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ASYMPTOTIC EQUIVALENCE BETWEEN THE COX
ESTIMATOR AND THE GENERAL ML ESTIMATORS
OF REGRESSION AND SURVIVAL PARAMETERS
IN THE COX MODEL!

By KENT R. BAILEY
National Heart, Lung and Blood Institute

The usual approach to estimating regression parameters in the Cox
regression model uses the partial likelihood. If the covariates are not time-
dependent, the model can be stated in terms of the survival function, which
allows one to derive a generalized likelihood containing both regression and
survival curve parameters. It is shown that, in the absence of ties, an estimator
results which is asymptotically equivalent to the partial Jikelihood estimator.
A joint information matrix leads simply to standard errors for both regression
and survival curve parameters which are asymptotically correct.

Introduction. The empirical cumulative distribution function and the Kap-
lan Meier product-limit estimator [12] are maximum likelihood estimates (in the
generalized sense of likelihood) of the distribution function for complete or right-
censored data, respectively, when the underlying distribution is completely un-
restricted. Johansen [10] gives a formal argument.

The Cox model [7] implies a family of survival distributions

(1) S(t]z) = (So(t))=r?=),

if the covariates z are assumed not to vary with time. Cox assumed the arbitrary
survival function Sy to be continuous, but if this assumption is dropped, then the
general maximum likelihood argument leads to a joint maximum likelihood
estimate of @ and S, based on a discrete distribution S* which places mass only
on observed death times. The likelihood function is formally identical to that
presented in Prentice-Gloeckler [16], in Wthh they discuss the grouped form of
the Cox model.

It is the purpose of this note to show that a) maximization of the joint
loglikelihood of 8 and S* when there are no ties (see equation (2)) leads to an
estimator Bmw of B which is asymptotically equivalent to the partial likeli-
hood estimator ﬁo of Cox; that b) the asymptotic joint distribution of ﬂML and
AML(t)[= —-log(S *(t))] is equivalent to that of the estimators studied in Tsiatis
[17] and Bailey [4]; and that ¢) the joint information matrix [see (12) (14)],
when inverted, yields an asymptotically correct covariance matrix for Bz, and
AML(t) for arbitrary t. (This provides the simplest approach to determining
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confidence intervals for survival curve estimates associated with the Cox model.)
Thus in this case, simultaneous estimation of a large number of nuisance
parameters does not lead to difficulty.

Preliminaries. Let {(Z;,, T, 6;),i=1, ---, n} be observed, where Z; is the
covariate vector for the ith person, T¥ is the minimum of the survival time T}
and the censoring time 7;, and §; is the indicator of observed failure. Let us
assume no ties—i.e. all times of death are distinct. We make no distributional
assumptions about the Z’s or the 7’s. Let (1) hold, and let S* represent any
discrete survival distribution which places mass only at observed death times
Tay, -+, Tw. Let N\; = log[S*(T;))/S*(T;-1))] represent (—) the ith increment
in A* = —log(S*). Assuming no ties, we can express the “log likelihood function,”
in the sense of generalized likelihood, as .

(2) log (B, S*(t)) = T, [N Yjer: exp(8’Z;) + log(1 — exp[\exp(8’'Zy)])],

where R/ is the set of individuals at risk at ¢, who survive the ith epoch, and Z;,
is the covariate vector for the individual dying at ¢;;,. Note that the ith parameter
A\; occurs only in the ith summand in (2), and is free to range in (—o, 0).
Therefore, (2) can be maximized overall by maximizing each term in (2) sepa-
rately over A;, and then maximizing over 8. The explicit solution is

3) A = exp(—8'Zy)log(1 — c),

where ¢; = exp(B8'Z))/Yjer, €xp(8'Z;), and R; denotes the risk set at t;. The
maximized loglikelihood in 3 is

(4) log L(B, S*(t]B)) = Tk, [loglc;) + ¢ (1 — c)log(l — ¢1)]
which may be compared with the Cox partial loglikelihood
(5) lOg LCox(ﬁ) = Z?:] IOg(Ci)-

Notice that the second term in each summand in (4) is, to first order in c;,
independent of 8. The maximizer of (4) will be shown to be asymptotically
equivalent to the maximizer of (5).

The cumulative hazard function A¢(t) has a (generalized) MLE given by

(6) AML(t) = —Zk(” A,

where A, is given by (3), evaluated at 3 = ﬂML, and k(t) is the number of deaths
observed prior to t. It will be shown that this is asymptotically equivalent to the
estimator

(7) Ao(t) = T8 1/[Tjer, exp(Bo’ Z))),

where (3, represents the partial likelihood maximizer. The estimator (7) is one
commonly used estimator of A,(t). (See [7]).

