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OPTIMUM AND MINIMAX EXACT TREATMENT DESIGNS FOR
ONE-DIMENSIONAL AUTOREGRESSIVE ERROR PROCESSES!

By J. KIEFER AND H. P. WyYNN

University of California, Berkeley and Imperial College, London

A theory is developed following work by Williams (1952) and Kiefer
(1960) for exact treatment designs in one dimension in which the errors are a
stationary process. It is shown that the designs which achieve the minimax
value of any of a wide class of functionals on the information matrix for
estimation of treatment differences have a special property. If the process is
autoregressive of order p then a random piece of the design of length p + 1
exhibits uncorrelated treatment values. Such designs can be formed using full
length cyclic error-correcting codes of a suitable order. A new technique is
developed for classifying the ergodic combinatorial structure of exact designs
of arbitrary or infinite length. It is shown that all designs are, to pth order,
generated by a finite number of sequences with finite length. The classification
is given explicitly up to order 3. The method is used to find asymptotically
optimum designs for different processes. It is also shown that the designs can
be achieved to within an arbitrarily good approximation as the realization of
an ergodic Markov chain of sufficiently high order.

1. Introduction. The problem of laying treatments out in a line, or in time,
so as to obtain good estimation of between-treatment contrasts when the error
process is autocorrelated was first systematically studied by Cox (1951) and
Williams (1952). One of the present authors, Kiefer (1960), extended the results
of Williams and proved a number of optimality results, some of which were
conjectures from these earlier papers. In particular, first and second order
autoregressive processes were studied in some detail. The present paper extends
these results using a flexible formulation in which a general minimax property
can be established for certain special designs. Briefly, it is sufficient that in every
“window” of certain fixed length, every vector of treatments occurs once (or the
same number of times). We shall show that such designs can be formed using
full-length cyclic error correcting codes. These are an example of a pseudo-
random sequence used in communication theory.

Most of the related work in experimental design theory has been on two- and
higher-dimensional designs, often with added row, column, or block effects. We
mention particularly a recent paper by the authors, Kiefer and Wynn (1981).
The approach taken in that paper was somewhat different. The analysis was
based on the ordinary least squares estimator and restricted to a nearest neighbor
model equivalent to a first order moving average model. The models were more
complex, involving row, column and treatment effects. Here we carry out the full
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432 KIEFER AND WYNN

best linear unbiased (BLU) estimation but confine ourselves to an in-depth study
of the one-dimensional case. We should particularly like to acknowledge the work
of Martin (1977, 1979), and papers by Berenblutt and Webb (1974) and Duby et
al. (1977). A representative paper on sampling for continuous processes in which
there is moderate literature is Bickel and Herzberg (1979).

To start with, we formulate the problem on the circle rather than the line.
The extension to the line can be carried out straightforwardly but is best treated
in an asymptotic way and is left until Sections 6 and 7. ‘

Consider N units labeled by the letter ¢t (¢t =1, ---, N) situated in order
around a circle. To unit ¢ attach a random variable Y, (t=1, ---, N). Let the
Y, have a joint distribution having the autocorrelation structure

(1) Y, + p1Yt_1 + ...+ pN—lYt—N+1 =& (t= 1, ... ,N)

where because of the circulant nature of the set-up we identify unit —i with unit
N—-i (i=1,---,N). The “innovation” vector ¢ = (e, - - - , ex) © has mean and
covariance matrlx E(e) = 0, Cov(e) = o*Iyxn. Throughout this paper we shall
assume that the p, (r=1, , N — 1) are known. (Lemma 1 and the end of
Section 7 consider the p, as vanable From a practical point of view, this might
mean estimating the p, from the data and using those estimates to “adapt” the
BLU estimate for fixed p,). At this stage we make no restriction on the p,, but
later, for a corresponding process on the line instead of on the circle, a stationarity
condition is required. Whether ¢ is known is immaterial. The model is said to

be pth order (or less) if pp+1 = pp+2= -+ = pn—1 = 0. Usually, we shall treat the
order p(0 < p = N — 1) as fixed and note here that it will play a crucial role in
the construction of designs. Write Y = (Y3, -- -, Yy)T and take X, to denote the
N X N circulant matrix
T 1 pn-1 pN-2 - - - p1 |
3} 1 pnar . .
P2 p1 1
X, = . . .
1 pna
L_ADN—l . . R U1 1 ]

with p;= 0 for i > p. Then assuming the model is pth order (1) can be written:

(2) X, Y = e
Now assume that there are k treatments labeled 1, -- -, k, one applied to each
unit. With treatment i, associate an unknown constant o; (i = 1, - - - , k). Let [¢t]

denote the label of the treatment applied to unit t. The actual observation on
unit ¢ is then assumed to be W, = Y, + «;;. Denote by U the N X k matrix
describing the allocation of treatments so that its entries are

Us,=1 if[t] =1
=0 otherwise.

