X = ag and Y < by, as in Lemma 1. Then (F,, G,) is the
only pair in %, for which T (Fy, Go) = T(F, G).

COROLLARY 2. Let T, denote the restriction of T to %,. Then T, has an
inverse function.

ProoOFs. Lemma 1 asserts that (Fy, Go) € % and T (F,, Go) = T(F, G); and
the theorem asserts that there is only one such pair. This establishes the first
corollary. The second then follows, since (Fy, Go) = (F, G) when (F, G) € %.

REMARKS 1. The inversion formula of Theorem 1 uses only the marginal
distributions of H,.

2. Let & denote the class of all distribution functions on [0, ). Endow &
with its weak topology; endow F X & with the product topology; and endow %,
%, and T(%) with their relative topologies. Then T is easily seen to be
continuous at all (F, G) € % which have no common points of discontinuity.
However, the inverse transformation to Ty is not continuous. To see this let F
and G be continuous distribution functions with support [0, ©); and let G, =
(G + 6,)/2, where 6, denotes the point mass at n for n = 1. Then T'(F, G,) —
T(F, G) as n — o, but G, does not converge to G.

3. Estimation. Now let F and G denote distribution functions for which
(F, G) € %; let X and Y denote independent random variables with distri-
bution functions F and G; and let (X3, Y;), - -+, (Xn, Yn) be iid. as (X, Y). As
1in the introduction, suppose that one observes only those pairs (X;, Y;) for which
i < N and Y; = X;. Suppose that there is at least one such pair, and let
(x1, ¥1), -+, (xn, ¥») denote these pairs, so labeled that (x;, y1), - - -, (x,, ¥.) are

conditionally i.i.d. given n.
To describe the estimators of F' and G, let F} and G} denote the empirical

distribution functions of x;, - - -, x, and vy, - - -, yn,
Fi(z)=QQ/n) #li<n:x <2,
Gi@=QA/n)#lj<ny =<z}, 0sz<o,

where # A denotes the cardinality of a set A. Thus, F} and G} estimate the
conditional distribution functions F, and G,. Estimators of F and G may be
constructed from F}} and G} by using the inversion formula of Theorem 1. Let
(6) Cu(2) = Gi(2) — Fr(2—), 0=2z<o,

and observe that C,(x;) = 1/n for all i = n. Then Theorem 1 suggests estimating
the cumulative hazard function A by

()]

(7) An(2) = j; dF%(x)/Ca(%) = Tine: 1/nCo(x), 0 <2 <o,

Observe that A, is a step function with discontinuities (only) at x,, - - -, x,,. Thus,
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Equation (3) suggests estimating F by
(8) Fn(z) = 1 - Hi/:xisz [1 - r(xi)/ncn(xi)]’ O =z< °°’

where r(x;) = # {k < n: x, = x;} for 1 < i < n, the product extends over distinct
values of x1, - - -, X, and an empty product is to be interpreted as one. Of course,
a similar construction is possible for the estimation of G. After some algebra, one
is led to the estimator

(©)] Gn(2) = L2 [1 = s(3)/nCa(3)], 0 =<z <o,

where s(y;)) = #{k=n:y,=yjforl=j=n.

The estimators F, and G, were derived by Lynden-Bell (1971). Suppose, for
simplicity, that there are no ties among xi, ---, Xp, Y1, - -, ¥» and consider
estimating F and G by distributions which are supported by f{xi, ---, %}
and {y1, - - -, yn}. For such distributions, the conditional likelihood function given
nis

Li=a™™p1 X «++ XPpXq1 X - X,

where p;, ---, p, and q, ---, g, are the masses assigned to x;, ---, x, and
Y1, *++» Y. This likelihood function may be maximized with respect to py, - -,
pnand gy, - - -, qn; and the estimators F, and G, result, provided that (10) below
does not occur. Alternatively, one may show that F and G} are the nonpara-
metric, maximum likelihood estimators of F, and G, and then use the invariance
properties of maximum likelihood estimators. The alternative derivation is not
substantially simpler than the direct one, however.

The estimators F, and G, may be supported by proper subsets of {x;, - - -, x,}
and {y;, ---, yn}. Let xq) < x2 < -+ < x(m and yq) < .-+ <y denote the
ordered values of x;, - - -, x, and y1, - - -, ¥n. If

(10) nCplxw] =1, forsome k, 1 =<k<n,
then
E nlxw] = 1.