Asymptotic equivalence. Let Uy(8), —Vo(8), UmL(8), and —VuL(B) rep-
resent the first and second partial derivatives of (5) and (4) with respect to 3.
Let D;(8) = Yjer, exp(B8’Z;), and let ,BML, ,30, Am, and Ao represent, respectively,
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the maximizers of (4) and (5), and the estimators (6) and (7). Make the following
assumptions:

Al. | Z| <M< wforalli

A2. n7 Y EVyB) || > ¢, > 0 for all sufficiently large n.

Note that A2 is an assumption about censoring, survival, and the dispersion
of Z. Then the following theorem holds.

THEOREM 1. n'2(Bumy, — Bo) — 0.

To prove Theorem 1, the following two lemmas are useful.

LEMMA 1. n™V2| Uw, — Us| —, 0.

LEMMA 2. n7'|| VyL— Vo —, 0.

The proofs of these lemmas are straightforward, and are given in Appendix 1. As
shown in Bailey [4], assumptions Al and A2 imply that Vo(B) is positive definite
for all sufficiently large n with probability 1, and that 3, exists, is unique,
consistent, and has the Taylor representation

(8) Bo — B = [V*]'U(B),

where the ith row of V* is the ith row of V|, evaluated at an ith intermediate
point 3} between $ and f,. By virtue of Lemma 2 and A2, the same consistency
argument and Taylor expansion can be used for By, so that

nl/z(BML = B) = [0V [TV UmL(B)]
= [n7'VE + 0,(D] ' [n7?Us(B) + 0,(1)],

where we use the consistency, of Bo and Bwmy, both Lemmas, A2 and the equicon-
tinuity of V; and V. near 8. Theorem 1 follows.
Now let us further assume that

(9)

A3. So(T)-n~' ¥, I{r; > T} > ¢, > 0 for all sufficiently large n.
Then the following theorem holds.

THEOREM 2. sup,<rn/?| Amn(t) — Ao() | =, 0.

To prove Theorem 2, note that this difference can be written as
n'?) Amu(e) = Ko(®)] = 2| T2 i = D7 (B)) |

(10)

n'?| o9 N(Bw) — D (Buu)] |

+ 02| 2 (D7 (Bww) — D Bo)] .
Let m; = card(R;). By assumption Al and (3), and if Bwm is restricted to a compact
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set, the first RHS term in (10) has the bound
(11) first RHS term = n'20[| 35 m;?|].

By assumption A3, the RHS of (11) is O,(n""?) for t < T. By the consistency of
Bmr and B, Theorem 1 and the bounded differentiability of Ao(t|8) in B, the
second RHS term in (10) is 0,(1), which proves Theorem 2.

Bailey [4] and Tsiatis [17] derive the joint asymptotic distribution of 8, and
f&o(t), including weak convergence. Neither handles the case of fixed censoring
times. This case is covered, however, by the counting process framework of Gill
[see 2]. The present work shows that in this fixed censoring case, the asymptotic
properties of the estimator [Bo, f&o(t)] are enjoyed by the general ML estimator
as well.

Joint information matrix. One of the most appealing features of the general
ML approach to the Cox model is the natural way in which the asymptotic joint
covariance matrix for 3 and A(¢) can be estimated, by inverting the full second
derivative matrix based on (2). The cumulative hazard function Am(¢) is simply
the partial sum of the parameters \; defined in (3), up to the index of the last
death prior to ¢, denoted k(t). Let [; be the ith term in (2). Then with ¢; =
Yier Z,Z] exp(8'Z;), N; = Y er, Zjexp(B'Z;), and B; = 1 — exp[\exp(8'Z;)], the
second partials are:

0°L/8BB’ = Ni(q; — Z:Z!exp(8'Z«»))Bi")

— NZiZ!exp(28'Zw»)Bi*(1 — By),
8%Li/dBoN; = N; — Zwexp(8'Zw)Bi

— NZwexp(28'Zw»)Bi*(1 — By),

(12)

and
6211/(”\? = -—exp(2B’Z(i))Bi'2(1 - Bi)-

Noting from (3) that X\;(8) = D' (8) + o(m7"), and that B:(\;) = c;,
(3%:/3BaB )15, = —Di'qi + O(mi"),
(13) (9%L/8BaN;) 5, = N; + O(1), and
‘ (0:/ON}) 5, = —=DE[1 + O(mi™)).