Thus, U has exactly one unity in each row, the other entries being zero. If
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W= (W, --., Wy)T, the full treatment model becomes
3) W=Y + Uq,
where « = (ay, -+, o) 7.

We shall be interested in considering the BLU estimates of contrasts among
the o; based on the observations W. Following Kiefer and Wynn (1981), we
consider a vector 6 of standardized treatment contrasts

0 = (Ik - k_le)a

where I is the k X k identity matrix and J, the & X k matrix of ones. Write
P = I, — k7'J}, and notice that this is the usual projection operator associated
with obtaining the treatment effects in one-way analy31s of variance. Multiplying
(3) through by X, and using (2) we obtain

X, W=X,Ua + ¢.
This is now in standard regression form and the covariance matrix for &, the
BLU estimate of q, is
Cov(a) = c2(U™XIX,U)7",

where we have assumed that Rank(X,U) = k. Define A = U"X] X, U. Thus the
BLU estimate of 6, 0 has covariance matrix

Cov(d) = ¢>PA~'P.

It is more tractable to work with
C = PAP

(ignoring ¢?). However, C is not in general an inverse of PA™'P. Writing B~ to
denote the Moore-Penrose g-inverse of a matrix B, we have (Zyskind, 1967,
Theorem 2)

(4) C¥(PA'P)-=C-D

where D is a nonnegative definite matrix which is zero when P and A (or P and
A™Y) commute. Notice that both C and C have row and column sums equal to

zero.

2. Optimum design. The design is defined to be the allocation of treat-
ments to units and enters through [¢] or the matrix U. It is labeled by d. Where
we are concerned to denote the dependence of the information matrix on d we

write A4 or C4. However, the vector of p; values p = (p;, - -, p,) 7 (assuming a
pth order model) also affects C through X, so occasionally we may write C4(p) or
Aalp).

We shall restrict slightly the deﬁmtlon of universally optimum designs of
Kiefer (1958, 1975) and give a slighty different version of the key result (Kiefer,
1975, Proposition 1). This version is required to cope with the matrix D in (4).

Let % be the class of all nonnegative definite matrices with row and column
sums zero. A design (here) is called universally optimum among the class of all
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designs if it minimizes ®(C) for every real valued function ® on % which is (i)
convex, (ii) invariant under permutations of coordinates (rows and columns
simultaneously), (iii) nonincreasing in the usual (Loewner) sense: G — H non-
negative definte = ®(G) < ®(H). Notice that we assume a fixed value of p.

We now show that a sufficient condition for a design d* to be universally
optimum 1is that
(a) Agis a multiple of al), + bJ), for constants a, b.
(b) trace(Cy) = trace(PAqP) = maxgtrace(Cy).
In proving this, we use Proposition 1 of Kiefer (1975) on the matrices C, which
we may do since our condition (iii) is stronger than Kiefer’s. From (a) and (b)
we thus conclude that ®(C;) is minimized by d*. By (4) and (iii) we have &(C;)
= &(C,y) with equality when D = 0. But (a) implies that Az commutes with P
and hence that D = 0 for d*. This completes the proof.

Condition (a) is summarized by saying A4 is completely symmetric (CS). For
individual values of p, the problem of finding designs d* is fairly difficult,
particularly because of the complex nature of the class of designs. We give a
“large N” solution of the problem in Section 7. We also discuss, at the end of
that section, “complete classes” of designs.in terms of the function (18) of the p,,
which may be thought of as analogous to the risk function of a procedure (here,
of a design, in terms of its =,’s).

An alternative to finding optimum designs for given p, or a complete class, is
to take a minimax approach. A design d* is said to be universally minimax if

max,®(Cy+) = mingmax,®(Cy),

for all ® satisfying (i), (ii) and (iii) above. The maximum is taken over all vectors
pin RP,

It will now be shown that if d* is completely symmetric and satisfies the
corresponding maximin condition on its trace then it is minimax. We note from
the form of X, that trace(C4(p)) is a nonnegative quadratic in p, so that min,Cy(p)
is always attained.

LEMMA 1. Suppose d* is a design for which Ag(p) is completely symmetric for
all p and
(5) min,trace(Cy(p)) = maxsmin,trace(Cq(p)).

Then d* is universally minimax.

PRrROOF. Let p* be the value of p achieving min,trace(Cy(p)). Since Cy(p) is
completely symmetric for all p, all these Ca(p)’s (as p varies) are multiples of
Cq(p*) and hence, by (iii),

(6) ®(Ca+(p*)) = max,®(Cy(p)), for all &.
Now take any other d. By (5) there is a value of p, say p’, such that
trace Cy(p’) < trace(Ca+(p*)).
Using the argument following (a) and (b) in Section 1 applied to the pair of
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matrices C;(p’) and Cy(p*) we have

®(Ca(p’)) = ®(Car(p*))
for all . Thus
(7) max, ®(Cq(p)) = ®(Car(p™)).
Combining (7) with (6) gives the result. 0

The lemma helps considerably in finding minimax designs. The method is
first to get the trace maximin and then hope that we can find a design which in
addition makes C,; completely symmetric.

