The Annals of Statistics
1984, Vol. 12, No. 1, 210-229

NONPARAMETRIC REGRESSION ANALYSIS OF
GROWTH CURVES'

By THEO GASSER, HANS-GEORG MULLER, WALTER KOHLER,
LUCIANO MOLINARI AND ANDREA PRADER

Zentralinstitut fur Seelische Gesundheit, Universitit Heidelberg,
Universitat Heidelberg, Universitdt Zirich and Universitdt Ziirich

In recent years, nonparametric curve estimates have been extensively
explored in theoretical work. There has, however, been a certain lack of
" convincing applications, in particular involving comparisons with parametric
techniques. The present investigation deals with the analysis of human height
growth, where longitudinal measurements were collected for a sample of boys
and a sample of girls. Evidence is presented that kernel estimates of acceler-
ation and velocity of height, and of height itself, might offer advantages over
a parametric fitting via functional models recently introduced. For the specific
problem considered, both approaches are biased, but the parametric one shows
qualitative and quantitative distortion which both are not easily predictable.
Data-analytic problems involved with kernel estimation concern the choice
of kernels, the choice of the smoothing parameter, and also whether the
smoothing parameter should be chosen uniformly for all subjects or individ-
ually.

1. Introduction. How somatic growth proceeds during childhood and ad-
olescence, and whether it stays within normal limits, is of interest to pediatricians,
the clothing industry, and many others. Cross-culturally, growth standards are
an indicator of the adequacy of the provision of food, medical services etc. Most
needs arising can be answered by collecting and analyzing cross-sectional data.
However, dynamic features of growth, as e.g. the adolescent spurt occurring in
various parts of the body and in height itself, can only be investigated via
longitudinal measurements (the many facets of human growth are treated in
detail in Falkner and Tanner, 1978). An understanding of the dynamics of normal
growth has practical implications in the diagnosis and treatment of disorders of
growth (Prader, 1978) and is of interest for understanding the basic mechanisms
of growth, as a phenomenological correlate of endocrinological regulation (Sizo-
nenko, 1978).

Fortunately, some human biologists and pediatricians planned and began
several ambitious longitudinal studies of growth and development in 1954/1955
(Falkner, 1960), internationally coordinated by the International Children’s
Centre in Paris. The longitudinal study of growth and development, initiated at
the pediatric clinic of the University of Zurich, on which our analysis of height
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growth is based, benefitted from favourable geographic and social circumstances
and, due to this, it is rather complete and in good shape.

The analysis of growth curves is a classical theme in statistics (Wishart, 1938;
Potthoff and Roy, 1964; Rao, 1965; Grizzle and Allen, 1969; Ghosh, Grizzle and
Sen, 1973; Reinsel, 1982) where emphasis has been on using polynomial fitting
and MANOVA techniques. This approach was, however, pursued only in the
statistical literature and not in the field of application (for reasons outlined in
Marubini, 1978). There, nonlinear regression was, with few exceptions, the
method of choice for determining a small number of parameters per individual
growth curve. The functional models used were descriptive rather than interpre-
tative and were compared via goodness-of-fit criteria (Marubini et al., 1971,
Preece and Baines, 1978). The by-now classical parametric models account for
only part of the growth process (H = height, t = age): the Count model (Count,
1943) H(t) = (a + bt) + c log t and the Jenss model (Jenss and Bayley, 1937)
H(t) = (a + bt) — exp(c — dt) both for the first few years and the logistic H(t)
= a + b/(1 + exp(—c(t — d))) or the Gompertz function H(t) = a +
b exp(—exp(—c(t — d))) for the pubertal growth spurt (compared by Marubini et
al., 1971, and Berkey, 1982). A verbal association of such a local fitting with a
“growth cycle” cannot hide the fact that methodological problems and not
biological reasoning are at the back of this local approach; problems, anyhow,
arise when pasting together the local fits. An attempt at a global fitting was made
by Bock et al. (1973) by adding two logistic functions (“double logistic model”)
for modeling height growth from birth to adulthood. It rendered a high residual
mean square error and average parameters which disagreed substantially with
previous findings. These discrepancies can be attributed to a serious bias of the
double logistic model, since it proved to be much inferior to 5- and 6-parameter
models suggested by Preece and Baines (1978):

2(a — H(b))

model 1 PB: H(t) =a- exp(c(¢ — b)) + exp(d(t — b))
model 3 PB:
HE) = a 4(a — H(b))

" (exp(c(t — b)) + exp(d(t — b)) (1 + exp(e(t — b))

The above models are the best fixed models proposed so far for a global fitting
of human height growth, which makes them fair candidates for a comparison
with the nonparametric estimates introduced later on. (Let us note that self-
modeling nonlinear regression (Stiitzle et al., 1980) is a promising approach from
the statistical side and for human biology: the model estimated proved to be the
same for boys and girls, and interesting features as e.g. a small pre-adolescent
spurt in the velocity curve at about age 7 (“mid-growth spurt”) could be identi-
fied). :

A smoothing technique by eye applied to empirical difference quotients of
height observed was used by Tanner et al. (1966a, b). In Largo et al. (1978),
smoothing difference quotients of height by cubic splines was proposed in order
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to estimate velocity of height nonparametrically; following Wahba and Wold
(1975), cross-validation was used to estimate individually the degree of smooth-
ing. In the present investigation, a nonparametric estimate based on kernels
(Gasser and Muller, 1979a, b) is introduced for estimating velocity and acceler-
ation of height directly from height measured. Nonparametric curve estimates
are known to have asymptotic efficiency zero compared to parametric techniques
based on the true model. Evidence will be presented that there may be compelling
reasons for the use of nonparametric curve estimates in order to promote our
understanding of the dynamics of growth.

