The Annals of Statistics
1984, Vol. 12, No. 1, 322-335

SIMULTANEOUS ESTIMATION OF LOCATION PARAMETERS
UNDER QUADRATIC LOSS

By NOBUO SHINOZAKI

Keio University, Yokohama, Japan

Simultaneous estimation of p (p = 3) location parameters are considered
under quadratic loss. Explicit estimators which dominate the best invariant
one are given mainly when coordinates of the best invariant one are inde-
pendently, identically and symmetrically distributed. Effectiveness of integra-

-tion by parts in evaluating the risk function of the dominating estimator is
shown for three typical continuous distributions (uniform, double exponential
and t). Further explicit dominating estimators are given in terms of second
and fourth moments of the best invariant one.

1. Introduction. Since Stein (1955) first showed that the best invariant
estimator of a p-dimensional (p = 3) normal mean was inadmissible under
squared error loss, there has been considerable interest in improving upon the
best invariant estimator of a location vector. Brown (1966) proved that the best
invariant estimator of a location vector is inadmissible for a wide class of
distributions and loss functions if the dimension is at least three.

James and Stein (1961) presented an explicit estimator {1 — (p — 2)/|| X |3 X
which is better than the best invariant estimator X under squared error loss if X
has a normal distribution with covariance matrix I. They also showed that the
assumption of normality is unnecessary and suggested an estimator of the form

b6 |
a1 b= e xE®

which is better than X if a and b are suitably chosen. However they did not
determine their values explicitly.

Outside of the normal case explicit estimators of a location vector which
dominate the best invariant one seem to be given only for the case where the
distribution is spherically symmetric. (See Brandwein and Strawderman (1980)
and the papers in their references.) Since the normal distribution is the only
spherically symmetric distribution with independent coordinates (see Kac, 1945),
no explicit dominating estimator seems to be available when coordinates are
independently distributed except for the normal case.

Here we mainly deal with the case where coordinates of the best invariant
estimator X are independently, identically and symmetrically distributed. We
give some sufficient conditions on a and b for the estimator 6 to dominate X
under the squared error loss function.
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In Section 2 we show that the use of integration by parts is effective in
evaluating the risk function even for nonnormal continuous distributions. As a
matter of fact we apply integration by parts to three typical distributions
(uniform, double exponential and t). It should be mentioned that since Stein
(1973) used integration by parts for the normal case, it was shown to apply to
the general continuous exponential family in simultaneous estimation problems
by many authors. (See, for example, Hudson, 1978, and Berger, 1980.)

In Section 3 we use only moments to determine the values of @ and b for which
the estimator 6 dominates X. We note that the result obtained applies not only
to continuous distribution, but also to discrete ones. (The admissibility of the
best invariant estimator in the discrete case was discussed in Blackwell, 1951.)

2. Effectiveness of integration by parts. Let X;(i=1, --., p) be an
observation from a density of the form f;(| x; — 6;|). We assume that X, --- , X,
are independent. Setting Z; = X; — 0;, we assume E(Z;) = 0 without loss of
generality. Suppose that the loss in estimating 6 = (6, ---, 6,)’ by 6= (6, -,
6,)" is

16— 6112 = Y2, 6 — 6)>

The problem is to determine a and b in (1.1) so that the risk R(3, 6) is uniformly
smaller than the risk R (X, 6).

Here we choose three typical densities (uniform, double exponential and t) as
f;, and give an evaluation of E(§; — 6;)* which leads to a determination of a and
b. We evaluate E(8; — 0;)% by applying integration by parts repeatedly. Although
we deal with only three densities, we believe that the method of evaluation can
be applied to a wide class of densities.

If we express §; as

where S; = a + Y. X% we have

1, o, o XiXi—6) b X?

We use integration by parts to evaluate E {X;(X; — 6;)/(S; + X?)}. In the following
Ey will stand for the expectation with respect to Y.

