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A NOTE ON SELECTING PARAMETRIC MODELS IN
BAYESIAN INFERENCE!

By WiLLIAM S. KRASKER

Harvard University

This note is concerned with how to replace assessment of a “true” prior
on a nohparametric family of distributions—which is usually infeasible—by
assessment of an approximating prior with support in a parametrized subfam-
ily, in such a way that the posterior derived from the parametric model is
close to the “true” postetior. In general it is not sufficient that the approxi-
mating prior be close to the true prior in the sense of weak convergence, and
we characterize the additional aspect of the true prior that must be considered
explicitly.

.

0. Introduction. This paper is coricerned with the situation in which a
statistician observes data that are believed to be independently and identically
distributed according to one of a family of density functions {p(- | »)}, where w
ranges over a parameter space . Ideally, a Bayesian would proceed by placing a
prior on w; and applying Bayes’ rule to derive the posterior. All inferences about
the true distribution of the data would be based on the posterior for w.

In many applications it is impossible to execute this plan because © is too
complex for the statistician to be able to specify the prior distribution completely.
(For example, Q might index the set of all continuous univariate distributions).
In these cases one generally restricts attention to a subset of { that can be
parametrized by a k-vector 6, and places a prior on . This trivially induces a
prior on Q that differs from the “true” prior, though one might hope that the
approximation is close. (As Diaconis and Ylvisaker (1983) point out, the term
“true prior” raises some philosophical issues. We use the term simply to mean
the prior that one would place on © if placing a general prior on that set were
easy.) Two questions arise. First, if the approximate prior is indeed close to the
true prior, will the posterior derived from that approximation necessarily be close
to the true posterior? Second, what should “close” mean in this context?

In the next section we will argue that the topology of weak convergence
(convergence of the integrals of all bounded continuous functions) is a reasonable
answer to the second question, for both the priors and posteriors. However, with
this choice of topology the answer to the first question is no, and, perhaps
surprisingly, this fact does not hinge on the potential complexity of Q. For
example, let {p(- | w)} be the family of univariate normal densities with mean 0
and standard deviation w. Suppose the observed x equals 0. If the true prior on
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w is a unit mass at w = 1, then obviously so is the true posterior. However, if our
approximate prior has mass 1 — ¢ at 1 (so that it is “near” the true prior in terms
of weak convergence) and mass ¢ at some w very near 0, then the resulting
posterior will differ greatly from the true posterior. A smoothed-out version of
this example, satisfying assumptions (A1) — (A4) in Section III, could be made
to exhibit the same discontinuity. We will see that with those four assumptions,
discontinuities are possible because the density of x, conditional on a é-neighbor-
hood of w, need not converge to p(x | w) uniformly in w as 6 — 0. The main result
of the paper—which holds for very general Q—is that if one’s prior is close to
the true prior, and places all its mass on a subset of Q where the convergence
just described is uniform, then the posterior will be close to the true posterior.

Previous studies, such as Stein (1965) and Diaconis and Ylvisaker (1983),
have considered the question of whether approximately correct priors lead to
approximately correct posteriors. However, these studies essentially define the
separation between priors in terms of the distance between the corresponding
posteriors, and were not intended to answer the question posed here, which is
how to find guidelines for achieving an adequate approximation.

I. Formal setup and notation. Our formal framework is just the standard
one for Bayesian statistics (see Lindley, 1972, page 1), consisting of a measurable
space (S, &), called the sample space, and a collection of probability distribu-
tions on that space indexed by a set Q. It is customary to assume that those
distributions have density functions p(- | w) with respect to some measure g, in
the sense that

(1.1) Pr{x € B} = j;p(xlw) du(x), (w € Q).

In a Bayesian analysis one also assumes that there is a ¢-algebra % on Q, and a
prior P on 4. Having observed x € S, one applies Bayes’ rule to form the
posterior P, on (Q, 4) according to

_ Jap(x|w) dP(w) _ p(x|A)

@2 A = e P~ plw) LA (AED),
where
1
(1.3) p(x|A) = @A) J;p(xlw) dP(w)
and
(1.4) p(x) = p(x| Q).

As we mentioned in our informal introduction, the difficulty in applications is
that © may be too complex for the statistician to be able to specify fully the prior
P. Consequently, he is forced to approximate P by a distribution P that is easier
to describe and update. Most often he simply restricts attention to a subset {w,}
C Q parametrized by § € R*, so that P is completely specified by a prior on 6.
(For example, Q might index the set of all continuous distributions on IR, while
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{w,} indexes only the normal distributions.) Typically the support of P will have
P-probability zero. An alternative is to try to approximate P by a Dirichlet
process (see Ferguson, 1973, 1974), which is quite restrictive, or by a mixture of
Dirichlet processes (which is very general; see Dalal and Hall, 1980). The support
of such a prior is large, but this is not an advantage in the present context (and
in fact makes it harder to meet the hypotheses of Proposition 1). Though the
support of the true prior P is usually all of , we see no reason why it is inherently
desirable that the support of P be large. The sole criterion for choosing P should
be whether or not P, is near P,.