2. Some biomedical aspects. The most prominent feature of human
growth is the pubertal spurt (PS), rising with the advent of puberty. The velocity
of the PS peaks on the average at approximately 12 years for girls and 14 years
for boys (compare Figures 2-5 of Section 7). Puberty does not only initiate a
growth spurt (associated with a higher rate of proliferation of cells at the
epiphyses) but it also essentially stops growth (with a certain time lag) due to an
ossification of the epiphyses of the long bones. It is of interest to quantify onset,
age of peaking, intensity, and duration of the spurt and also to study sex
differences in these parameters. A substantial number of papers contribute to
our understanding of the PS (Tanner et al., 1966; Tanner et al., 1976; Largo et
al., 1978; to mention a few). A consistent result is that boys have a more intense
and a later PS. The difference in intensity is tentatively ascribed to the higher
concentration of androgenes in the puberty of boys than of girls. Further
questions which arise are: Does the intensity or duration of the PS influence
adult height? Or is it compensating for the height reached at the onset of the
PS? Somewhat puzzlingly, the PS did not relate at all to adult height in previous
research, and the importance of a compensating mechanism remained somewhat
dubious. These, and other problems, made us look for different statistical ap-
proaches.

For most children, there is a small but distinct velocity peak at about age 7
(Figures 2-5), the so-called mid-growth spurt (MS), which has an interesting
history: some older studies reported on the MS (Backman, 1934; Count, 1943;
Grubb, 1942) based on the development of some extreme subjects. Interestingly
enough, the MS—not being part of the parametric models—disappeared from
the literature when statistics and computing came into common use in growth
studies. Recently, it was identified as part of the model via self-modeling nonlin-
ear regression for height (Stitzle et al., 1980) and the existence of the MS was
formally confirmed for a number of somatic quantities (Molinari, et al., 1980). A
quantification of timing, intensity and duration of the MS was, however, still
lacking; nothing was, therefore, known about sex differences and about relation-
ships between the MS and the PS. The quantification of this often small
phenomenon—almost drowned in the noise—was a further goal of our investi-
gation.

Whereas height is measured, parameters and graphs in terms of velocity of
height have attracted more interest. Accelerations have not been estimated so
far in growth studies, but they might lead to additional information regarding
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the PS and there is hope that the MS is easier to quantify from accelerations.
Estimating derivatives will, of course, blow up the noise, and a further difficulty
is that no residuals can be defined.

Parameters defined in terms of maxima and minima of velocity have tradi-
tionally been used, sometimes called “biological” parameters to distinguish them
from the model parameters, but “longitudinal” parameters is suggested as a
neutral alternative. The longitudinal parameters of greatest interest so far were
the age of minimal velocity before the PS, T'6 (“onset of the PS”), and of maximal
velocity during the PS, T'8 (“timing of the PS”), and the height (H) and velocity
(V) at these ages. Longitudinal parameters have the advantage of having a
uniform interpretation across subjects and of offering some intuitive insight.
Accelerations lead to additional longitudinal timings (e.g. the ages of maximal
and minimal acceleration during the PS).

3. Subjects, design, and computing. Out of 412 children included in a
prospective longitudinal study in 1955 at the Kinderspital Zirich, a random
sample of 45 boys and 45 girls was selected for data analysis according to the
following criteria: measurements had to be complete up to 3 years, and later no
2 consecutive and not more than 3 observations should be missing. Children
suffering from a disease which hampers growth or who were treated with hor-
mones known to affect growth were excluded. Height was measured as described
in Falkner (1960), using gentle upward pressure under the mastoid process (and
this by the same trained anthropometrist after the age of 8 years). Children were
measured at 4, 13, 26, and 39 weeks, at 1 and 1% years and afterwards yearly
at birthday + 14 days. From 9 onwards for girls (10 for boys), measurements
were done at intervals of 6 months until the annual increment was less than .5
cm/year. Thereafter, measurements were continued at yearly intervals until the
increment was less than .5 cm in 2 years. Missing observations were completed
using an iterative procedure which assured that the filled-in pseudo observation
had approximately zero residual (as described in Largo et al., 1978), resulting in
a data vector of length T' = 34. While there is no need for this procedure for the
present investigation, it was considered more practical to use the same data base
as previously.

