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The problem of optimal experimental design for estimating parameters
in linear regression models is placed in a general convex analysis setting.
Duality results are obtained using two approaches, one based on subgradients
and the other on Lagrangian theory. The subgradient concept is also used to
derive a potentially useful equivalence theorm for establishing the optimality
of a singular design and, finally, general versions of the original equivalence
theorems of Kiefer and Wolfowitz (1960) are obtained.

1. Introduction. Theoretical work on the optimal design problem has taken two
approaches. The original work of Kiefer and Wolfowitz (1960) was later revealed (Whittle,
1973, Kiefer, 1974, Silvey, 1980) to have appealing formulation in terms of optimality
conditions based on directional derivatives. The other approach has involved duality
theorems, based on Lagrangian theory (Silvey, 1972, Sibson, 1972, 1974, Silvey and
Titterington, 1973) or on Fenchel’s Duality Theorem (Malyutov, 1975, Pukelsheim, 1980).

It is in this last paper that the optimal design problem in its most general setting has
been treated but it is certainly the case that the approach taken there is less intuitively
appealing than the geometrically flavoured arguments based on directional derivatives
and less familiar than that based on Lagrangian multipliers. The present paper provides
a treatment of the general problem using the differential theory of convex analysis with,
as the corner-stone, the concept of the subgradient, the direct generalization of directional
derivative. A Lagrangian-based treatment of the general problem is also included.

In Section 2, the optimal design problem is posed as the maximization, over a compact
convex subset of nonnegative definite matrices, of a real-valued function having certain
properties, of which a crucial one is a type of concavity. Section 3 derives the key result
alluded to above, the duality theorem of Pukelsheim (1980), in terms of subgradients. This
new formulation more clearly brings out the interrelations between the duality theory and
the original equivalence theorem of Kiefer and Wolfowitz. Introduction of subgradients
can also be justified by considerations of numerical computation of optimal designs,
because most algorithms in some way or other use gradients or directional derivatives.
Section 4 provides an analysis of similar generality by the Lagrangian approach, which
hitherto has only been worked through in detail for special cases.

A major advantage of the differential theory approaches is that they provide the
formulation of a test of optimality. This test is not easy to apply when the optimal
nonnegative definite matrix is singular, which can quite easily happen. Silvey (1978) has
conjectured the equivalence of an alternative test of much more practical promise and he
established one half of the equivalence. Section 5 uses the subgradient tool to give a
complete proof of the equivalence.

Finally, in Section 6, general forms of the original Kiefer and Wolfowitz equivalence
theorems are established, in terms of subgradients and in terms of directional derivatives.
The generality of the results greatly helps one to avoid certain confusion experienced in a
special case by Karlin and Studden (1966); see also Atwood (1969).
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Two references, Rockafellar (1970) and Pukelsheim (1980), will be quoted often. For
brevity, they will be referred to by [R] and [P]. Recently a different approach to the
problem has been developed by Gaffke (1983).

2. The optimal design problem and its closure. Let .# be a compact convex
subset of NND(k), the set of all symmetric non-negative definite & X k matrices, and
assume that ./ intersects PD(k), the set of all symmetric positive definite k X k matrices.
Suppose K is a given k X s matrix of rank s, and denote by 9/(K) the set of those matrices
A in NND(k) whose range (column space) contains the range of K. Define J to be the
function from NND(k) into NND(s) which maps A into (K’A"K)™' if A lies in oA K), and
into 0 otherwise. Finally let j be an information functional on NND(s); that is, j is non-
negative on NND(s) and positive on PD(s), positively homogeneous, and concave; see [P].
As a consequence, j is isotone with respect to the Loewner ordering C =D < C - D €
NND(s). If j is strictly concave then it is also strictly isotone. The converse is not true, as
illustrated by j;(C) = trace C. Moreover, not even j.(C) is strictly isotone, where j.(C) =
trace CL, for L € NND(s), L # 0, rank L < s. Such functionals will be excluded from our
discussion in Section 4.

What we shall call the optimal design problem is the following.

P) Maximize j ° J(M), subjectto M € /.