This a disturbing property of the estimators, since it may lead to unreasonable
estimates. For example, it is possible to have F.[xw)] = 1. It is shown below that
the probability of (10) approaches zero as N — o, if F and G are continuous; but
this will be of little comfort when (10) occurs.

The problems which result from (10) may be overcome in a simple, if ad hoc,
manner. Let k, be a nonincreasing function for which k,(x) > k,[x)] = 1/n for
all x < x(ny. If C,, is replaced by

Ct(2) = max{C,(2), k.(2)}, 0 <z =< x(),

in (9), then the resulting estimator F* is not supported by any proper subset of
{x1, ---, %,}. In fact, 1/nk,[x)] is the maximum proportion of the estimated
probability 1 — F4[x;—] which the experimenter is willing to assign to x for
i1=1,---n
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TABLE 1
Calculation of F,
k £ y Cr(xw) Fa(egy) j
1 .3156 0672 6 .1667 .1667
2 .3597 .0136 5 .3333 .1667
3 4017 .0816 4 .5000 .1667
4 4970 4117 5 .6000 .1000
5 .5068 2559 4 .7000 .1000
6 .6586 1113 4 7750 0750
7 71719 .5820 4 83125 05625
8 7897 .4106 3 .88750 05625
9 .8707 10592 2 94375 .05625
10 9441 175 1 1.0000 .05625

The (x, y) pairs are listed in order of increasing x values; and p, = F.[x@] — Fulxa-p),
k=1, ..., 10. The sample average and MLE of the mean of F are
% = 6116 and j = .5192.

It is especially interesting that one may estimate «, the probability that
Y < X, when one observes only those pairs (X;, Y;) for whichi <= Nand Y; = X;.
The nonparametric maximum likelihood estimator of « is

éu= | Gab.
0

It is easily seen that a, > 0 if nC,[x;)] > 1 for all i < n — 1; otherwise, F,and G,
may be replaced by F% and G¥. Having estimated «, one may then estimate the
population size by

A

N, = n/a,.

EXAMPLE 1. When F and G are both the uniform distribution on the unit
interval, F,(x) = x? for 0 < x < 1 and the conditional distribution of y; given x;
is uniform on the interval (0, x,]. To illustrate the properties of the estimators
F, and G,, n = 10 pairs of (x, y) values were simulated from the latter joint
distribution. The results are listed in Table 1, along with the value of C, and F,,.
Observe that there is only one data point in the interval (0, %] and four in the
interval (24, 1]—reflecting the selection bias. The estimator F, attempts to correct
for this bias by assigning higher weight to the smaller values of x;, - - -, x,. One
may see the ‘extent of this correction by comparing the observed average X = .612
with the MLE of the mean of F, i = [} x dF, = .519. Of course, the means of F,
and F are %5 and ¥%. While assigning larger weights to smaller values may correct
for some bias, it also increases variability. This is illustrated by the erratic

behavior of F,(x) for x < %.

4. Consistency. In this section, F and G denote continuous distribution
functions for which (F, G) € %; and (X, Y1), (Xz, Y2), - - - denote i.i.d. random
vectors for which X; ~ F and Y; ~ G are independent. We imagine the estimators
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F, and G, computed from the populations P={1, 2, . Njfor N=1, 2,
and mvestlgate the limiting behavior of £, and G, as N — oo, Let (x, yl),
(x2, y2), -+ denote the successive values of (X;, Y;) for which Y; = X;. Then
(x1, Y1), (x2, ¥o), - -+ are i.i.d. with the common joint distribution function H, of
(2). As in Section 3, let n = ny = #{i = N: Y; = X} for N = 1. Then n ~
Binomial(N, «) for all N = 1; and the conditional distribution of (x;, yi), - - -,
(xx, y&) given n = k is the same as their unconditional distribution for 1 < &k <
N. Let P, denote conditional probability given n. Below, the P,-probability limits
of F, and G, are determined as n — . It then follows that these are also the
limits in unconditional probability as N — oo,

The following lemma may be of independent interest, since it computes the
bias of the estimator A,.