Computations were done on the IBM 370/168 at the Computer Center of the
University of Heidelberg. Software for kernel estimation, parameterization, and
graphical analysis was developed, fitting of model 3 by Preece and Baines (1978)
is based on an algorithm by Deuflhard and Apostolescu (1980). When for some
curves an absolute minimum was reached which was not reasonable in terms of
parameters, a marginally suboptimal minimum with more reasonable parameters
was chosen as a solution. For the further statistical analysis of the individual
parameters, the program package SAS was primarily used, and in a few instances
BMDP.

Age (T) is given in years, velocity (V) in cm/y, and acceleration (A) in cm/y2.

4. Kernel estimates. The basic model postulated is the following:
(1) H¥¢)=H({t)+e; i=1,...,n, j=1,...,T
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where:
HY(t;) = height measured of individual i at age ¢;.
H;(t;) = true height
&;, = random variation, i.i.d. Vi, j,
E(e;) =0, E(e}) = 67 < .

The random term comprises measurement error, seasonal and diurnal variation,
and might also be influenced by illness and adverse psychological conditions.
Replicating measurements yielded a standard deviation of .18 cm for the meas-
urement error (Whitehouse et al., 1974); local polynomial regression as well as
cross-validation lead to a residual standard deviation of .5 ¢cm from 2-8 years
and of .3 ¢cm from 15-18 years. This intuitively plausible time trend in the
residual variance is neglected in the present model. Parametric estimation starts
by postulating a functional class H;(t) = F(t, ;) (a; = vector of individual
parameter) and, for this crucial step, statisticians tend to rely on human biolo-
gists, and vice versa, introducing some circularity in the scientific process.
Unfortunately, goodness-of-fit criteria do not necessarily lead to a wise choice
among functional models, as will be shown in Section 7. Regression analysis has
grown out of applications in engineering and physics (Draper and Smith, 1981;
Daniel and Wood, 1980), where in contrast to biomedicine only one curve has
usually to be fitted, and where the state of science gives firmer ground for model
building.

A priori, it is not even clear whether all subjects develop in a homogeneous
manner so that they can be fitted by the same class of functions. Such an
assumption is not necessary when using nonparametric techniques, which might,
therefore, also be used for identifying subgroups qualitatively different in devel-
opment. The estimate proposed for the vth derivative of H(t) is:

(2) H,(t) = b(T)m ZnH*“)f (b(T))du

Here, {s;} is any interpolating sequence t; < s, < tj;; (our choice was s; =
(t, + tj+1)/2)) and b(T) is the bandwidth or smoothing parameter. The kernel W,
for estimating the vth derivative is called a kernel of order (v, k) when it satisfies
the following moment conditions:

I‘O J=0,...,v=1Lv+1, ..., k-1
3) W(x)x’dx— (=1)! j=v»
B0 j=k

support W, = [—7, 7] for some 7 > 0, W, Lipschitz continuous on [—7, 7]. The
most important underlying assumption is that H(t) satisfies some smoothness
conditions: given that H is k-times continuously differentiable (k = » + 2), the
bias of H, is of the form:

(4) kl, b(T)*"H™(t) j: W, (x)x*dx + o(b(T)*™).
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The asymptotics assume b(T) — 0, T b(T)**' — o as T'— . The variance is:

1
(5) —————T (TP f W, (x)%dx + O<_T b(T)”“)'

For data-analytic needs and in order to obtain the global rate of convergence
O(T~2*="/@k+1) of the asymptotically optimal integrated mean square error
(IMSE) and also the analytic form of the IMSE, “boundary kernels” with
asymmetric support were introduced for estimating at the extremities of the data
(i.e. for t € [t1, t; + b), t € (tr — b, tr]). The expression obtained for the IMSE
(7) and for the asymptotic variance (5) allow then the definition of the classes of
“optimal” and of “minimum variance” kernels, obtained by minimizing the
respective functionals. Figure 1 shows optimal kernels for estimating derivatives
v =0, 1, 2 used in Section 6. Due to the nonequidistance of the design, the finite
sample variance of H,(¢) will vary with ¢, and, as a consequence, minima and
maxima and other properties of the estimated curve would have to be judged with
a varying degree of subjective confidence. To avoid this effect, an algorithm has
been constructed (see Section 6) to stabilize the variance finitely.

Details and derivations of these results, as well as results regarding weak and
strong consistency and asymptotic normality, may be found in Gasser and Miiller
(1979a, b). A different kernel estimate (for » = 0) for fixed design regression had
been proposed in Priestley and Chao (1972), and has been further investigated
by Benedetti (1977) and by Schuster and Yakowitz (1979); an estimate for » = 0
closely related to ours has been studied by Cheng and Lin (1981). For a bibliog-

F1G. 1. Optimal kernels for estimating a regression function and its derivatives of order v = 1, 2 (from
left to right); below kernels of order k = v + 4, above k = v + 2. Minimum-maximum scale for kernels
of order (v + 4), kernels of order (v + 2), scaled accordingly.
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raphy, the reader may consult Collomb (1981). Problems arising when estimating
at the extremities of the data have recently been studied by Hall (1981) and by
Rice and Rosenblatt (1981, 1983).