Any optimal solution M of the problem (P) will be said to have _#-maximal j-information
for K’B. The number v = supye.,j © J(M) will be called the optimal value of (P). This
set-up has a familiar interpretation in terms of linear model theory. There, 8 is the k-
dimensional parameter in the model, K’B denotes the s linear combinations of 8 of
interest, .# will contain the information matrices corresponding to the designs under
investigation, and o7(K) will contain those members of .# for which K’8 is identifiable
under the corresponding design. The information functional identifies the optimal design
criterion of interest.

There exist examples, however, where problem (P) does not admit any optimal solution.
We shall consider, therefore, as well as problem (P), “its closure” in which the objective
function is cl(j © J), the closure of j ° J, which is the upper semi-continuous function

given by
cl(j ° J)(A) = lim,oj © J(A + el),

([R], page 57); in particular, we have cl(j © J)(A) = j © J(A). Since on a compact set any
upper semi-continuous function attains its maximum, the optimal value v satisfies

(1) v = maxpye »cl(j ° J)(M).

For A € o/(K) the matrix J(A) is positive definite and hence lies in the interior of the
effective domain of j. Continuity then implies j ° J(A) = cl(j ° J)(A). Hence the functions
j o dJ and cl(j o J) differ at most on the set NND(k) — o/(K). Recall that j © o itself is
closed, i.e., j © J = cl(j ° J), if and only if j vanishes outside PD(s) ([P], page 342).
Since problem (P) remains essentially unchanged under monotone transformation, we
are at liberty to work with the more convenient concave functions
g=logejod, clg=logecl(jed).

In the sequel, let R** and Sym(k) dénote the spaces of all k X k matrices and of all
symmetric k X k matrices, respectively.

3. Subgradient theory. A matrix B € R** will be called a subgradient of g at M if
@) g(A) =g(M)+ (A— M,B), forall A€ RM*
where (A, B) = tr(AB); ([R], pages 214, 308). Since g takes the value —o outside Sym(k)
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we need consider only matrices A and M, and hence also B, which are symmetric. If g is
differentiable at M, the set dg(M) of subgradients consists of a single member, the gradient
vector Vg(M) of g at M([R], page 242).

Now a major theorem of convex analysis provides the result that M has .#-maximal j-
information for K’ if and only if there exists a subgradient B of g at M such that

(3) (A,B) = (M, B), forall A€ A

This theorem will take the place of the Fenchel Duality Theorem employed in ([P], page
346). That (3) is sufficient for optimality is almost self-evident by rearrangement of (2).
A simple proof of necessity is outlined in ([R], page 271), and carried through in Bazaraa
and Shetty (1979, page 95).

Next we obtain a useful characterization of the subgradients of the present problem.
We work, however, with cl g and not with g. In addition we require the concept of the so-
called polar function j° of the information functional j, defined on NND(s) by

J%D) = inf{(C, D)/;j(C) | C € PD(s)}.
‘0)0

In fact, j° again is an information functional ([P], page 342) and (j°)° = cl j.

LEMMA 1. Let M € Sym(k) be such that (cl g)(M) > —, and let B € Sym(k) be
arbitrary. Then B is a subgradient of cl g at M if and only if B € NND(k) and 1 = (M, B)
=cl(j o J)(M) - j°(K’BK). .

ProOF. First we show that if B € d(cl g) then (M, B) = 1. For when in (2) we insert
A =aM, a >0, then

(M, B) <info{a(M, B) — log a}.

Here the infimum is finite only if (M, B) > 0, and then equals 1 + log(M, B). But 0 <
(M, B) =1+ log(M, B) forces (M, B) = 1.

Now let & be the set of those matrices A with (cl g)(4) > —x. Then (2) may be
rewritten as

(M, B) — (c1 )(M) = (c1 8)*(B),

where (cl g)*(B) = infaco{(A, B) — (cl g)(A)} is called the conjugate function of cl g. But
(cl g)* = g*, see ([R], pages 104, 308), while in ([P], page 346) it was shown that g*(B)
equals 1 + log j%(K’BK) if B € NND(k), and — otherwise. Thus B € d(cl g)(M) if and
only if B € NND(k), (M, B) = 1 and —log cl(j ° J)(M) < log j°(K’BK). Since (M, B) =
1, the last inequality is equivalent to (M, B) < cl(j ° J)(M) - j%(K’'BK). Since the reverse
inequality holds quite generally, by the same arguments as in the proof of Theorem 3 in
([P], page 345), the lemma is proved.