LEMMA 2. Suppose that F and G are continuous and that (F, G) € %. If h is
a measurable function for which [g | h| dA < «, then

E,,If hdﬁn1-=f hdA—fwh(l—C)"dA
10 I 0 (]

for all n = 1, where C(z) = a 'G(2)[1 — F(2)], z = 0. In particular,

E,,{f\,,(x)} = A(x) — J; 1—-C)"dA, 0<x<bp,n=1.

ProoOF. If his integrable with respect to A and n = 1, then

L h dAn = ?=1 h(xi)/ncn(xi)-

Now, the conditional distribution of nC,(x;) — 1 =#{j < n: j#i,y, < % < x;}
given n and x; is binomial with parameters n — 1 and C(x;) foreachi=1, ---, n.
So,

(11) En{1/nCp(x;) | x:} = (1/nC(x:))[1 — (1 = C(x))"]

foralli =1, ..., n, by an elementary calculation. Since dA = dF,/C, the first
assertion of the lemma now follows from multiplying (11) by h(x;), integrating
over x;, and summing over { = 1, ..., n. The second assertion then follows by
letting h be the indicator of [0, x] for fixed x, 0 < x < bp.

Observe that the conditional bias of A,(x) approaches zero as n — o for all
x < bp, but may do so arbitrarily slowly.

THEOREM 2. Let F and G be continuous distribution functions for which
(F, G) € %; and let Fy and G, denote the conditional distributions of X, and Y,
given X; = ag and Y, < by, respectively. Then

SUPsso| B (x) — Fo(x) | — 0« sup,sol Ga(y) — Go(y) |
in P,-probability, as n — oo,

PrOOF. Since the distribution function H, remains unchanged when F and
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G are replaced by F, and G, by Lemma 1, it suffices to prove the theorem in the
special case that (F, G) € 5. Moreover, it suffices to prove the convergence of
F,.

Given ¢, 0 < ¢ <1, let a > ar be such that A(a) < ¢°/4 and let B = B,, be the
event B = {A,(a) < ¢/2}. Then

P.(B’) = P.{An(a) > ¢/2} < 2¢7'E,{A,(a)} < ¢/2

for all n = 1 by Lemma 2. So, sincg F.(2) < fx,,(a) and F(2) < A(a) for z < q, it
suffices to show that P,{B, sup,sq| Fr.(x) — F(x)| = ¢} — 0 as n — oo,
Let A p; = 1/nC,(x;) for 1 < i < n; and define K,, and K by

Kn(x) = Hi:a<xisx [1 - Am']

K(x) = exp{— f dA(z)}>

forx=aandn =1 Then 1 — F,(x) = [1 — F.(a)]K.(x) and 1 — F(x) =
[1 = F(a)]K(x) for all x = a and n = 1. If B occurs, then

| Fu(x) = F(x)| = | Kn(x) = K(x) | + 3¢/4

for all x = a and n = 1 by simple algebra. So, it suffices to show that
SUPs=a| Kn(x) — K(x)| = 0 w.p.1 as n — o (on the space of (x;, ¥;), i = 1). In fact,
since K is continuous and each K, is monotone, it suffices to show that K,(x) —
K(x) w.p.1 for each fixed x, a < x < by (cf. Breiman, 1968, page 160).

Since sup,so| Fr — F,| — 0 « sup,>o| Gi(y) — G, (y)| w.p.1 as n — o and
since C is positive and continuous on the interval (ag, br), one finds that
SUPg<z<x| 1/Crn(2) — 1/C(2)| = 0 w.p.1 as n —  for all x, a < x < bg. So,

and

An(x) = Ana) = f dF3i(2)/Cal@) — f dF,(2)/C(2) = A(x) = Ala)

w.p.1 as n — o for a < x < bp. See Billingsley (1968, page 34). Since A is
continuous and A,, n = 1, are monotone, the convergence must be uniform on
a < x < b for any b < bp; and it follows that the maximum of \,; over any such
interval [a, b] approaches zero w.p.1 as n — «. To complete the proof, let

(12) R(a, %) = Yiacess 10g[1 = Ani] + [An(x) — As(a)]

for a < x < by and n = 1. Then, by expanding log(1 — \) in a Taylor series about
A = 0, one finds that there are intermediate points &,; for which |1 ~ &.| < A
forl<i<n,
| R.(a, x)l =% 2i:a<x,~sx é;?xfu -0
and
Kn(x) = eXp{_[An(x) - An(a)] + Rn(a’ x)}
— exp{-[A®) - A@]} = K@)

w.p.1 as n — o for a < x < bg. This completes the proof.
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CQROLLARY 3. If F Aand G are continuous and (F, G) € %,, then
sup| F, — F| - 0 <« sup | G, — G| in P,-probability as n — o,

COROLLARY 4. If F and q are continuous and (F, G) € %, then a, — «a in
P,-probability as n — «© and N,/N — 1 in probability as N — o.