Smoothing splines, well supported by generally available software, have gained
popularity among practitioners; their performance will therefore be compared
with that of kernel estimates. The cubic smoothing spline H,(t) for the measure-
ments H*(¢;)(j =1, ..., T) is the solution to the following minimization problem
(X plays a role similar to b for kernel estimates):

(6) : %z,&l (H*(t;}) — H,(t;))® + A f H?(t)? dt = min.

Smoothing splines have their roots in numerics (Schoenberg, 1964; Reinsch,
1967); their statistical properties have been investigated by Wahba (1975) and
by Rice and Rosenblatt (1981). The minimization problem arising makes the
derivation of statistical properties more tedious (compared to (2)), and is also a
factor in computer time.

5. Considerations for the choice of the smoothing parameter.
Practical experience and asymptotic theory indicate that the choice of the
smoothing parameter is crucial when estimating H"(¢). In principle, one might
suspect that qualitatively different empirical conclusions can be reached when
arbitrarily varying the degree of smoothing; in our experience, conclusions remain
stable within a reasonably wide range of b. In the present data analysis, the
sample of children represents some sort of replication; features which are repro-
ducible across the sample or a subsample merit interpretation.

In the smoothing case (v = 0), cross-validation has been suggested for deter-
mining a good smoothing parameter w.r. to IMSE (Craven and Wahba, 1979;
Rice, 1982), instead of a visual adjustment. Due to the lack of residuals, neither
a one-hold-out technique nor a visual analysis are feasible when estimating
derivatives. We have, however, fundamental objections against using any indi-
vidually optimized smoothing parameter when dealing with a sample of regression
functions. They will be substantiated by an argument based on asymptotics; the
leading term of the IMSE for child i is of the following form:

2

g
T_b(_f)—mfw”(x)Q dx

2
+ L b(T)**7" (f W, (x)x* dx) fH}k)(t)Q dt

IMSE(H,, o}, b) =
(7)

k12
which yields as the individually optimal bandwidth (if [ H{¥ (¢t)*> dt & 0)

1/(2k+1)

o)+ 1 k!zo,?fW,,(x)Z dx )
8) i = | —— D=

2k —v) 2 T
(f W,,(x)xkdx) fHﬁk’(t)z di
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It is easy to see that the integrated squared bias is up to a factor 2(k — v)/(2v +
1) equal to the integrated variance when using b; op::
2k — v)

. == "7 1aa.(+)2
fVar,(t) dt 9 + 1 Bias;(t)* dt

—(2(k—v)/(2k+1))

(C)) =n

2(k—v)/(2k+1)
. [c(k, u)(a?f W, (x)? dx)
2\ (2v+1)/(2k+1)
(f H®(t)? dt(f W, (x)x* dx) ) + 0(1)].

As a consequence, the individual variance of the estimate does not depend on the
residual variance ¢? only (as in (5)), but also on the kth derivative of the growth
curve (compare (4)), and the same holds for the bias. This confounding of residual
variance and bias may have somewhat absurd consequences in an interindividual
analysis: a sample of identical true curves with unequal residual variances is by
(8) treated with unequal individual bandwidths. The curves estimated will then
also show a systematic interindividual variation due to differences in the bias
(another example would be a sample where [ H{®(t)? dt is negatively correlated
with ¢?). These objections against an individually optimized choice of bandwidth
do not relieve us of the necessity of choosing a bandwidth (separately for v = 0,
1, 2) for the group of children in some rational way.

6. A finite sample evaluation for the choice of kernels and band-
widths and a comparison with splines. The kernel is a free quantity in the
definition of the estimate. For derivatives there is no published material regarding
the merits of different kernels; for » = 0 it has repeatedly been argued (compare
e.g. Rosenblatt, 1971) that the choice of a suboptimal kernel incurs a small loss
in asymptotic IMSE. Since this statement applied to positive and symmetric
kernels (of order & = 2 in our notation), it is an open problem whether higher
order kernels which asymptotically achieve a better rate of convergence are also
superior for a realistic sample size. To answer such questions, simulation has
traditionally been the method of choice, postulating some functional model and
a residual distribution. For the nonparametric regression estimates considered
here, exact finite sample results with respect to bias, variance and mean squared
error can be obtained by just one replication (i.e. at low cost) as follows:

(i) aregression function H(t) and a residual variance o2 have to be postulated
as well as a measurement design {¢;, ..., tr} and an estimation design
!717 ey TN}'

(ii) for some kernel W, and some bandwidth b the bias at 7, is obtained by
applying the estimate (2) to H(t) yielding H*(¢) and bias (1) = H"(r)
— H"“(7,); by summation of bias squared, one obtains an approximation
of the integrated squared bias.
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(iii) the variance at 7, is obtained by multiplying the sum of squared weights
by the residual variance:

5 _ 2
Var(d, () = o* 31 (ﬁl)“f W"(TZ<T>u> d“)

SJ_

(iv) for any kernel W,, the finite sample IMSE(b) can then easily be computed
as a function of bandwidth; we computed the IMSE(b) at 20 bandwidths
around its minimum and determined then the abscissa of the minimum
more exactly by doing spline interpolation at 100 abscissae (= byy).