We are now in a position to give an alternative proof of the central Theorem 4 on
duality of ([P], page 345), in terms of subgradients.

THEOREM 1. Let _# be the set of those matrices N € NND(k) which for all M € A
satisfy (M, N) < 1. Then

Supye«j © J(M) = minye_+1/j°(K’'NK).

ProOF. Because of (1) we can replace the left side by maxye ,cl(j © J)(M). But M €
_# maximizes cl(j ° J), or, equivalently, cl g, if and only if there exists a subgradient B of
cl g at M satisfying (3). This B lies in _# since B € NND(k) and (M, B) = 1, by Lemma
1. Thus 1/j%K’BK) = cl(j ° J)(M) = 1/j°(K’NK), for all N € _#, where the equality is
taken from Lemma 1 while the inequality follows as in Theorem 3 of ([P], 345). This
completes the proof.
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Thus subgradient theory allows all the results that were derived in [P] from Fenchel’s
Duality Theorem. Yet another approach is provided by Lagrangian duality and we turn
to this next.

4. A general Lagrangian duality proof. The object of this section is to obtain
the general result of Section 3 as a direct generalization of the Lagrangian theorems of
Sibson (1972, 1974), and Silvey and Titterington (1973). It will be necessary to make the
mild demand that the polar function j° be strictly isotone. As indicated in Section 2, this
does rule out some information functionals, but few of much interest.

Our starting point is the second problem in the statement of Theorem 1, written in the
form

Minimize —log j°(K’'NK),
subject to N € NND(k), and (M, N) <1 forall M€ 7.

Moreover, we shall replace .# by a finite subset {A;, - - -, A;} of members of 7. Generali-
zation then goes exactly as in Sibson (1972, page 183) because, since 7 is convex, any M
€ ./ can be expressed as a convex combination of finitely many points of #. Thus we
can express the problem as

(4) Minimize —log j%(K’'NK),
subject to N € NND(k), and (A, N) <1 forall i=1, ..., 1L

As in Sibson (1972, page 183) the Lagrangian form associated with this problem turns out
to be

(5) L(N, y) = —log j%(K'NK) + (M, N) — Zy;, where M = ZyA,

for N € NND(k) and y € R, ie., y = (3, --+, y1) with y; = 0 for all i. If, for fixed
N € NND(k), we take the supremum of L(N, y) over y € R', we obviously reproduce the
objective function —log j°(K’NK) of (4). The following lemma solves the dual task of
minimizing over N with y fixed.

LEMMA 2. Let j° be strictly isotone, and fix y € R'. Then infyennpwL(N, y) =
log o jodJ(ZyA) +1— Zy.

PrOOF. Again set M = Zy;A,. First consider the case M & °/K). Equivalently,
e nullspace of M is not contained in the nullspace of K’, whence there exists a vector u
with Mu = 0 and K’u # 0. Observing that K’K has full rank s and that j°(K'K) > 0 we
find infn-oL(N, y) < inf.ooL(I, + auu’, y) = —o, since j° is assumed strictly isotone.
On the other hand M & o/(K) implies J(M) = 0 and log ° j ° J(M) = —o. In the case
M € o/(K) the matrix C = (K’ M~K)™* exists and, as in ([P], page 345), satisfies

(6) (M, N) = (C, K'NK).
We can write (5) as L(N, y) = Li(N) + Ly(N) — Zy;, where
Li(N) = —log j%K’'NK) + (C, K'NK), Ly(N)=—-(C,K'NK)+ (M,N) =0.