3. The structure of designs on the circle. * Consider the treatments
arranged on their units around the circle. Consider a “window” of length p + 1
placed on the circle so that when it is in position ¢ the locations 1, --- ,p + 1 in
the window show the adjacent units t — p,t —p+ 1, -- ., t — 1, t, respectively.
The treatments on these units will be [t — p], [t — p + 1], ---, [t — 1], [¢t],
respectively. Now suppose that the window, instead of being in a fixed position,
is placed at random with probability 1/N attached to each of the N possible
positions. The vector of treatments in the random window is now a random
vector T4, - .., T,y of treatment labels. Note that it is stationary under shifts;
that is, T}, - - -, T; has the same joint distribution as T} ., ---, T+, for1 <,
<...<p=p+land0<7<p+1—i (all integers).

Define T?, .., T®, by

T =1 if T.=i@i=1,---,kr=1---,p+1),
= 0 otherwise

so that T is the indicator for the ith treatment in the rth location in the

window.
From this randomized version of the design we can recapture certain useful

design quantities. Thus define

that is, the number of times treatment i occurs. We put m; = n;/N and call the
design treatment-balanced if n, = ny, = ... = n, = N/k. Define, forr=1, .-,
b,

Wﬁij)‘:N_l#{t![t]=i’ [t_r]=]’15tSN} (l’.l:l’ "',k)-

This is the proportion of times treatment j is r steps “behind” treatment i. (Here,

t=1,..., Nbutt— risidentified, when =< 0, with N + ¢ — r.) When i = j define
7@ = 7 Of considerable importance will be
T = Zi’ll 7[,’('1') (r = 1: ,P),

which is the proportion of times the same treatment occurs r units apart,
regardless of treatment label. We may connect the T variables with these design
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quantities: since TV T%” = 5, T” where §;» = Kronecker symbol,
E(T?) = mi, ETPTY) = dwm,
and, whether or not i = i’,
E(TPTE) =% for r > 0.

We may also express the matrix C in terms of these quantities. If we consider
the individual contributions to the entries A;; of A, from different positions of
the window, we can obtain these entries as expectations with respect to the
window process {T;‘)}. Thus, writing po = 1, whether or not i = i’ we have

N7'4i = E{(28=0 0 T (=0 p: T}
= 0imi(XPeo p?) + 2 TPy 7 TEZ pypsar.
Since Y; T}i) =1, we have N"' Y% Y%_ As = (¥°_, p,)2 Consequently,
N~'trace(C) = N~ 'trace(PAP) = N'trace A — (Nk) ™' 3%, Y¢_ A,

= YPoo pi — KT (ZP0 pr)? + 2 BBy w1 226 psPstr.

(®

(C))

4. Minimax designs on the circle. We are now in a position to translate
the conditions of minimaxity in Lemma 1 into conditions on the design. First
consider the condition on the trace, (5). Write the covariance matrix of TG =
(T, -, TY)T in the form

T y @
ro =

YT mi(1 = my)

We also write T, T', v for the sum over i of the corresponding quantities. Also
write 57 = (1, pT) = (1, p1, - - -, pp) and T? = pTT?, In place of (8) we can also
write

N7'A; = E(T?)? = E(p"T?)?
= 5709 + (ETY)NET) "5
= p"[T? + midps]p.

From this and the first line of (9), with e the p-vector (1,1, --., 1)Tand S =
Yi(m; — k™")?, we obtain

N~'trace C = p™[I" + SJpu1lp
=1—k™ + 207y + Se] + pT[I' + SJ,]p.

When h = [y + Se] is in the column space of H = [ + SdJ,], the minimum of
20"h +p"Hp is —h"H™h, attained at p = —H h (not uniquely if H is singular).
Thus,

(100  N'min,trace(C(p)) =1 — k™' — [y + Se]”[I" + SJ,] [y + Se].
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This is clearly maximized when S = 0 and v = 0. The other case gives the same

values.
Since I'” and hence T are circulant, v = 0 implies that all of the off-diagonal
elements of T" are zero. Thus max min trace(C) is achieved when

1) m,=my = --.- = my = k !(treatment balance),
r=YT%=010-kNn.

Then it is easily seen that (11) is equivalenttom; = ... = m, =k 'and =, = k!

(r=1, ..., p). Now (11) says that the average covariance matrix of the separate

indicators for the separate treatments in the window process is a nonzero multiple
of the identity matrix. It is, of course, sufficient for (11) that

(12) IO = k(1 = kY

(i=1, ..., k) so that each of the indicator processes (considered by itself) is
uncorrelated. We shall return to this in a moment.
The condition in Lemma 1 that As(p) be completely symmetric for all p is

more restrictive. Assume that m, = . . - = my;, = k™' already holds. Then it is easy
to see, looking at (8), that all A;- equal and A; all equal forces

(13) ri) = @8 (p = 1, ... p)

for all ; # i{ and i, # i}, as well as

(14) 70 =7

foralli#i’ (r=1, ---, p). This says that any pair of different treatments

(i, i’) (i #1i’) is r units apart the same number of times as any other pair of
different treatments and any pair of identical treatments is r units apart the
same number of times as any other pair of identical treatments. We call a design
with properties (13) and (14) completely balanced. Actually, since m; = wii) +
Y w:”), complete balance implies treatment balance, although it does not by
itself imply =, = k™ (r=1, --., p). Furthermore (11) together with complete
balance implies (12). Thus also 7r£’) =1/k? (r=1, ---,p). We summarize these

results as follows.