(v) This b, was then entered again into (ii) and (iii) to allow for a fair
comparison between kernels and also with cubic smoothing splines with
respect to integrated mean squared error, bias squared and variance (the
same procedure can be applied to splines since they are linear smoothers;
this was done separately for » = 0, 1, 2 using the derivative of the
smoothing spline).

To stay close to the real problem, the published average growth model 3 for boys
of Preece and Baines (1978) has served as the regression function H(t); residual
variances were ¢° = .4, .3, and .2 cm® The measurement design assumed is the
one given in Section 3 (T = 34) and the estimation design was chosen equidistant

TABLE 1
Evaluation ( for v = 0) of splines, optimal kernels of minimal order and minimal order +2, and
variance stabilization (“stab”) for modeling average development of a boy according to
Preece and Baines (1978) (results at empirically optimal smoothing parameter)

=4 ¢2=.3 d2=.2
Bias® Var. IMSE Bias® Var. IMSE Bias? Var. IMSE
Spline 4.8 16.9 21.7 3.9 13.4 17.4 3.1 9.6 12.7
k=2 4.2 19.2 23.4 4.2 14.4 18.6 4.2 9.6 13.8
(stab)
k=2 6.5 19.1 25.6 5.8 14.9 20.7 2.4 12.7 15.5
(no)
k=4 0.6 19.4 20.0 0.6 144 15.0 0.6 9.5 10.1
(stab)
TABLE 2
Same as Table 1, v = 1.
2= .4 d2=.3 ¢?2=.2
Bias’ Var. IMSE Bias’ Var. IMSE Bias® Var. IMSE
Spline 8.9 13.6 225 7.3 11.6 18.9 5.6 9.1 14.7
k=3 16.0 11.1 27.1 11.8 11.0 22.8 11.6 7.7 19.3
(stab)
k=3 13.9 16.4 30.3 11.0 14.7 25.8 9.8 10.8 20.6
(no)
k=5 6.8 13.5 20.3 7.1 10.2 17.3 6.0 7.5 13.4

(stab)
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with N = 201. Bias, variance, and MSE were inspected dependent on age; global
results integrated from 4 to 18 years are given in Tables 1-3 (period of highest
interest longitudinally). Minimum variance kernels were consistently inferior to
the optimal ones and have been omitted. For » =0, 1, and 2, variance stabilization
(to be defined below) makes a profit in IMSE, kernels of minimal order k = » +
2 are definitely inferior to higher order kernels k = v + 4 and the spline is lying
between kernels of order v + 2 and » + 4 (the kernel of order 2 for v = 0 is the
Epanechnikov kernel, Epanechnikov, 1969; Rosenblatt, 1971). It came as a
surprise to us that the higher order kernels are strikingly superior for this
relatively-small sample size: for v = 1, 2, the higher order kernel is for a residual
variance of 0.4 cm? almost as good as the kernel of order (v + 2) for a residual
variance of 0.2 cm® Notable is also the small bias of the kernel of order (0, 4),
introduced in Gasser and Miiller (1979a). A decrease in residual variance leads
to a relatively small decrease in bandwidth, which is followed primarily by a
decrease in variance.

Splines, which are not much below higher order kernels in performance, need
more computer time, in particular for » = 0 (Table 4).

The algorithm for the finite sample variance stabilization of the kernel
estimate (2) is based essentially on step (iii), as defined above for the finite
sample evaluation technique, and uses also the asymptotic relation (5):

(«) for some 7; of the estimation design, say 7;, a bandwidth b; has to be
postulated;
(8) using (iii), the finite sample variance V; at 7, is computed with respect to b,

TABLE 3
Same as Table 1, v = 2.

o*=.4 ¢2=.3 o

n
o

Bias’ Var. IMSE Bias’ Var. IMSE Bias® Var. IMSE

Spline 35.8 21.3 57.0 29.7 20.9 50.6 229 19.8 42.7
k=4 42.1 20.4 62.5 41.4 15.7 57.1 38.8 11.7 50.6
(stab)
k=4 45.0 21.2 66.2 41.6 18.5 60.1 39.5 14.1 53.6
(no)
k=6 26.3 24.8 51.1 26.1 18.8 449 22.3 15.7 379
(stab)
TABLE 4

CPU time (sec.) for‘one realization (at
optimal smoothing parameter), averaged
over 20 realizations; estimated at 201

abscissae.
Kernel Kernel Splin
v+ 2 v+ 4 pline
0 .04 .10 .34
1 .08 .20 .32

2 12 27 .30
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(v) for 7;, a bandwidth b; is determined iteratively such that it yields a variance
V: € (V; £.05.V,): starting with b{” = b;_,, the variance V{” is determined;
if V{? is not within the above limits, a new bandwidth b{" is computed based
on (5) and using V{?, the target variance V; and b{* (etc).