We minimize L, and L, separately. Clearly we may restrict attention to those N for which
JUK’NK) >0, whence 0 < j(C) - J%K’NK) =< (C, K’ NK), by the definition of j°. Then

(7 L,(N) = log j(C) — log(C, K'NK) + (C, K'NK) = log j(C) + 1,

where the second inequality follows from inf,-o{a — log @} = 1. Thus equality holds in
(7) if and only if j(C) - j°%(K'NK) = (C, K'NK) = 1. While (7) proves infy=oL,(N)
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=1 + log j(C), the converse inequality follows from
infy-oL;(N) = infn=oL,(N/(C, K'NK}))
=1 + infysolog{(C, K’NK)/j®(K'NK)}
=< 1 + log infpeppw {(C, D)/j°(D)}.

By definition, the last term equals log j%(C), and since C is positive definite this is the
same as log j(C). We have proved now that infn-oL:(N) =1 + log j(C), and that every
minimizing sequence (N;);-1,s,... forces lim;(C, K'N;K) = 1.

That it is possible to minimize, simultaneously, L:(N) and L,(N) is proved essentially
by Sibson (1974). Let .

Ly(D) = —log j*(D) + (C, D),

for D € PD(S) and let D* minimize Ls(D). The expression at the foot of page 688 of
Sibson (1974) is equivalent to —L,(N) and a matrix which achieves L,(N) = 0, as well as
minimizing L,(N), is given by Sibson’s N, (see near the top of page 689) but with D* in
place of his [y4(M)]™.

Thus, altogether, infy=oL(N, y) = log j(C) + 1 — Zy;, and the lemma is proved.

It follows that the Lagrangian dual problem of (4) is
(8) Maximize log ° j o J(Zy:A:) +1- Zy:,  subject to y € R:.
As a result of the homogeneity of j, this is equivalent to
Maximize j° J(M), subject to M € convid,, ---, A}}.

The fact that problems (4) and (8) have the same optimal values follows, by the concavity
of log j%K’ - K) and the linearity of the constraints in (4), from the Strong Lagrangian
Principle; see Whittle (1971, page 65).

The stages of the proof follow those of previous Lagrangian theorems. The decompo-
sition of the Lagrangian into L, and L, and the inequality in (6) appear in the definition
of the axis of the thinnest cylinder in Silvey and Titterington (1973, equation 3.8), of the
centre of the minimal ellipsoid in Titterington (1975), and in equations (7) of Sibson
(1974, page 689). The steps in which L; is minimized appear in slightly different form in
([P], page 346) and serve, as there, to avoid differentiation-based arguments specific to
D-optimality in the other papers. A problem similar to (4) is discussed by Rosen (1965),
without development of the duality.

The work in this and the previous section characterized the solution of the optimal
design problem in terms of that of another optimization problem. We now turn to a related
but slightly different sort of optimality characterization.

5. Optimality of singular information matrices using complementary sub-
spaces. The familiar characterizations of optimal information matrices and designs as
stated by Kiefer and Wolfowitz (1960), Kiefer (1974), Fedorov (1972), Whittle (1973) and
Silvey (1980) can all be expressed as: M € .# N </(K) is optimal if and only if the
directional derivative of g at M is non-positive in every possible direction:

g'M;A—-M)=<0, forall A€ A

Here g’(M; A — M) is the derivative in the direction A — M, as defined in Rockafellar
(1970), page 213); it is denoted by F(M, A) and called the Fréchet (directional) derivative
in Silvey (1980, page 18). If g is differentiable at M then g’(M; A — M) = (Vg(M), A —
M) and it suffices to verify non-positivity for all A from a set S whose convex hull equals
M. As emphasized by Silvey (1978, 1980) this latter result greatly facilitates the checking
of a design for optimality; he also points out that it is not applicable if, as may happen
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with some criteria, the optimal information matrix M is singular, so that differentiability
does not obtain.

However, many interesting information functionals fail to be differentiable only at
singular information matrices M. On the other hand, singularity of M € o/AK) allows a
wide choice of the generalized inverse in J(M) = (K'M~K)™. Silvey (1978) used this
observation to formulate ‘an optimality condition in terms of a non-singular matrix of the
form M + HH’ which satisfies J(M) = J(M + HH’); he proved his condition to be
sufficient for optimality, and conjectured necessity. We shall now show, in terms of
subgradients, that Silvey’s condition is indeed both necessary and sufficient for optimality.