2.1. Uniform distribution.

THEOREM 2.1. Suppose that Z,, ---, Z, are independently distributed and
have the common uniform distribution on (—r, r). Then the risk of é given by (1.1)
is uniformly smaller than that of X if a = 9(2 — 2"?)V(X))/p and 0 < b =
2(p — 2)V(X,). (Note that V(X;) = r?/3.)
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PrOOF. Without loss of generality we set r = 1. Then

lXi(Xi - 6) | _1 fl (2; + 0:)

EX‘] S,"l')(,2 1_2 —ISi+(Zi+0i)2zi

dz,‘ = I,

say. Applying integration by parts, we have

1
I=4" L g(z:)(1 — 27) dz;,

where

_ 1 2zt 6)?
(2.2) 8E) = e 0 1St it )

We express I as
2.3) I=3""Ez{g(Z)} + I,
where
1
I = f g(2)(1/12 = 23/4) dz;
-1
If we apply integration by parts to I; twice, we have
1
IL = f h(z:)(1 = 2})*/8 dz,
-1

where

_ 1 8(z + 6)* 8(z: + 0)*
(24) hz) = (S + (2 + 6)%%  {Si + (2 + 6)%° " (Si + (2 + 097"

Using the inequalities h(z;) = —4(2 — 2V2)(2; + 6,)%/{S: + (z; + 6,)%}® and (1 —
23?2 < 1, we have

(2.5) L = —=(2 = 2V)Ex{X?/(S: + X})?).
By (2.3) and (2.5) we see that
2 — 91/2) 2
IzlEx,[ 1 __2X} 32 29X
3 S+ X (S + X S + X?)

We note that Y3 is V(X;). Therefore we have

Xi(Xi—6)| _ 1 [p—2 +2a—3<2—21/2>}
a+ [ XI7] T3 a+ X127 fa+ [X]%?

[s0
E|21=1

Hence from (2.1),

2 p—2 2a—3(2—21/2)_ 3b | X|?
R(X,O)—R(5,0)23bE|: ],

a+ X2 @+ 1XI7 2@+ 1X[P

which is nonnegative if a = 9(2 — 2" V(X;)/pand 0 < b = 2(p — 2) V(X)).
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2.2 Double exponential distribution.
THEOREM 2.2. Suppose that Z,, ---, Z, are independently distributed and
have the common density
(28)'exp(— | z|/B), —* <z <o,
where 8 > 0. Then the risk of 6 given by (1.1) is uniformly smaller than that of X
ifa=3V(X)and 0<b =< 2(p—2)V(X;). (Note that V(X;) = 28%.)

PrROOF. Without loss of generality we set 3 = 1. Then

[Xi(Xi - 0)| _1 fm 2+ 0

x,| S + X? [ =5 J.. ——Si ¥ (z + 002 ziexp(— | zi|) dz; = J,

say. By applying integration by parts we see that
(2.6) J=E;{g(Z)} + Ji,
where g(-) is given by (2.2) and

Jy=27" f_m {g(z:) |2l lexp(= | z]) dz.

By applying integration by parts to J, twice and using (2.4), we have

00

Jr=Ez{g(Z)} — 6 Ez{th(Z))} — 3 J:m h(z;) | z:| exp(— | z]|) dz

= Ez[8(Z) — 6{S; + (Zi + 0)%7%] + 3y,

(2.7)

where

_ Sz + 6)?
Jr=8 f_w S+ &t 0 (1 + |2|)exp(— | z|) dz:

) |2i|
- ‘[’ (S; + (z: + 0,)%)? exp(— | z|) dz.

By applying integration by parts to the second term of J, twice, we see that

1
Jy = _2EZ"[{Si +(Z + 0i)2}2:l

+4 fw S,‘ - 5(2," + 0,’)2 + 2S,‘(Z,‘ + 0,‘)2
— {S: + (z: + 6)%*

X (1 + |z|)exp(— | z]) dz
= —2E;[{S: + (Z: + 0,)%7%),
if S;(or a) = 2.5. From (2.6) (2.7) and (2.8) we see that

1 2X? +6 |
I 225\ 535 T (8, + X7

(2.8)
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if a = 2.5. We note that 2 is V(X;). Hence we have

p—2 2a—6p  b|X|? ]
a+ [ XIP7 @+ X1 4@+ X))

R(X,0) — R(5,0) = 4bE[

which is nonnegative if a =2 3V(X;) and 0 < b = 2(p — 2) V(X)).
2.3. t distribution.