The theory presented in the next two sections grew out of an attempt to
understand the controversy over Bayesian robustness. Huber (1980, 1981), Ham-
pel (1973), and Rubin (1977) have criticized the so-called Bayesian approach to
robustness, which, according to Huber (1981, page vi), “confounds the subject
with admissible estimation in an ad hoc supermodel, and still lacks reliable
guidelines on how to select the supermodel and the prior so that we end up with
something robust.” Qur original goal was to develop guidelines for selecting
robust models, but, partly as a result of Dempster’s (1975) arguments, we have
decided that the Huber-Hampel robustness theory is not relevant to the Bayesian
case. Notions like influence, sensitivity, and breakdown point, which comprise
much of the theory of robust parametric estimation, violate the likelihood
principle by involving the sample space at points other than the observations.
They therefore seem out of place in a Bayesian analysis, even one that explicitly
recognizes that the model is only an approximation. (Diaconis and Freedman
(1983) take an intermediate position, arguing that consideration of the effects of
hypothetical samples on the posterior is helpful for determining whether a
particular prior is really a correct quantification of current knowledge.) The
possibility of gross errors affects a Bayesian analysis only through its effect on
the true prior P. In determining whether P is an adequate approximation to P,
the sample space should enter only through the observed x.

II. Priors and posteriors. We will metrize both the set of priors on
(2, %) and the set of posteriors with the Prohorov metric, which induces the
topology of weak convergence. In order to do this we will assume that Q is a
separable metric space (Q, d) with Borel sets 4. For any A C Q and ¢ > 0, let

(2.1) A°={w € Q: d(w, A) < ¢}.
The Prohorov metric = is then defined by
(2.2) (P, P) = inf{e > 0: P(A) < P(A°) + ¢ for all measurable A}.

(See Huber (1981) for a proof that = is symmetric, positive definite, and satisfies
the triangle inequality). The statement = (P, P) < ¢ is equivalent to the statement
that

(2.3) P(A“) — e < P(A) < P(A°) + ¢

for all measurable A, where a superscript ¢ denotes complementation; this shows
the sense in which P approximates P.
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For the posteriors, the Prohorov metric can be justified on decision-theoretic
grounds. For example, if a decision maker’s utility function U(D, w) is bounded
and satisfies a Lipschitz condition in w, uniformly in the decision D, then a
decision that is optimal relative to P will be nearly optimal relative to P, if
7 (P, P) is small. This fact is a straightforward corollary of our Lemma 1; stronger
results are contained in Kadane and Chuang (1978).

For the set of priors, our choice of the Prohorov metric derives from consid-
eration of the limits of one’s ability to approximate a true prior P by a parametric
model. Note that if P is specified by a parametric model {w,} and a prior on 4,
P({w,}) will always be one even though P({w,}) will generally be zero. This shows
that it is too much to ask that P(A) be near P(A) for every measurable A, or to
put it differently, it is generally not feasible to approximate P closely in a strong
topology like total-variation distance. On the othér hand, with sufficiently
detailed modeling one might hope to be able to satisfy the inequalities in (2.3)
for all measurable A, even if ¢ is small.

III. Guidelines for model selection. Throughout this section, in which
we develop some guidelines for model selection (Proposition 1), the observation
x is assumed fixed, ’

For 6 > 0 and w € Q, define N;(w), the “6-neighborhood of w,” by N;(w) =
{w € Q: d(w, w') < 6}. Also, for any Z € 4, denote by P, the conditional
distribution of w, given Z. It is easy to show that #(Pz, P) =1 — P(Z). Denote
by P, the distribution of w given Z and x, and note that

Pz.(A) = J;p(xlw) sz(w)/J;p(xlw) dPz(w).

We will make the following regularity assumptions about the true prior.

(A1) P(N;(w))>0forallwe& Qand 6> 0.

(A2) lim;_op(x ] Ns(w)) = p(x | w) for almost all w € Q.

(A3) For any 6 > 0, p(x| N;(w)) is bounded and satisfies a Lipschitz condition
in w.

(A4) p(x)>0.

Assumptions (A1) and (A4) guarantee the existence of P, and p(x | N;(w)), as
defined by (1.2) and (1.3). (A3) is a smoothness condition on P whose use stems
from the property proved in Lemma 1.