To be precise, let the set &(M) consist of all & X (k — rank M) matrices H such that
the range of M and the range of H together span R*; if rank M = k take &#(M) = {0}. For
He &(M), (M + HH’)™ ! is a positive definite generalized inverse of M and, in particular,
J(M)=J(M + HH’) for all M € o/(K) and H € &(M). Given that g(M) is differentiable
at non-singular matrices M, Silvey’s (1978; 1980, page 27) condition for optimality of
M e # N AK) is that, for some H € & (M),

gM+HH ;A—-M-HH')<0, forall AES.

We shall, in fact, consider the following more general formulation that, for some
He % (M), and some B € dg(M + HH'),

(A,By<(M+HH',B) forall A€ A

Silvey’s form of the condition is clearly a special case since, given differentiability at non-
singular matrices A, Vg(A) is the only subgradient, (Vg(A), B) = g’(A; B), and .# may
be replaced by a spanning set S.

It is easy to see that the general form of Silvey’s condition is sufficient for optimality;
indeed, inequality (2) entails g(A4) = g(M + HH’) = g(M), whence M maximizes g over
M. Before we establish necessity of Silvey’s condition we prove the following relation
between the subgradients of g at M and at M + HH'.

LEMMA 3. Suppose M € o/(K) and H € & (M). Then (i) (M + HH') # O, and
every B € dg(M + HH') satisfies: (ii) BH = 0, and (iii) B € dg(M).

PrROOF. The matrix M + HH' is positive definite and hence lies in the relative interior
of the effective domain of g; Theorem 23.4 of ([R], page 217) then proves (i). Now fix
B € dg(M + HH'), Since M + HH’ is non-singular we can effectively assume closedness
and apply Lemma 1. Introducing C = J(M + HH'’) = J(M), we have

(M + HH', B) =cl(j e J)(M + HH') - j%K'BK)
= j(C) ° j%K’'BK) = (M, B),

the last inequality following from (6) and the definition of j°. Hence (HH’, B) = 0 and,
since B € NND(k), by Lemma 1, this proves (ii). Finally, since B is a subgradient at M +
HH', g(A) = gM + HH') + (A — M, B) — (HH’, B); but the last term vanishes and
g(M + HH'’) = g(M), so that B is a subgradient also at M. The lemma is proved.

As a consequence of Lemma 3 the objective function g turns out to be subdifferentiable
at every point M of its effective domain o/(K): dg(M) D dg(M + HH') # &. Note also
that in the general form of Silvey’s condition the term (M + HH’, B) could be replaced
by (M, B), because of Lemma 3(ii), or simply by 1, because of Lemma 1. We shall now
give a proof of sufficiency.

THEOREM 2. Suppose the matrix M € # lies in o/(K). Then M has .#-maximal j-
information for K’ if and only if there exist matrices H € & (M) and Bx € dg(M + HH')
such that (A, Bx) = (M + HH’, Bg), forall A € A.
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PrROOF. It remains to establish the direct part. In view of (1) we may consider
maximization of cl g instead of g. As a result of optimality there exists a subgradient B of
cl g at M satisfying (3). Define Bx = BK(K’'BK)*K’B, then (M, Bx) < (M, B) follows as
in the proof of Lemma 2 in ([P], page 348), while conversely (M, B) = cl(j ° J)(M)
- J%K’'BK) = (C, K'BK), by Lemma 1 and the definition of j°, and (C, K'BK)
= (C, K'BkK) = (M, Bg), by the same argument as in the proof of Theorem 3 in ([P],
page 345). Hence 1 = (M, Bx) = cl(j ° J)(M) - j°%(K’BkK), so that also By is a subgradient
of cl g at M, by Lemma 1. Furthermore, (A, Bx) < (A, B) = (M, B) = (M, Bg), for all A
€ _#, whence By satisfies the required inequalities.

Now on o/(K) the function g coincides with its closure, whence

(clg)(M)=g(M)=g(M+ HH’), forall HeE & (M).