THEOREM 1. A sufficient condition for a design d* to be universally minimax
is that
(1) it is completely balanced,
(2) m=1/k (r=1,p).

This theorem generalizes to arbitrary order Theorems 3.1.2 and 3.1.4 of Kiefer

(1960).
In the next section we give a method of constructing designs having the

properties in Theorem 1.

5. Cyclic codes as minimax designs. It is simple to show that complete
balance and the “window uncorrelated property” ((1) and (2) of Theorem 1) can
be obtained by allowing each of the k”*! possible (p + 1)-tuples of treatment
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numbers to occupy our window of length p + 1 exactly once, as it moves around
the circle. For example, let & = 3, p = 2 and label the treatment 0, 1, 2 rather
than 1, 2, 3. Take the design with 27 units and treatments laid out as follows:

(15) 001101021222100220201211120.

The circle is completed by making the last “0” a neighbor of the first. As we
move a window of length 3 along the sequence every triple i, j, k (i, j, k=0, 1, 2)
occurs just once (200 and 000 cover the join of the two ends). Properties (1) and
(2) of Theorem 1 are easily verified. Such a sequence in fact has a stronger
property, namely, the random window exhibits not just uncorrelated entries but
an independent 3-state process. A sequence with this property is called pseudo-
random in the communications theory literature. The sequence was generated in
the following way. Let V, = [t], the treatment label (now 0, 1 or 2) of the tth
unit. Then the sequence was generated by the recurrence relation

(16) Vt = Vt—l + 2Vt_2 + 2Vt_3

where all integers are identified with their residues mod 3. To start with, take

001. Continuing up to the end of the first cycle excludes 000 so one “dummy”

zero must be added at the end before joining up to form the circle. This is a

special case of a full length cyclic error-correcting code. There is a huge literature

on the subject and several excellent books (see, for example, Berlekamp, 1968,

MacWilliams and Sloane, 1977); and, we confine ourselves to a brief summary.
Let k = ¢™ where q is prime. Consider a general recurrence relationship

(17) V.= Zf:l a; Vi

in which all treatment values V, and coefficients «; are identified with members
of the Galois field GF(q™) of order ¢™. In order for the recurrence (17) to generate
a full length cyclic code with the required property that every (p + 1)-tuple of
elements appears just once (except for 00 - - - 0), the o; must be of a special form.

Consider the extended Galois field consisting of all polynomials of degree p
whose coefficients lie in GF(q™). This is itself a field if every polynomial of higher
order thar p is identified with its residue mod some fixed polynomial of degree
p + 1 which is irreducible over GF(gq™). The polynomial field (which can be
identified with GF(k”)) has nonzero elements which form a cyclic group under
multiplication. An irreducible polynomial h(x) of degree p + 1 over GF(¢™) is
called primitive if all the elements of the cyclic group are generated as powers of
a solution x in GF(k®) of h(x) = 0. The element x is said to be a primitive element
of GF(kP). A primitive polynomial always exists.

A necessary and sufficient condition that the recurrence (17) generate a full
length code with the required property is that

2

Bl goxb o L —

h(x) = x* — aqx
is a primitive polynomial over GF(g™). Thus in our example (16), the polynomial
is x3 — 22 — 2x — 2 (= x® + 222 + x + 1), which is primitive over GF(3). The
polynomial is not unique; x3 + 2x + 1 would do equally well, producing a different
sequence.
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Lists of primitive polynomials are available in many books on algebra, coding
theory and combinatorial theory. In the communications literature, the designs
are called m-sequences or pseudo-random sequences (see MacWilliams and
Sloane (1977), Chapter 14). Techniques are available for generating pseudo-
random sequences for values of k other than prime powers (see Shedd and
Sarware, 1979).

We have shown, then, that it is possible to find minimax designs exactly for
certain values of N and k.

6. Asymptotic designs for the line. There is no obvious way of extending
the results on the circle to results on the line in an exact fashion for finite N.
For example, we may form a design with N = 29 by adding 00 to the end of (15)
so that triples 200 and 000 are included. However, since the first two observations
are included, the conditions for minimaxity are upset. Moreover, for fixed N
there can be at most a finite number of different designs and so the set of possible
design quantities m;, ., ¥, etc. is finite. This means that some values of these
quantities which are useful from an optimization point of view may not be
achievable. We have seen in Section 5, for example, that we have to choose the
value of N carefully to get an exactly minimax design. Following Kiefer (1960)
we therefore allow N to tend to infinity and discuss allowable asymptotic values
of the design quantities.