THEOREM 2.3. Suppose that Z,, ---, Z, are independently distributed and
have the common density

cfl + 2}/(Bo?)} P2, —0 < 2, < oo,

where ¢ = T{(8 + 1)/2}/{c (B7)Y*T'(8/2)}. Then the risk of 6 given by (1.1) is
uniformly smaller than that of X if 3 = 10, a = 4V(X;) and 0 < b < 2(17p/21 —
2)V(X;). (Note that V(X;) = ¢?8/(8 — 2).)

NOTE. From the proof below, it will be clear that even if 6 < 8 < 10, we can
choose a and b so that § dominates X.

ProOF. Without loss of generality we set ¢ = 1. Then

[XX, = 0)| _ f T mt zj)““‘”/"’ _
Bl Tsvxr | T Jusrarar\' T dz = K,

say. Again by integration by parts, we see that
(2.9) K=p(8-1)"Ez{g(Z)} + (8 — 1)K,
where g(-) is given by (2.2) and

K, =¢ f {8z }{zi(1 + 23/B8) 1P/ de,.
If we apply integration by parts to K;, we have
Ki=B-1)7"K + 8B -1)7"Ez{g(Z)} + BB — 1)7'Ky,
where

= - —6(z; + 6:) 8(z; + 6,)3 [ 2_12 —(3+ﬂ)/2l
oz f [{Sf P B E R Ty s ai>2;3} lz"<1 " ﬁ) f %

= —6cB(B - 3)™" f_ h(z:)(1 + 23/B) =+ de,

(again by integration by parts), where h(-) is given by (2.4). Thus we have
(2.10) K, = B(8 — 2)'Ez{g(Z)} + B(B — 2)'Ko..
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From (2.9) and (2.10) we see that

__B [1 ext |
(2.11) K—B_zEX‘lsl"FX,? (Si+X,2)2[
| 662 I < ZLZ >2|
B E; h(z, zty|
B-DE-2@ =3 ZaM@) 1+ J

We note that 8(8 — 2)7'is V(X,). In this case it is not so easy to get a lower
bound for —Ez {h(Z?)(1 + Z?/8)?}, but such a bound is given by (A.3) in the
Appendix. Thus from (2.11) and (A.3) we see that

- JXi(Xi - 9;‘)1
{(V(X:)} IEX'I_——Si X2 [
1
= E(Si + X%)
6 ( 2E(ZHla + E(Z?)} 4E(Z%)la + E(Z?)il_]
'[1 TBB-DE-9 |FEI+ z + p

_ E[2X? + 68%/{(8 — 1)(8 — 2)(8 — 3);]
(S; + X?)?
if a = 2V(X;). It can be easily checked that R(X, 8) — R(5,0) > 0if 8 = 10, a =
4V(X;) and 0 < b = 2(17p/21 — 2) V(X,).

3. Determination of the range of @ and b by using only moments. We
cannot apply integration by parts unless the density function is specified. Here
we only use information about moments of Z; and determine a and b so that
R(3, 0) is uniformly smaller than R(X, 6).

Here we assume that Z,, - - -, Z, are independent random variables with

E(Z)=0, E(Z})=1, E(Z}) =0, andE(Z}) =«, i=1,---,p.
Setting b = 2(p — 2 — ¢), we may summarize the obtained result in the following.
THEOREM 3.1. The risk of & given by (1.1) is uniformly smaller than that of X

if a and c satisfy either conditions (I-1)—(1-4) or (II-1) and (I1I-2):
(I-1) a = ap, where ap =p — 2, ifp =15,

=p-1, if12=p = 14,

=p, if9=p=11,

=p+1, if6=<p=38,

=p+2 if3=p=<35s.