The same algorithm can by (iii) adjust to an a priori known heteroscedasticity,
and it also allows for systematic changes in the variance across the estimation
design. Variance stabilization leads for » = 0 to an approximate doubling of the
bandwidth for yearly measurements compared to half-yearly measurements, as
to be expected; for » = 1, 2 this factor is substantially below 2 (asymptotically,
the factor is 1.25 for » = 1 and 1.11 for » = 2). Variance stabilization was not
applied to the extremities of the data.

After deciding in favour of variance stabilization and optimal kernels of
order (v + 4), the problem remained to find one “good” bandwidth, defined as
the abscissa of the minimum of the sample mean of the individual IMSE;(b)
(t=1, ..., n). This search relied on the finite sample evaluation technique (i)-
(v), described above, and proceeded as follows:

(a) model 3 of Preece and Baines (1978) fitted to the data of subject i was used
as an approximation for the individual regression function H;(t) in step (i);
for all subjects a residual variance of 0.3 cm? was assumed.

(b) for » =0, 1, 2 separately, and for optimal kernels of order (v + 4) and using
the variance stabilization technique, the individual finite sample integrated
mean squared error IMSE;(b) was computed on a fixed equidistant grid at
10 bandwidths around the presumed optimal b.

(c) the average IMSE(b) = 1/n Y%, IMSE;(b) was formed over all n = 90
subjects and this sample criterion was minimized after spline interpolation
at 100 points to yield by, used then in the data analysis.

The resulting bandwidths were for » = 0 3.4 years (maximal) in the preadolescent

and 1.8 years (minimal) in the adolescent period and for » = 1 these bandwidths

were 3.8 and 3.1 years and for » = 2 4.0 and 3.6 years (the transitions being
regulated by the requirement of variance stabilization). Keeping in mind that
measurements falling in the interval (¢ + b) are used for the kernel estimates,
these bandwidths are surprisingly large. When performing (c) separately for n =

45 boys and girls, a substantially higher optimal bandwidth arose for girls due to

their less accentuated pubertal spurt (PS). Using the two bandwidths separately

would have artificially enlarged existing sex differences of growth dynamics due
to a differential bias (this gives further support to the argumenation of Section

5 of using one and the same bandwidth for all subjects).

7. Nonparametric versus parametric fitting. Nonparametric curve es-
timates are a priori biased (4); basically, the bias leads to a leveling off of peaks
and troughs in the curve. The bias of their location is usually less of a problem:
it is negligible with symmetric peaks, and in the asymmetric case, the bias is
directed towards the less steeply rising side of a peak. It is reassuring to know
qualitatively the form and direction of the bias when inspecting an estimate, but
it would be desirable to know the approximate size of the bias (see below).
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Regarding parametric fitting, the situation is more complicated:

A. Qualitative distortion: certain structures are not taken into account at all in
the model.

B. Quantitative distortion: all essential features are characterized by the model,
but due to discrepancies between true and postulated function, quantitative
differences arise.

Figures 2-5, displaying nonparametric and parametric estimates of velocity and

acceleration of height for 4 children, illustrate the first point: in addition to the

pronounced PS, a second peak arises at about 7 years (the mid-growth spurt,

MS). The parametric model 3 of Preece and Baines (1978) ignores this phenom-

enon which is not part of the model (velocity and acceleration were obtained by

differentiating parametrically fitted height, as is customary in growth studies).

Moreover, gross discrepancies arise below 3-4 years of age (Preece and Baines,

1978, evaluated their model from 4 years upwards). The residual analysis under-

taken by Preece and Baines (1978) was not able to pinpoint the deficiency with

respect to the MS. The analysis of growth offers another interesting case of
qualitative problems in fitting: the velocity peak of the PS is definitely asym-
metric, with a slower rising than falling; the peak of the logistic function is
symmetric, that of the Gompertz function asymmetric. Its asymmetry, however,

12
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0 2 4 6 8 10 12 14 16 18 20
l AGE IN YEARS
FIG. 2. Height growth of a boy; above: velocity, below: acceleration; solid line = kernel estimate, dotted
line = parametric estimate; small graph gives height measured with cross-sectional quantiles (.03, .10,
.25, .50, .75, .90, .97); individual T6 (onset of PS) at 10.2 y (with velocity 5.3 cm/y) and individual T8
(peaking of PS) at 12.6 y (with velocity 7.8 cm/y).
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FiG. 3. As in Fig. 1, for data of another boy; individual T6 at 12.6 y (with velocity 3.9 cm/y) and
individual T8 at 15.3 y (with velocity 6.8 cm/y).

goes in the wrong direction with a faster increasing than decreasing velocity. The

fact that height is measured and fitted, whereas velocity (and acceleration) is of

major interest (compare e.g. El Lozy, 1978) contributes to these problems. Figures

2-5 contain a small graph of individual height observed, illustrating the point

that height is graphically rather uninformative compared to velocity or acceler-

ation; this might also be reflected in the power of goodness-of-fit tests applied to
height.

Problem B, the possible quantitative distortion of the PS (which is part both
of the parametric and the nonparametric fit), remains to be investigated:

B1. A priori, we expect that the lack of structure (no fitting of the MS) might
also lead to problems in quantifying the PS for the PB model (Preece and
Baines, 1978).