First we shall redefine the quantities to emphasize the dependence on N. The
designs will be on the line although the cyclic nature of some designs will play
an important role.

Let dn be a design on the line; that is, dy = (V1, -- -, V) where, as before,
V. = [t] is one of the integers 1, --- , k(t=1, ---, N). Let 9y be the set of all
dy so that #( Zn) = k". For any dy € Dy let

w8 =(N-p)'#t| V.=V, =i, p+1=t=N}

'

and

TN = Dict Tone
If there is a sequence of designs {dy € Dy, N € _#} where _# is an unbounded
set of natural numbers, for which, for 1 < r <k,

mny — alimit 7, as N > o, N € _4

we say that my, -- -, , or simply the vector = = (my, ---, ) is asymptotically
achievable (aa). Throughout this section the =, will be (aa) values.

The rest of this section is devoted to the difficult problem of finding the set
of asymptotically achievable =, values (1 < r < p). We do not need to use the
individual wf‘}v because a symmeterization procedure to be described shortly will
yield sequences for which wﬁ‘;\,—> (m/R) (N—>ox)(i=1,.---,kyr=1,-..,p).
Let I, = I1,(k) be the set of all (aa) vectors = for given k. The development is
based on a connection between the (aa) w-vectors and the covariance of stationary
discrete time processes. The technique is discussed in some detail in Kiefer and
Wynn (1983) for the binary (k = 2) case.
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Consider the sequence for a given i, {Z,}§:
Zt =1 if Vt = i
= —1, otherwise.

Then if

Cr,N =

r i\;p+1 ZtZt—ry
we have m,n= % (1 + C,n). Now C, v is essentially the sample covariance func-
tion of the {Z,} values. If ;,y—m, (r=1, ... p) then C,y— 2x, — 1. If the {Z,}
values are generated as a realization of a stationary ergodic zero mean binary
process then C,y — C, with probability one where the C. is the covariance
function of the process. If (1/N) ¥ Z; — 0 the set of #, values (r=1, ---, p) is
contained in the set 2 (C, + 1) values allowable as the covariance of a zero mean
stationary binary process. Work by Shepp (1967) and Masry (1972) show that
the two sets are the same and that the zero mean condition is irrelevant. We
follow the results of Hobby and Ylvisaker (1964) to characterize stationary k
state processes in terms of the distribution induced in a window of p + 1
neighbouring time points. This theory can be considered as the correct way to
“unwrap” the structure of designs on a circle discussed in Section 3 onto the real
line (discrete time).

Let {Z,}¢ be a stationary k state process. Consider a window of p + 2

neighbouring time points, say ¢t =0, 1, - - - , p + 1. In this window {Z,} induces a
distribution Z,, - - -, Z,+,. The stationarity property says that we can express
the marginal joint distribution of Z;, --., Z, in two ways, summing over Z, or
Zps1.
Prob(Z, =iy, ---, Z, = i,)
k . . .
= Ei0=1 PrOb(ZO = lo, Zl =1, vy, Zp = lp)
k . .
= Zip+1=1 Prob(Z, = iy, -- -, Zpi1 = lpsr).
The equations are necessary conditions on the quantities Prob(Z, = i, - - - , Z,

= i,) which characterise the distribution induced on the p + 1 window. In fact
the conditions are also sufficient. Moreover they lead to a very simple character-
isation of the extreme distributions, analogous to the characterisation of ex-
changeable distributions. The results are also found in unpublished notes of the
late Walter Weissblum (Bell Telephone Laboratories:)

THEOREM (Hobby-Ylvisaker-Weissblum). The set of all extreme distributions
induced in a p + 1 window by a stationary k state discrete process are all those for
periodic processes which do not repeat a p-tuple within a cycle (together with a
uniform random phase shift).

. To explain the theorem, consider the case p = 2, k = 2. We may list all the
strings which do repeat a neighbouring pair of integers (0, 1). They are (up to
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permutation of tbe labels 0, 1):

sequences w-vector
0 (1, 1)
0L 0,1)
001 (s, 1a)

0011 (%2, 0)

Here the “bar” notation means we repeat the sequence infinitely often. The
periodic processes obtained by giving each periodic séquence a uniform random
phase shift is a stationary process. It is clear that no "extreme cycle can have
period greater than kP. - '

The (aa) =, values are merely the convex hull of the =- -vectors from each of
" the periodic sequences. Every extreme w-vector derives from an extreme distri-
bution but not vice-versa (see the example above) We summarize the result as

COROLLARY. The set I, (k) is the convex hull of - vectors generated by a finite
number ‘of cyclic deszgns