1 [max(3, K)
a+1 | 4

(I-2) co(a) = c <p — 2, where cy(a) = + (p - 2)}.
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(I-3) a+ c=5(k — 3)/4 + Y.
(I-4) a — ap + (m + 1)(c — co(a)) = 2(x — 3),
where m = 3(p — 2)/p, ifp =1,
=@p-5)/p, ifp=5,8,
=2, if p =4,
=21, if p=3.
(-1 ¢ = (p - 2)/2,
(II-2) @ = a; + 4(x — 3)*/3, where a, = 4, ifp = 5,
=42 ifp =4,
= 4.5, ifp=23.
PROOF. We only give a proof for the case when a and c satisfy (I-1)—(I-4)

since the one for the other case is similar. In the proof we repeatedly use the
following identity:
1 1 lz)*>+ 2206 —p

B T+ 0 a0 @rp+ 100G+ Tz 01

Using (3.1) twice and taking expectation, we see that

[”Z”2+Z'0 l_ p—2 2a — p(k — 3)
la+ 1Z+617) “axp+ 1012 @rp+ o2 B

where

[UZ12+Z'0)Z]* + 22’0 — p)?|

R e pr 01 ar 12 401D |-

Therefore we have

[1Z1*+Z6 |
la+1z+061?

[ lz+e1> |
@+ 1Z+0]2?

-(p—2-0FE

p=2-c _olp-2-09]Z+06]°
a+p+ 1012 | @+Z+061* |

+ c 2a—-pk-3)
at+p+0]° (a+p+[0]??

D,

+R
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say. Using (3.1) repeatedly, we can easily see that

1 o 1z+e1r |
a+p+ 612 Tl@+Z+6]22

_ a _gl_dzpr+eze-p |
@+p+ 1015 “la+p+101D@+1Z+0]D

| 2a(Z|2+22'6-p? |
l@+p+ 161+ 11Z+0]?]

+ E

| allZ|®+ 220 - p)? |
l@+p+101D%a+1Z+0[%"

Therefore we have

c (p—c)a—-pk—23) p—2-c
atp+ 02T @rp+ 09T TR Gipiale

32 D= S,

where

_dz)2+2z0 - p)?| | 2a |
| a+1Zz+01> Jla+p+ 612 |

la(lZ]2 + 2270 — p)?|
TE T Gz |

We first give a lower bound of S. Again using (3.1) repeatedly, we see that
(@+116]*+ p)*S
=—(p+110]*-2a){pkk — 1) + 4 [0]%
+(p+ 1101° - 3a)E{(II1 Z]1* + 2Z2'6 — p)*(a + | Z + 0>}
+aE{(IZ]*+ 22’0 —p)a+ |Z+6]")7.

We notice that (| Z |2+ 2Z'0 —p)*(a+ | Z+0||>) 2= (|Z| %2+ 2Z'0 — p)*{—~?
-2/(1ZII*+2Z'0 —p)a+ || Z + 6]} for any £ Choosing 7= (p + || 02 —
3a)/(2a), we have '

Sz—-{pkk —1) +4 011 — 2a/(a + p + [|611*)}*/(4a)
z —{pkk — 1) + 4 [|0]°}/(4a).

(3.3)

To evaluate R, we consider the following two cases: || 8 |> < mp and | 6 ||* > mp.

CaSE 1. [6]* =< mp. Noting that R = —| 0||*{p(x — 1) + 4 || 0]|%}/{4a(a + p
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+ [ 6]/2?, from (3.2) and (3.3) we have
@+p+ 01D D=p(c+a—-«x+3)+c|o]?
—(61°+p—2-c)plk —1) + 4 [6]%/(4a).

Since the right hand side of (3.4) is a quadratic function of | 6 ||%, we can verify
that it is nonnegative under the conditions (I-1)—(I-4) by examining the cases
[611>=0and | 6]*= mp.

(3.4)

CAsE 2. [ 6] > mp. We first decompose R as R = R, + R, where
R =E{IZ|*+Z0)(I1Z]*+2Z'0)a+p+ 61 a+Z+06])7",
and
R, =-E[{2p(I1Z|*+ Z'0)(I Z|* + 22’6 — p) + p*(I1 Z|* + Z'6)}
(a+p+ 1612 @+ 1Z+01%)7

Since (| Z||* + Z'0)(I1Z||* + 2Z'0)*(@ + | Z + 01 = | Z|*| Z]|* + 52’0
1Z1* +8(Z'0)% (a+ [ Z + 67"+ 4Z'0)%a + [611)7 — 4Z'0)°(I1 Z||* +
2Z'9)(a+ 0119 a+ | Z + 6], we have