Condition (A2) will certainly hold if p(x | w) is continuous in w; for example if
the sample space is discrete and the metric d on Q induces the topology of weak
convergence (or a stronger topology) on the associated probability mass functions
p(- | w). (Indeed, in this case p(x| w) is uniformly continuous in w.) However, if
{p(- | w)}ueq is the set of continuous distributions on R, then p(x | w) will not be
continuous in w. One would nevertheless expect the true prior P to satisfy the
weaker condition (A2). Actually, (A2) enters our analysis only through one of its
well-known implications, that there are subsets of Q of arbitrarily high P-
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probability (and hence of arbitrarily high P,-probability) on which p(x | N;(w))
converges to p(x | w) uniformly as 6 — 0.
We can now state our main result.

PROPOSITION 1. Assume (Al) — (A4). Let ¢ > 0, and let Z be a measurable
subset of Q, with P.(Z) = 1 —e, on which p(x| N;(w)) — p(x | w) uniformly in w
as 6 — 0. There exists n > 0 such that if (P, Py) < 7 and Pz) = 1, then
w(P,, P,) < 2e.

If S is discrete then, because p(x | w) is uniformly continuous in w as mentioned
earlier, one can take Z = Q. Hence, for a discrete sample space the discontinuity
that motivated this paper does not arise and so it suffices to have P close to P to
ensure that P, is close to P,. As the example in the introduction demonstrates,
this is not true for a continuous sample space. However, the proposition provides
guidelines for choosing a parametric model {w,} and a prior on 8 by showing what
additional aspect of the true prior P must be considered explicitly. (Note that,
although the approximating prior P chosen as indicated by the proposition will
always be w-close to P, it will depend on the observation x, which is taken as
given. However, P is really just a device for facilitating the computation of a
posterior that is close to the true posterior. The true prior P does not depend on
x.) If, say, Q indexes the set of all continuous univariate probability distributions,
then P might be assumed to be such that the convergence of p(x| N;s(w)) to
p(x | w) is slow only if the density p(- | w) has a “spike” at x. One could therefore
let Z index those densities that are both bounded by K and satisfy a Lipschitz
condition with constant K, letting K be large enough that P,(Z) is greater than,
say, ¢/2. According to the proposition, if Pz is closely approximated by a
parametric model p satisfying P2z) = 1, then w(ﬁ,, P.) will be < ¢. More
specifically, in cases in which the true density is thought to be nearly normal
with high probability, one could let the parametric model be the family of normal
distributions, restricting the scale parameter to be bounded away from zero so
that P(Z) = 1.

The following lemma, which is used in the proof of Proposition 1, is probably
well known (and is certainly closely related to the fact that the Prohorov and
bounded-Lipschitz metrics generate the same topology; see Huber, 1981, page
33). However, we have not seen it stated in the literature.

LEMMA 1. Let f: Q — R be nonnegative, boundegl by M, and satisfy a Lipschitz
condition |f(w) — f(w’)| = Kd(w, ). If P and P are probability measures on
(Q, P) satisfying w(P, P) < ¢, then

ffdPsffdP+e(K+M)
A A€

for all measurable A.
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PROOF. Let x4 be the characteristic function of the set A. Then

) M
J;fdP=ffodP=J; P(fozt)dt=J; P(fxs = t) dt.

The hypotheses of the lemma imply {fx. = t}° C {(f + Ke)xac = t}. Using the
definition of the Prohorov metric it follows that

P(fxazt) < P(ifxa = t}*) +e< P((f+ Ke)xa- = t) + &

Hence
M
ffdpsf P((f + Ke)xa-=t) + edt
A 0
< f f+Ked13+eMsf fdP + (K + M). O
A° A°
PROOF OF PROPOSITION 1. From the hypothesis P,(Z) = 1 — ¢ it follows

that 7 (P, Px) <1 — P,(Z) < e. It therefore suffices to show that
[ap(x]) dPz _ [ap(x|Ni() dP; ¢

®.1) fap(x|-) dP;z ~ fop(x|Ns(-)) dPz
fA‘p(xINa( .)) dP 28
3.2 [
®2) fszp(xlNa( ) dP
_ Jaeplx]-) dP
39 = fap(x|-) dP

for all measurable A and some & when P is close enough to Pz and P(Z ) =1.
The outer expressmns in this chain of 1nequaht1es imply that 7r(Px, P;,) <e,
from which 7 (P, P,) < 2¢ follows. So let {P,} be an arbitrary sequence that is
w-convergent to Py and satisfies P,(Z) = 1; we have to show that for some
sequence {6,}, (3.1)-(3.3) hold for large n. Using (A3) and Lemma 1, choose 6,
going to zero slowly enough to preserve the inequalities in line (3.2) and also
keep the denominator in (3.2) bounded away from zero. Due to the uniform
convergence on Z, (3.1) and (3.3) will also hold for large n. 0O
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