COROLLARY 5. If F and @G are continuous and (F, G) € %, then
P.{nC,[x;] =1, for somei=n—1} -0
and
min{nC,[xp: 1 <i< (1 —¢e)n} - »

in P,-probability asn — o for all e, 0 < e < 1.

PROOFS. Corollary 3 is clear, and the convergence of a, to « in Corollary 4
follows. That N,/N — 1 then follows, since n/N — « w.p.1 as N — .
The second assertion in Corollary 5 follows from the relation

Filxo) — Fulxo — 1 = {1 — Fulxe — 1/nCalxe]
foralli=snandn=1.Let0<e<1land k= k(n,¢) =[(1 —e)n] + 1, where [-]
denotes the greatest integer function. Then 1/{1 — F,[xw]} is stochastically
bounded and max,<, £, (x;) — F,(x; =) — 0 in P,-probability as n — o, both by
Theorem 2. This proves the second assertion in Corollary 4. The first assertion
then follows from the second and its dual, obtained by reversing the roles of
(X, Y) and (1/Y, 1/X), by observing that nC,[x] = 1 implies that nCy[yi+1) — ]
=1forl=si<n-1.

REMARK 3. In the astronomy example, improved instrumentation might
change m*. In turn, this could change the definitions of Y, ag, and Fy, the
asymptotic value of F,,.

REMARK 4. Since the joint distribution H, depends on F and G only through
Fy and Gy, it is not possible to test the hypotheses a¢ < ar and bg < br using

(xl, yl), Tty (xn’ yn)-

5. Convergence on compact intervals. For 0 = a < b < o, let Y|a, b]
be the space of all functions f from [a, b] into R = (—, ®) which are right
continuous on [a, b), have left-hand limits on (a, b], and are continuous at b.
Endow 9][a, b] with the Skorohod topology, as described by Billingsley (1968,
Section 14). For each n = 1, define the stochastic processes X, and Y, by

Xa(t) = Vn[Fi(t) — F,(t)]
and
Ya(t) = Vn[GE(t) — G,(t)], 0<t<o,

where F* and G are as in (5); and note the change in the use of the symbols
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“X” and “Y.” Then (X,, Y,) is a random element with values in 220, ] =
[0, 0] X 2[0, ] for each n = 1. If F and G are continuous, then the conditional
distributions of (X,, Y,) given n converge

X, Yo,)=(X,Y), as n— oo,
where X and Y are jointly Gaussian processes on [0, ©) with continuous sample
paths and covariance structure
px(8, t) = F,(s) — F,(s)F,(¢), 0<s=<t<om,
(13) Py (s, t) = G, (s) — G,(s)G,(t), 0<ss=st<o,
and Pxy(s, t) = H (s, t) — F,(s)G,(t), 0=<s,t=<0c0,

Indeed, the convergence of the finite dimensional distributions of (X, Y,) follows
directly from the univariate central limit theorem and the Cramer-Wold device;
and the tightness of the distributions of the pairs (X,, Y.), n = 1, follows from
that of the components.

Observe that the covariance functions p., pyy, and p,, may be consistently

estimated.
Now suppose that F and G are continuous and that (F, G) € %. Fix values
of a and b for which ag < a < b < br and let

Wan(t) = Yi[A.(t) — A@®)] = [A.(@) — A(@)]}

t t
[ L x-voams [
(14) - L CCn (Xn Yn) an + . 02 Xn dC

+ X, (t)/C(t) — Xn(a)/C(a)
w.p.1 for a < t < b and n = 1. The processes W, ,, n = 1, are random elements
with values in Z[a, b].
THEOREM 3. Suppose that F and G are continuous and that (F, G) € %. If
ag<a<b<bp, then
Wen= W= Wi+ Wi, as n— o,

where
Wi(t) = f C(s)™%[X(s) dG,(s) — Y(s) dF,(s)]
and
a — & — X(a) < <
Ws(t) = C(@) Ca)’ a<t=<hb.