1Z1%1Z)* + 5201 Z]* + 8(Z'e>2}]
a+ |Z + 6|2

L Az z)t+ 229 |
l@+161D@+1Z+061»]

AR ARA)

T @+ 0D @+1Z+061»

A

@+ 10617]"

(@+p+1101*)°R, = E[

= —(4a)"'E

Since E(Z’8)* < max(k, 3) || 0]|%, we can easily see that
R, = max(x, 3)[— {4a(a +p + [|6]2)}"
(3.5) +pidala +p + [101%% 7 2@+ p + (61577
—afdla+ [0]3@+p+ 101537
On the other hand by using (3.1) we have

_pUZIP+Z'0UZ1* +22'0 —p) _ L p*UZI* + Z°0)
@+p+60%* @@+p+160%°

wherer=pla+p+ 01> 2 —-p/(a+p+ || 6>} Since R = R, + R,, we have
R=Q1Q-r)""R-r@-rYpk=-1+2[0|}a+p+I0])
-p!A=rNa+p+[6]H72

R2=

+ Rr,

(3.6)
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From (3.5), we can easily check that if 2a = p,
3.7 (1 = r)7'R; = —max(k, 3)(4a) Ma +p + || 0]>) .
Thus from (3.6) and (3.7), we have

_ max(k, 3)
4a(a+p + (0]

R =

2 . p* |pk-D+2]0|"
la+ 612" @+ 16122 @+p+16]?°

3

B p
(@a+01»*a+p+l6]>°

By (3.2), (3.3) and (3.8) we have
D= (a+p+61*"c — max(x, 3)/(4a) — (p — 2 — ¢o)/a}
t@+p+ 6372

(3.8)

- [(p—c)a — p(x — 3)

—4p — (p — 2 — ¢o){p max(0, x — 3) — 4a— 2p}/(4a)]
—@+ 6] Ma+p+ 101Dp2{pk — 1) — 2a} + 2p + p?
—(@+ 01 *a+p+ 101 pk — 1) — 2a + p?},

which can be verified to be nonnegative under the conditions (I-1)—(I-4) if || 6 || 2
= mp.

NOTE. The values of ay and m given in the theorem were found by trial and
error.

REMARK 1. The lower bounds of @ and ¢ given in the theorem are in no sense
the minimum possible, and we should consider that they just give a guide post.
Actually, when the values of « (or its upper bound) and p are specified, we may
show that § dominates X under weaker conditions on a and ¢ even if we adopt
the same method of proof.

REMARK 2. It is well known that when Z,, - - ., Z, are normally distributed
6 dominates X if a = 0 and 0 < b < 2(p — 2). By setting x = 3 in conditions
(I-1)—(I-4) in our theorem, we see that § dominates X if a = a, and ¢ = ¢y(a).
We notice that co(ap) < min{l, (p — 2)/3}. If we put b = p — 2, we see from
conditions (II-1) and (II-2) that 6 dominates X if a = a; although the choice a =
0 corresponds to the Stein estimator.

REMARK 3. We can also apply the theorem to discrete distributions. For
example, suppose that Y; is a continuous random variable with density function
f(-) and that Z; is distributed as [Y;/d + 0.5] d, where [x] denotes the largest
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integer which is not larger than x. Even in this case we can apply the theorem if
we can get upper and lower bounds of E(Z?) and also an upper bound of
E(Z})/E*(Z?). Without proof we state the following fact which may be useful for
this purpose: If f (-) is a symmetric and unimodal density function, then

E(Y?) — d*/12 < E(Z}) < E(Y}) + d¥/4,
and
E(Z}) = E(Y}) + 3d*E(Z})/2.

REMARK 4. It should be mentioned that the theorem can be applied to the
multiple observation case by the simple expedient of letting X; denote an
invariant estimator (ideally the best invariant estimator). We only need the
values of E(Z?) and E(Z}!)/E*(Z?). If X; is the sample mean based on n
observations, we can easily see that E(Z})/E*Z?) = 3 + (x — 3)/n, whose value
is close to 3 for large n.