B2. The maximum of velocity in the PS,will have a downward bias for the kernel
estimates, in particular for boys with their more accentuated spurt.

In the examples of Figure 2 and 3, there is a good overall agreement in modeling

the PS, except for a slower and earlier rising of the parametric fit (more

accentuated in accelerations). Figure 4 shows a case of a more severe discrepancy,
probably attributable to the lack of an MS in the PB model. The smaller velocity
peak of the kernel estimate in Figure 5 is interpreted as a bias of the nonpara-
metric technique. For a more thorough investigation of bias, the longitudinal
parameters introduced in Section 3 will be used (onset of the PS = 76, and
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FiG. 4. As in Fig. 1, for data of a girl: individual T6 at 9.7 y (with velocity 5.5 cm/y) and individual
T8 at 12.0 y (with velocity 7.2 cm/y).
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F1G. 5. As in Fig. 1, for data of a boy; individual T6 at 11.7 y (with velocity 4.0 cm/y) and individual
T8 at 14.5 y (with velocity 8.3 cm/y).
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timing of the PS = T8, and velocity V and height H at these ages). The
discrepancy between the parametric and the nonparametric method in the
average age of onset (Table 5) is substantial for boys and particularly large for
girls (and, as a consequence, differences also arise for height and for velocity at
onset). These methodological differences, as well as their differential effect for
sex, are significant with low error probabilities (often <107 by paired and by
two-sample Wilcoxon tests, respectively). In view of this, empirical conclusions
will be affected by the fitting method used. The positive average difference (76-
T6PB) is interpreted as a bias effect of the PB model since the bias of the kernel
estimate is also negative if there is one. It is rather natural to associate the bias
of T6PB with the qualitative distortion of the PB model due to the lacking MS,
and this interpretation explains the larger bias for girls (their MS and PS are
closer together). In order to check this conjecture, a stepwise regression was
computed with y = T6-T6PB and with 6 longitudinal parameters as candidates
for predicting this bias: for boys and girls the timing of the offset of the MS is
the most influential variable for explaining y, and, as expected, it explains a
larger proportion of the variance for girls (R? = .35). To further clarify causes of
overall bad fitting by the PB model, a stepwise regression was computed with y
= estimated residual variance (for PB model) and with 5 parameters character-
izing the MS and the PS as possible predictors: for boys, the intensity of the
MS—not part of the PB model—is the only variable retained for explaining
interindividual variation in estimated residual variance. For girls, three variables
are retained, two of them characterizing the MS and one characterizing the
intensity of the PS. The conclusions are that the onset of the PS is systematically
distorted (due to the lack of the MS) when doing parametric fitting by model 3
of Preece and Baines (1978) and that the sum of squared residuals of parametric
fitting depends on individual characteristics of height growth H;(t).

There is a good overall agreement between parametric and nonparametric
fitting (Table 6) regarding the timing of the velocity peak (78 and T8PB) of the
PS and height reached, whereas the average value for the velocity peak (VT8
and VT8PB) is smaller by almost 0.4 cm/y for boys when using kernel estimates.
A stepwise regression with y = (VT8-VTS8PB) showed that this difference is
indeed negatively related to the intensity of the PS and that it can be interpreted
as part of the bias of the kernel estimate. The following approach was used to

TABLE 5
Comparison of estimates of age of minimal pre-PS velocity (T6, T6PB) and height (H) and velocity
(V) at that age; determined by kernel estimates and by Preece and Baines model 3 (PB); r = rank
correlations (between methods).

Sex T6 T6PB HTé HT6PB VTé VT6PB
x boys 10.90 10.62 143.6 142.1 4.331 4.482
girls 9.762 9.013 136.3 132.3 4.846 4.895
s boys 1.065 .8291 6.793 6.490 .5042 4744
girls .9557 71123 7.312 6.185 .5837 4617
r boys .790 .825 .818

girls .815 .891 817




NONPARAMETRIC REGRESSION AND GROWTH 225

TABLE 6
Comparison of estimates of age of PS peak height Velocity (T8, TSPB) and height (H) and velocity
(V) at that age; determined by Preece and Baines model 3 (PB); r = rank correlation.

Sex T8 T8PB HTS8 HTSPB VT8 VT8PB
x boys 13.91 14.00 161.4 162.6 8.313 8.697
girls 12.22 12.09 150.4 150.2 6.996 7.090
8 boys 9505 .8861 6.629 6.337 .8218 1.034
girls .8066 7771 5.968 5.856 9519 1.039
r boys 971 942 911

girls 873 .888 974

approximately determine the average bias of peak height velocity (VT8) of the
kernel estimate:

(i) The raw measurements of the n = 45 boys and the n = 45 girls were
aligned separately to the average T8 by shifting them with respect to
individual T8.

(ii)) An individual constant was added such that height at 78 would be
identical for all boys (or girls respectively)

(iii) The resulting “super curve” of 45 children was smoothed with a visually
determined small bandwidth (and thus a small bias, see (4)).