The convexity of Il (k) can also be estabhshed by working directly with
infinite design sequences. Let 7 and =’ be two vectors in II,. Let {dy, N € 7}
and {dj, N € _#"} be their defining sequences. Let a = r/s be rational, 0 < a <
1, with r and s integers. Take dy with N € _# and dj, with N’ € _7". Form a
des1gn df» with N” = Nr + N’(s — r) formed by writing N’(s — r) copies of dy
followed by Nr copies of di-. Let N, N’ — o, NE€ _# and N’ € _#'. Then it
can be shown with a little analysis that the sequence {d%, N € "}, where _#"”

= {N"}, gives the (aa) value (1 — a)7 + azn’ . The extension to irrational « is
agaln 31mple This is an alternative to the ingenious method of Shepp (1967) for

“mixing” together two infinite sequences which preserves the =, (C,) values for
all=r<om,

Given any sequence (design) with a given =, vector, it is always possible to
find a symmetric version for which lim w(‘) =nr/k(I=1, , k). This is doné
by mixing, using our method or the method of Shepp, all the sequences obtalned
by permuting the treatment labels.

We prove one more general result on II, before analyzing the structure of II,,
I, and I3. The form of I, depends not just on p but also on k the number of
treatments. However, for large k this dependence ceases.

LEMMA 2. Forall k= p + 1 the I, (k) are identical.

PROOF. Let = be a point in II,(k) for & > p + 1. Let it be generated by
{dn, N € _7'}. Consider a typical dy = {V;, Vs, - -+, Vn}. We shall convert dy to
dj which has all V; = p + 1 without changing its =,y values. If no V,>p + 1,
we are done. Consider the first unit ¢ for which V, > p + 1. Select a treatment
number jwithl<j<p+1butj# V,._,s=1, ..., p. (Ignore any values t — s
< 1.) This is obviously possible. Now interchange the treatment label j with the
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treatment label V, both at unit ¢ and also wherever they occur after t. This does
not effect , y. Performing this operation repeatedly on this and on all other dy,
N € _#] we create a sequence {dj, N € _#} generating = but which by definition
is now a point of I, (k) with & = p + 1. The reverse inclusion is trivial. 0

We state II, for p = 1, 2 and different values of k.
I, = {m |0 = m, = 1} for k = 2,
= {1} for k = 1.
I = {(7, m)|0<m=<1,0<2m <1+ m} fork=3,
={(m, m)|m=1,1—7m<2m <1+ m} fork=2
= {(1, 1)} for k = 1.

Finding II, is trivial. Kiefer (1960) essentially discovered the II, region.

Extensive computations have yielded II3(k) for k = 2, 3 and = 4. The case
k = 2 (binary) is covered by Martins de Carvalho and Clark (1983) up to p = 5.
The case p = 3, k = 2 was known to Shepp (private communication). The
essential method is to search among the extreme distributions for the extreme
w-vectors by testing “new” vectors to see if they lie in the convex hull of the
“old” ones.

Consider now for p = 3 the following designs d*, - -, d'° written in cyclic
notation and using capital letters. The w-vectors follow each design.

d: A (1,1,1)
d:> AB (0, 1, 0)
d*  AAB (Y5, ¥, 1)
d“:  AABB (%, 0, %)
d®>  AAABBB (%, %, 0)
ds: ABC 0,0, 1)
d: AABBCC (¥, 0, 0)
d:  ACBC (0, ¥, 0)

d*: ABBCAABCC (%, 0, 0)
d: ABCD (0, 0, 0).

These generate the following ten half-spaces H;, ---, Hy.The designs whose
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w-vectors lie on the planes (sometimes more than 3) are given in brackets.

H, m=0 (d?, db, d&, d")

H,, n,=0 (d* ds, d", d° d'°)
H;, #n3=0 (d? d® d’, d&, d° d'%)
Hy, m—wm—m3+1=0 (dt, d? d®, d°

Hy, —m—m+w3+1=20 (d*, d?, d°)

Hg, —-2mi+mm+1=0 (d*, d*, d® d")

Hy, —m+m—-m+120 (d,d5d* d%
Hy, 3m+2m+m—120 (d°d d%
Hy, m+7m+7—1=0 (d?, d*, d°)
Hpo, 2mi+m—120 (d?, d®, d*).

k = 4. The extreme points are given by d', d?, d*, d®, d%, d” and d'°, and the
determining half-spaces are H,, H,, H3, H,, Hs, Hs and H,. See Figure 1.

k=3. The point d'°, ABCD, (0, 0, 0) is no longer available, and the extreme
points are those for k > 3 with d'° deleted and d® and d° adjoined. The half-
spaces are those of the previous case with the addition of Hg. Each of the eight
determining planes is seen to be generated by 3 or 4 of the extreme points. See
Figure 2.

k=2. The points d®, d”, d®, d° of the case k = 3 (and, of course, d'®of k = 4)
are no longer available. The remaining four points and d® are now extreme: d’,
d? d?, d* d°. Since the w-vector for AAB = d?® is on the segment from the
w-vectors for A = d' to ABC = d°®, we still obtain the planes determining H, and
H;, and similarly Hs and Hg. But the planes associated with H,, H,, H; and Hg
are no longer determined by these extreme points and are lost. Two new half-
spaces are adjoined and we have II; determined by Hy, Hs, Hg, H7, Hy and H,o.
See Figure 3.