All cross partials involving A; and A; are zero, as noted earlier. Therefore, the
inverse of the matrix of second partlals of (2) evaluated at Ay, can be approxi-
mated from (13) as follows:

—I" | iy, = iy [0%/0808" — (8%/0BON)/9%/ON}]
Val(l + o(1)),
—I™ |4, = =Va'N:D7% + o(mi?), and

i

(14)

—D |4y, = [6;D7* + DP2N{ V5'N;D*|[1 + O(mi™)].
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It is important to note that the error terms in (14) are not probabilistic. The first
line of (14) shows the consistency of I?% (8, Amp) for estimating the covariance
matrix of 8. Let 1, be the vector of length k with one in the first k(¢) components
and zero thereafter. Then Ami(t) = 1/ Amr. The estimates of cov(Bmr, Amu(t))
based on (14) become:

cov(Bur, Ame(t) = —=I*V'1, = V5! 3, NiD72 + o(n™), and
(15) Var(AML(t)) = _lt’IA.\'lt
= {zfltl) D;‘Z + [Ef(tl) ND 2] VOI[Zk(t) ND_Znil + 0(1)}

In Bailey [4], the asymptotic covariance matrix for 3, and Ao(¢) was shown to
be

_(EVa” E[VTT®)
(16) wie) = (r(trE[Vor‘ vt + P(t)'E[Vo]_lr(t))
where
I't) = J; g(s)ho(s) ds,
Y(t) Ef h(s) d,(s),
17 ’

g(s) =X, Zjexp(B'Z))S(s| Z;)/ X i, exp(B'Z;))S(s| Z;),
h(s) = 1/[X, exp(8'Z;)S(s| Z;)]?°, and

d.(s) = =X, dS(s|Z)).

The formulae (16, 17) were derived in the case of no censoring, but apply to
censored data with the replacement of S(s|z) by the censored survival function
everywhere in (17). The sums in (15) are the natural “estimators” of the integrals
in (17) (except that 8 is unknown). The “consistency” of these estimates can be
proved by arguments along the lines of Tsiatis [17], or Gill [9]. Substitutions of
Bwm into (15) preserves the asymptotics, by virtue of the consistency of B,

Conclusion. The general maximum likelihood approach leads to a joint
likelihood function (2) for 8 and Aq(t) in the Cox model. Although there is no
general theory which would lead to asymptotic results, the joint estimates
obtained have the same asymptotic properties as the partial likelihood estimator
and any of the commonly used estimates of the cumulative hazard function, in
the case when no ties occur. While numerical studies suggest no small-sample
advantage to the GML estimates, there is some economy in obtaining standard
errors for the cumulative hazard function estimator. It is also of theoretical
interest that the simultaneous estimation of 3 and a very large-dimensional
nuisance parameter is possible without any asymptotic cost.
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APPENDIX

Proof of Lemmas 2.1 and 2.2 The proofs will be given in the case of no
censoring for convenience, but extend almost without change to the censoring
case.

To prove these Lemmas, first compute Uy, and Vi, from (2) as

(A.1) Um(B) = =Xy (Zi — Z)[c7'log(1 = )],
and
Vmu(B) = iy {—ci'log(1 — ¢) Vi
=[(1 = c)™" + ciMog(l = c)Z: = Z))(Z: — Z))'},

where

Z = ZjeR,- Z; exp(ﬁ,Zj)/ZjeRi exp(B’'Z;).
and

Vi= EjeR,» (Zj - Zi)(Zj - Zi)’exp(ﬁlzj)/zjeﬂ,- eXp(ﬁ'Zj)-
The corresponding formulae for U, and V, are:
(A.2) Uo(B) = XL, (Zi — Z)) and Vo(8) = X, V..
Note that for m; > 2exp(2 || 8 || M), by assumption Al,
| —cilog(l —¢;)) — 1] <¢;, and

(A.3)

(1 —c)™ + cillog(l — c) | < 2.
In any case, ¢; < [1 + exp(—2|| 8 || M)]7", so that
(A.4) | —ci'log(1 — ¢;) — 1] = 0(1),
and

[(1—c)™" +ci'log(l —¢;)| = 0(1).
Therefore, summing over all i, with m, = [2exp(2 || B || M)],
| Um — Usll < 2M[Z5™ ¢ + moO(1)] = O(log n), and
| Vm = Vol < 4MP?[3 T72™ ¢ + moO(1)] = O(log n),

which establishes both lemmas. When there is censoring, the same bounds (A.3)
and (A.4) apply, and the sums (A.5) involve fewer terms, so the same order of n
result holds.

(A.5)
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