ProOF. First observe that C = G, — F, is positive and continuous on [a, b],
since ag < @ < b < byp. So, expressions like X/C and [; C2X dG, define
continuous transformations from Z[a, b] back into Z]a, b]. Since weak conver-
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gence is preserved by such continuous transformations, it suffices to show that

) S
i ¥ -2
. oo ZdFi- | C7Z.dF,

in P,-probability as n — o, with Z, = X, — Y,, n = 1. To see this, one may
replace C,, F%, and Z, by other random elements, also denoted by C,, F3,
and Z,, which have the same joint distribution and converge to C, F,, and
Z =X - Yw.p.l.as n — x. See Skorohod (1956). That A, — 0 w.p.1 then follows
from Theorem 5.5 of Billingsley (1968) by considering a sequence ¢,, n = 1, of
random variables for which the supremum is nearly attained. The details are
omitted. For a closely related argument, see Breslow and Crowley (1974, pages
447-448).

Of course, one would like to set a = ar in Theorem 3. If a¢ < ar, then this is
possible. If ag = ar, then the limiting process may not be defined.

A, = SUDg<i<p -0

THEOREM 4. Suppose that F and G are continuous, that (F, G) € %, and
that ag = ag. If

1
15 f —dF < ®»
(15) a G
then X(a)/C(a) — 0 and Wi(t) — [i, C*[X dG, — Y dF,] in probability as
a | ap, for ap <t < bp. Conversely, if (15) fails, then the variance of W1(t) diverges
to® as a | ar for any t € (ar, br).

PROOF. Recall that C = a7 'G(1 — F), so that C(z) ~ a™'G(2) as a | ar.

Suppose first that (15) holds. Then the variance of X(a)/C(a) is at most
C(a)™®F,(a) < [1 — F(a)]™? [, (1/G) dF, which tends to zero as a | ar. Next,
write Wi = W$, — W, where W§1(¢) = [L C2X dG, and W, = [ C?Y dF,
for ar < a < t < br. Thus, to show that lim W$(¢) exists in probability for all
t > ap, it suffices to show that the variances of W¢,(¢) and W$,(¢) remain
bounded as a | ap for some t < ap. If ar < a < z < by, then the variance of
Wii(2) is

oi(z) = 2 f f C()*C(s)pxe(s, t) dG,(s) dG, ()
(16) < 2B f [ f G(t)‘sz(t)]G(s)'zF*(s) dG(s)

< 2B f G(s)°F,(s) dG(s) < 4a7'B f (1/G) dF

for some constant B; and the last line is finite, by assumption. A similar argument
shows that the variance ¢3(z) of W$;(z) remains bounded as a | ar, if (15) holds.
If (15) fails, then a careful examination of (16) shows that ¢2(z) — o
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as a | ar. 03(z) may either diverge or remain bounded, depending on whether
[§ (F/G) dF = o or < o, but one may show that ¢3(2z)/s1(z) — 0 in either case.
That the variance of W$(z) diverges is an easy consequence. The details are
omitted.

6. Convergence at an endpoint. In this section, we suppose that F and
G are continuous, that (F, G) € %, and that (15) holds. In this case, the limiting
distributions developed in the last section are valid when a = ag. To avoid
trivialities and simplify the notation, we suppose that ag = ar = 0 throughout.
Fix a value of b for which 0 < b < by and define processes

Wa(t) = Vr[A.() = A()]
and .

Z,(t) = Vn[F,(t) = F@t)], 0st=<bn=1.
Then W, and Z, take values in [0, b] w.p.1 for all n = 1.

THEOREM 5. Suppose that F and G are continuous, that (F, G) € %, that
(15) holds, and that ag = ar = 0. Then W, = W and Z, = Z, as n — », where

W(t) = fo C[X dG, — Y dF,] + X(t)/C(t)

and
Z(t)=[1-F@)]W(t), 0<t=<hb,
with the convention 0/0 = 0 when t = 0.
ProOF. That W is well defined follows from Theorem 4. To show that

W, = W as n — =, it suffices to show that W,(a) — 0 in P,-probability as first
n — o and then a — 0. See Theorem 3. Now, as in (14),