For boys, we obtained then an average peak velocity of 9.77 cm/y (compared to
8.31 cm/y for the individual kernel estimates and to 8.70 cm/y for the PB model)
and of 7.85 cm/y for girls (instead of 7.00 cm/y for the individual kernel estimates
and to 7.09 cm/y for the PB model). It came as a surprise to find a large portion
of the average bias of the kernel estimate—which was a priori to be expected—
also in the parametric fit, indicating that this model does not adequately incor-
porate the intensity of the PS.

8. Biological progress. We will now summarize some biological results
(more detailed reports are available from the first author.). The mid-growth spurt
(MS) was hitherto unquantified, and the newly introduced estimate for acceler-
ation proved to be crucial for this step: the timing (6.4 years for maximal
acceleration) and the intensity of the MS (maximal acceleration = .21 cm/y?)
were on the average exactly equal for the two sexes, whereas boys had a marginally
longer lasting MS. This finding is in marked contrast to the known sex differences
for the PS and makes a different regulation for the MS plausible. Figure 6
illustrates this point displaying probability densities (obtained by kernel esti-
mates) for the timing of the MS and of the PS for the two sexes. The local mode
on the Lh.s. is produced by a few children with a very long lasting MS (whether
they represent the nucleus of a subgroup will be checked in subsequent work).
As to the PS, there is in general a good agreement with published results, where
they are comparable. Accelerations lead, however, to a more differentiated
subdivision of the PS; judged from our results, the PS is not a global phenomenon:
the phase from onset to maximal acceleration is in many aspects independent
from the longer lasting phase from maximal acceleration to maximal deceleration,
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and sex differences of the PS are attributable more to the first phase. In view of
the difficulties in modeling the PS, and also for investigating its dynamics, it is
interesting to find a much more accentuated asymmetry of the pubertal peak for
girls. The MS and the PS are for both sexes in most respects unrelated. A
multivariate condensation of all longitudinal parameters was obtained for the
combined sample of boys and girls (Figure 7) by multidimensional scaling, using
the program MINISSA from Coxon et al. (1977). In order to characterize the
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Fi1G. 6. Probability densities (kernel estimates) of timings of midspurt for boys (dotted) and for girls

(solid) left, and for timings of the pubertal spurt, right.

2.04

DIMENSION 1

FiG. 7. Two-dimensional MDS representation for combined groups of boys and girls based on all
parameters of height growth extracted by kernel estimates (B = boys, X = girls); straight lines = 43/45
convex hulls for the two sexes separately.
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region occupied by the two sexes, 43/45 convex hulls have been additionally
introduced (by eliminating 2/45 = 5% of the most extreme subjects as described
in Gasser and Mocks, 1983): the two sexes are then almost distinct, which is
remarkable since height measurements only are the basis of this representation.

9. Concluding remarks. When scrutinizing the Preece-Baines model for
height, the aim was not to convince the reader of its disadvantages (it belongs to
the best functions suggested for this purpose). The difficulties outlined are
somewhat surprising, since a lot of work has been done in modeling and analyzing
growth curves. While within a formal statistical point of view some can be
attributed to the biomedical field (considered responsible for model building),
the difficulties in diagnosing the lack of fit are statistical in nature (residual
analysis based on the runs test, on the residual mean squared error and on
graphics was not able to provide adequate information in this respect). It is also
somewhat discomforting that asymptotic results for nonlinear regression assume
the true model to be known (Jennrich, 1969; Wu, 1981). Some potential dangers
of parametric fitting became verified: relevant structure—the MS—is not part of
the model; the lack of the MS in the model also affects the quantification of the
PS (too early an onset), and this bias is dependent on sex; the intensity of the
PS is not adequately modeled; the fit below 4 years—not part of the original
evaluation—is close to useless. Nonparametric regression estimates circumvent
a number of the problems discussed:
¢ no functional model has to be postulated (the method can, therefore, be easily

applied to other somatic variables), and there is indeed not even the assumption

that all children (for example boys and girls) obey the same law of development;
e the bias is easier to understand since the method operates locally and since the
estimate itself contains information about the bias;
e computation is fast and it does not lead to problems with local minima as in
nonlinear regression.
It is an asset that finer details can be obtained reliably via the first and second
derivative in a nonparametric way, even for such a sparse design. Cubic smoothing
splines are, for our problems, lagging slightly behind higher order kernel estimates
and they are computationally not competitive.

Further methodological work needs to be done: we would like to see the bias
decreased, perhaps by using an adaptive smoothing scheme (less smoothing where
the structure, and therefore the bias, occurs). It might also be worthwhile to
investigate whether individual integrated mean square error is an appropriate
criterion when later on analyzing longitudinal parameters across a sample of
subjects, and to further substantiate the reasoning against an individually optim-
ized smoothing parameter.

Problems like those encountered might be paradigmatic for other fields: the
“interdisciplinary vacuum”, where statisticians are asking for a functional model
to perform a parametric fitting, and colleagues in the field of application are
asking for the properties of the model and its quantification, arise quite fre-
quently. Nonparametric techniques, and this applies also to derivatives, might
then be a good starting point for data analysis.
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