We complete this section with a brief discussion of random allocation. It is
obvious that complete random allocation independently at each time point
(Bernoulli) gives with probability one =, = 1/k (r =1, - - -, p). Alternatively we
may use a length of a pseudo random code as explained in Section 5 ignoring
edge effects.

Random allocation of treatments to units has been widely advocated and is
probably the most frequently used procedure, expecially in clinical trials (see for
example Zelen, 1974). Under classical assumptions completely random allocation
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AAABBB

AAB

AABB; T3, k=2

T3
FIG. 3.

has been shown to be minimax by Blackwell and Hodges (1957) in the case of
two treatments. They refer to the designs as “truncated binomal.” Work by
Stigler (1969), Efron (1971), and more recently, Wei (1977, 1978) advocates
“adaptive” or Markovian methods of allocation. Complete randomization or a
more restricted version certainly seems attractive if only to guard against delib-
erate or unwitting treatment/unit partiality. See also recent work by Atkinson
(1982), Smith (1983).

Suppose that, indeed, the treatments are allocated according to a Markov
chain of particular order, say L. We may call such a procedure purely random if
the chain considered as a first order Markov chain on the states consisting of all
L* of the L-tuples is irreducible and aperiodic. Applying the Ergodic Theorem,
we can say that the chain will, with probability one, give a realization which,
considered as, an infinite design {Vi, Vs, ---}, generates an (a a) m-vector.
Moreover, for the same chain every such 7-vector is the same. The Markov chain
thus uniquely determines the w-vector and, of course, the vector is easily obtained
from the limiting distribution of the chain, over the L-tuples. We shall be
interested in the extent to which the converse is the case: Can we with probability
one obtain a given w-vector using the sample path of a Markov chain of
sufficiently high (but finite) order? .

Consider such a sample path. Then with probability zero it will be an infinite
cyclic design. However, more strongly, since it gives positive limiting probability
to every L-tuple (being nontransient), it must give it likewise to every m-vector
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corresponding to the m,r of an L-tuple. This argument shows that no extreme
point of a II, can be obtained in this way. In fact, no purely random Markovian
sampling scheme can be optimum in the sense of Section 7. As a simple
illustration let L = 2, p = 1 and suppose the second-order chain attaches limiting
probabilities a;, oz, az and a4 to the pairs 11, 12, 21 and 22 respectively. Then
with probability one any sample path gives a w-vector (now a single value)
0 < m = oy + ag < 1, which is never extreme. The details are straightforward in
the general case.

A cyclic design is made stationary by giving it a random shift. However, such
a random process is not an irreducible Markov aperiodic chain of any order, but
a purely deterministic process. (See Doob (1953) for details of these distinctions.)
In sampling terminology we have a systematic sample following a random start.
We can obtain the same process by a periodic chain with a random initial
distribution but this rather destroys our idea of a purely random sampling scheme.

Despite these careful distinctions between deterministic and nondeterministic
schemes it is possible to obtain an irreducible aperiodic Markovian scheme whose
w-vector is within ¢ of any given w-vector. We write | || for the L.-norm in what
follows. The proof is omitted.

THEOREM 3. Let 7 in II, be an asymptotically achievable vector generated by
a sequence {dy, N € _#'}. Then given e > 0, there is an irreducible Markov aperiodic
chain of finite order such that with probability one its sample path generates a =’
inl, with |7 — =’ | <e.

7. Optimum designs on the line. Now that the class of w-vectors has
been defined for infinite designs (or technically sequences of designs) we are in a
better position to carry out the optimization and minimax procedures of Section
2. To get asymptotic results as N — o, N € _# we need to do two things: (1)
use the limiting interpretation of the w, from Section 6; and (2) choose p =
(p1, - - - , pp) which makes the process {Y,} satisfying

Yo+ o1 Yeu+ - +ppYip=e (t=1,2,..-)

stationary in the usual wide sense. Hzre {¢;} is an uncorrelated sequence with
finite variance o2 The details of the asymptotic development, which we omit,
allow us to write “+ O(N7!), N € _#” after the key expression (8) and (9).
Identifying: d with the design sequence {dy, N € _#} we define C; as
lim(N™'Cy,) as N — o, N in _# when the limit exists. All the results go through
and it will be sufficient for Cy to have the form satisfying (a) and (b) of Section
2 for optimality and (1) and (2) of Theorem 1 for minimaxity, the «, now being
interpreted as limiting =, values. Both cases require complete balance and we
turn to the idea of asymptotic symmetrization.

If we have a design sequence {dy, N € _#} with given =, values (say from a
minimax or optimization argument) it is an easy matter to construct a sequence
of {dy, N € _#} with the same =, values but which is asymptotically completely
symmetric. Let dy(s =1, - - -, k!) be all designs of length N constructed from dy
by permutation of treatment labels. Let N = EIN and write all the d% in sequence
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so that dg = dhd% - - - d%. Then clearly letting _# be {IN} we obtain a sequence
with the required property. Note that it is sometimes possible to symmetrize
using less than k! permutations. Indeed the design may already be completely
balanced.