REMARK 5. Suppose that E(Zf{) = «;,i =1, ---, p, are not necessarily the
same. Even in this case we can show that the theorem is correct if we replace
max(3, ) by max(3, kmax) in (I-2), 5(x — 3)/4 by 5(k — 3)/4 in (I-3), 2(x — 3) by
2(k — 3) + (kmax — &)/(8p) in (I-4) and 4(x — 3)*/3 by (k — 3)" + (kmax— 3)*/3 in
(I1-2) respectively, where kmax = max(k;, - -« , k,) and k = Y, «;/p.

REMARK 6. One implication of the theorem is that the property that 6
dominates X is very robust as noted in James and Stein (1961, page 369). As a
matter of fact, if we may assume that the density is symmetric and if we have
some information about the upper bound for «;, i =1, - - -, p, we do not have to
worry about the form of the density function. However, if we may assume a
specific form of density, we will have a wide range of a and b (as in Section 2),
which may lead to a larger improvement upon X.

APPENDIX

A lower bound of —E {h(Z;)(1 + Z}/B8)*} when Z; has t distribution. We first
note that

2\2
—Ezl[h(Zi)<1 + é) l

I 8/

_ 1+ Z/B)? S{(Z: + 6.)*(1 + Z}/B)*
B Ezi[fsi + (Z; + 0:’)2}2] * SEZ'[ {S: + (Z; + 6,)%* ]

ELl +L2,
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say. For L, we have

1 27%
L = _EZ‘I:{S;‘ + (Z; + 0;‘)2}2] B EZiI:B{Si +(Zi+ Bi)z}z]

zt
B Ezi[ﬁz{si + (Z: + 01’)2}2] ’
=L, + Ly + Ly,
say. Applying integration by parts to L,,, we have

2 1
be==577 Ezf[zs,- g o,->2}2]
N 88 E [ (L+Z¥B)*  6(Z+ 6)%(1 + Z?/ﬂ)z}
(B—2)(8—-3) S + (Z: + 6% (S: + (Z: + )%}
Thus it is easily seen that
Ly + Ly = =2(8 — 2) 'EZ[{S; + (Z: + 6:)%7%),

if a = 58(8 — 2)"}(8 — 3) .. Therefore under the same condition on a we have

(A.1) Ly + Ly = =B(8 — 2)'EZ[{S; + (Z; + 6:)%7%] + Lis.
To evaluate L,3, we first note that
1 1 20,Z;

Si+ (Zi+0)® Si+02+2ZF (Si+ 067+ ZDHSi+ (Z: + 6)%

Using the above identity, we have

BLi; = —E |2t | [ OZi
BTUTRNS+ 0+ 2D T TS + 02 + ZBAS: + (Zi + 6)F
032¢
_4Ezi[(si + 07+ ZHHS: + (Z; + 0;‘)2}2]

= L5 + Lisp + Lyss,

say. We can easily see that

Z}
Ly = _E[{Si + 07 + E(Z?)}]

and

ZHZ; + 6)? ]

Lz = —2Eli[(sl. + 07 + ZHS, + (Z; + 60,)%

v

—2a7'E(ZHE{(S: + 07 + Z})7Y).
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Since
—EZ< 1 >= ~1 + 1 EZ[Z%_E(Z%)'
\S:+ 02+ 22 Si+0}+E(Z?) S+ 0+ EZ}) Z\|S: + 602+ 73
2 —{1 + E(Z})/a}/{S: + 67 + E(Z})},
we have

Lz, 2 —2E(Z!){a + E(Z})}/[a*S;: + 07 + E(Z})}).
In the same way we see that

Liss = —4E(Zf){a + E(Z})}/[0®S; + 07 + E(Z})}].
Since E{S; + (Z; + 6,)%} 7' = {S; + 6? + E(Z?)}7, we have

B%Lis = —[E(Z}) + 2a7E(Z}){a + E(Z?)}
+ 4a°E(Z}){a + E(Z}YELS: + (Z: + 6)%) 7"
From (A.1) and (A.2), we see that
—Ez{h(Z)(1 + Z}/B)%}

(A.2)

8 1
=" B—2 EZ‘|:{Si + (Z; + 0i)2}2:|

(43) -3 [E(Z%) 4 EEDla + EED] | ABEDe + E(Z%)}}
5 a :
gl 1 |

|S: + (Z: + 6)?]
ifa=56(8—-2)"48—-3) .
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