W.(a) = J; (1/CC) (X, — Y,) dFy + j; C'dX,

= I,(a) + II,(a), say,

for a > 0 and'n = 1. Given n = 1, I, (a) is a normalized sum of i.i.d. random
variables, and E,{II,(a)?} < [§ C~2 dF, which is independent of n and tends to
zero as a | 0, since [ § C2 dF, is finite. Thus, II,(a) converges to zero in
P,-probability as n — ® and then a | 0. Next, recall that dA, = dF}/C, and
write

| I.(a) | sf C'| X, — Y,|dA, < B,.,.,f C'dA,
0 0

for a > 0 and n = 1, where B,, = sup;<,| Xn(t) — Y,(t)|. Now B,, — 0 in
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P,-probability as n — « and then a | 0; and, by Lemma 2, E,.{f, C™* dA,} =
[§ C™' dA, which is independent of n and tends to zero as a | 0. This completes
the proof that W, = W and n — .

Now consider Z,,. With R, as in (12),

an Zn(t) = [1 = Fo(8)] fn{exp [—1— W.(t) — Ra(0, t)] - 1}

Vn
for 0 <=t < bandn = 1. So, it suffices to show that max,<, vn | R.(0, t)] - 0in
P,-probability as n — . Now, max;< | B.(0, t)| = | R,(0, b) |; and

(18) an(O, b)' = Bn zi:x;sb 1/{ncn(xi)[ncn(xi) + 1]},

where B, = max{{;?: x; < b} and £,;, 1 < i < n, are intermediate points as in
(12). Now, B,, is bounded in P,-probability, by Corollary 3; and the expectation
of the sum in (17) is at most (1/n) [§ C~2dF,, as in the proof of Lemma 2. (The
conditional distribution of nC,(x;) — 1 given n and x; is binomial [n — 1, C(x;)]
for1 <i=<n.) Thus, R,(0, b) = 0,(1/n) = 0,(1/ Vvn)in P,-probability to complete
the proof.

REMARKS 5. By Corollary 5, Theorems 2, 3, and 5 are valid if F,, is replaced
by the modification F? of (9), provided the constants ki, ..., k.. are bounded.
Indeed, Corollary 5 asserts that P, {F%(z) = F,(z) for all z < b} — 1 as n — o for
any b < by, in this case.

6. There is a dual to Theorem 5. Suppose that F and G are continuous, that
(F, G) € %4, that bg = br = =, and that [§ 1/(1 — F) dG < o. Let U,(t) =
Vn[G,.(t) = G(t)],t = 0, n = 1, and regard U, as random elements with values in
9a, =], where a > ar = ag. Then U, = U, where

U(t) = —G(t){ ft C%(X dG, — Y dF,) - Y(t)/C(t)}

fora<t< oo,

7. The condition (15) is not surprising, since it is necessary for the convergence
in distribution of vn X estimation error even in the case when G is known. In
this case, the nonparametric maximum likelihood estimator of F is F,(t) =
[Yimse 1/G(x:))/[E1 1/G(x;)] for t = 0 and n = 1; and it is easily seen that

Vn[F,(t) — F(t)] converges in distribution for all ¢ > ar = ag iff (15) holds.

8. If (15) fails, then other limiting distributions may obtain. Suppose, for
example, that F is continuous, that ar = 0, and that G = F¢, where 1 < ¢ < oo,
Let 6 =1/(1 + ¢). Then n®[F,(t) — F(t)] has a limiting stable distribution for all
t > 0 for which F(t) < 1. To see this, fix ¢ and write

() = L, ["h-Saz,-
An(t) - Zi:x;st nC(x,-) + 0 [1 C:l dAn = In + II,,.

Then | IT, | < max,<, | Ca(s) — C(s)| [é(1/C)dA, = 0,(1/¥n) by Lemma 1 and
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properties of empirical processes. Let z; = (1/C(x;)) [ (x;) for i =1, 2, ---.
Then z;, 25, - - - are i.i.d. with common mean A (¢). Now, it is easily seen that z;
is in the domain of attraction of a stable distribution with characteristic exponent
¥y=(1+ ¢)e andAskewness parameter 1, in Feller’s (1966, pages 540-543)
terminology. So, n®[A,(t) — A(¢)] has a limiting stable distributipn asn— o, (In
fact, the same stable distribution is obtained for all ¢.) That n®[F,(t) — F(t)] has
a limiting distribution, now follows from (17) by using a stable distribution to
bound 22 + ... + 22 in (18).
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