The advantage of using codes for k = ¢™ in Section 5 to construct minimax
designs is that N is fairly small. Repetition of the code (with the adjoined dummy
“O” treatment) will give an asymptotically minimax design. This seems
an excellent procedure where it is possible. However, since the point
(1/k, ---, 1/k) always lies in II,, as can be easily seen, we can always construct
asymptotically minimax designs by first finding a # = (1/k, - - - , 1/k) by suitable
mixing of cyclic extreme point designs and then symmetrizing. Stopping at any
N € 7 then gives an almost (to within O(N~')) minimax design. The details

are left to the reader. .

We want to concentrate now on optimization. Let p = (py, --- pp) be fixed.
We have to maximize trace(Cy) (in the limit). But this maximum is given by a
design with (1) m; = - - = m; and (2) maximum value of
(18) zlr?=1 Tr 25;6 PsPs+r (Po = 1)

Point (1) we can ignore because symmetrization will yield it automatically. Thus
we are left with a linear programming problem to maximize (18) over II,. This
can be carried out either by using a standard algorithm on the relevant half-
space constraints, or, as the extreme points (vertices) are listed (not usually the
case in LP), by just running through them.

For designs on the circle, we may select any value for the vector p and if we
are lucky enough to have N just a multiple of the length of the correct extreme
symmetric cyclic design, then that design or a repetition of it will be optimum.
For designs on the line we need p to satisfy the stationarity condition that the
roots of

X+ pxP s+ 9, =0

lie inside the unit circle. Then with that value of p we (1) find the optimum =-
vector and the corresponding design, (2) repeat it a reasonable number of times
(to make the edge effect small), (3) symmetrize it if it is not already symmetric.

As a simple example take p = 3 and p = (—0.4, —0.3, —0.1). Negative p-values
correspond to positive autocorrelation. We suspect that a reasonable amount of
separation between occurences of the same treatment will be optimum. Expres-
sion (18) becomes

—0.257; — 0.26w — 0.173.

When k = 4 this is maximized uniquely in II; at dyo, ABCD when = = (0, 0, 0).
Thus with symmetrization taking all permutations of 1234, we obtain for large
N an approximately optimum design 12341234 ... 21342134 --. , etc. When k =
3 this design is not available. The unique optimum design is d°, ABBCAABCC.
Symmetrization yields 122311233 - -- 211322133 - - - etc. When k = 2 the unique
optimum design is d;, AABB, given by 11221122 ... without further symmetri-
zation. The full computer implementation of the ideas of this paper is still being
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carried out. The steps are (1) choice of autocorrelation, possibly after preliminary
estimation, (2) choice of the number of treatments and sample size N, (3)
elucidation of the extreme points and associated region for given p and k, (4)
choice of optimum (cyclic) extreme design, and (5) packing of the sample length
N with a suitably symmetrized version of the extreme designs.

As a final exercise we show that sometimes an optimum design can be found
for large values of p, despite the fact that I, has not yet been fully worked out
for large p. Consider, then, the first order moving average model on the circle
given by

Yt=€t_}\€t—l (t=1, ,N)

where | A | <1 and the ¢ are uncorrelated with vanance o2, as before. Rewriting
this in an auto-regressive formulation,

1
VA

)‘, )\2’ Tty (_A)N_1)~
Then (18) becomes
(19) 1= (MNP I 7, D (=N =

An informal analysis runs as follows. Letting N — o expression (19) becomes

—aym, + agmy —agmg + -, A>0,
a1y + Qg To +0(31l'3 + ... N >\<0,
where o; = 0,i =1, 2, -.. . Thus since this must be maximized and 0 < =, < 1

for all r, when A >0, a w-vector (0,1, 0,1 . . .) would be (asymptotically) optimum.
Fortunately such a w-vector always lies in II,, namely, that arising from AB
(repeated). Thus an approximately optimum design for the first order MA model
is to take AB symmetrized, that is, 121212 ... 131313 ... 232323

, etc. This design is intuitively appealing for a model only having a 1-step
local autocorrelation.

Similarly, when A < 0, the point A, with w-vector (1, 1, 1, --.) yields an
approximately optimum design 111 ... 11222 ... 22 ... kkk - - kk.

We have discussed thus far in this section maximization of (18) for a particular
vector p. One can also compare approximately balanced designs in terms of the
integral of (18) wrt a positive measure on p’s (approximately Bayes designs).
Related is the notion of asymptotic admissibility of design sequences in terms of
the behavior of (18) on the space of p’s, of concern when p is unknown. Since
(18) is linear in w, every (approximately balanced) design is seen to be approxi-
mately admissible, for large N. In practice when p is unknown and N is large,
one would presumably replace the BLUE (MVUE) by an adaptive estimator that
estimates p.’
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