The construction in the prodf of Lemma 2 in ([P], page 348) shows that we can find some
H € & (M) such that BxkH = 0. For such H then, altogether,

8(A) = (c1g)(4) = (c1 9)(M) + (A — M, Bx) = gM + IEIH’) +(A—-M - HH’, Bx),

for all A € R¥* which means Bx € dg(M + HH').

The final section turns to directional derivatives proper and derives, without any
differentiability assumptions, equivalence theorems of the Kiefer-Wolfowitz type, as
discussed by Kiefer and Wolfowitz (1960), Kiefer (1974), and Whittle (1973).

6. Equivalence theorems of Kiefer-Wolfowitz type. The original Equivalence
Theorem of Kiefer and Wolfowitz (1960) established equivalence of two optimality criteria
which are, independently of each other, of statistical interest: D-, and G-optimality. Their
result will be generalized to information functionals j, in that maximization of j o J over
A turns out to be equivalent to minimization of a certain function d over .#. While such
equivalences are useful in inspiring numerical algorithms, and provide interesting aspects
of the interrelations with subgradients and directional derivatives, the function d will, in
general, lose its appealing statistical interpretation, as is manifest in the equivalence
theorems of Fedorov (1972), for instance.

To be specific, define the function d, by

9 dg(M ) = infpegymaxac (A, B)

if 3g(M) # O, and d,(M) = +o otherwise; compare equations (3.12) and (4.3) in Silvey
and Titterington (1973, pages 27-28). We first show that for closed functions g the
infimum in (9) actually is a minimum.

LEMMA 4. If d(cl g)(M) # O then there exists a matrix B € d(cl g)(M) such that
dag(M) = maxe (A, B).

PROOF. The assertion may be obtained from Theorem 27.3 in ([R], page 267); a
simple direct proof follows. Choose a sequence B; € d(cl g)(M) such that f*(B;) =
maxe +{A, B;) tends to d.,(M) as i — . With some positive definite matrix A € _# then
| B:| = | B¥?||? < | A~*2||%|| AY?B¥? || 2 < (trace A™')f*(B;). Therefore (B;);cn is bounded.
Let B be one of its points of accumulation. Then B € d(cl g)(M), see ([R], page 215), and
dag(M) = f*(B) = f*(B — B; + B;) < maxue /| A|| | B — B:| + f*(B:) = day(M). It follows
that f*(B) = do,(M).

THEOREM 3. Suppose the matrix M € A lies in 2/(K). Then the following three
statements are equivalent:
(a) M has #-maximal j-information for K’'8.
(b) M minimizes d., over A.
(c) d,(M)=1.
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PROOF. Note first that d.,(A) = d,(A), for all A € 2/(K), since then d(cl g)(4) =
dg(A). Secondly observe that d,(M) = d.,(M) = 1, as a consequence of Lemma 1.

(a) & (c): M is optimal, that is, (a), if and only if there exists a subgradient of g at M
which lies in the set _/ of Theorem 1, and this is (c).

(c) = (b): Obvious from the second remark.

(b) => (c): The closure of problem (P), i.e., maximization of cl g over . 7, always admits
an optimal solution M*. For this matrix M* the implication (a) = (c) shows d.,(M*) =
1. Therefore the minimum value of d., over .# equals 1, and (b) implies (c). The proof is
complete.

Now fix M € .# N o/(K). For all matrices A € 2/AK) and B € dg(M) the same
arguments as in the proof of Theorem 3 in ([P], page 345) show that (A, B) = j o J(A) -
J%K’BK). By Lemma 1, the last expression equals j © J(A)/j ° J(M) and does not depend
on B. Hence if we first take the maximum over A € .# and then the infimum over B €
3g(M) we obtain d,(M) = v/j ° J(M) = 1, or equivalently,

(10) 1/d,(M) s jo J(M)/v=1.

Thus 1/d,(M) provides a lower bound for the efficiency factor j o J(M)/v of M. This
generalizes Theorem 4.3 of Atwood (1969, page 1596). Furthermore, it follows that for
every sequence (M;)ien in .7 N o/(K),

lim;dy(M;) = 1 = lim;_j © J(M;) = v.

The converse of this does not always hold. For instance if, in Example 2 of Pukelsheim
(1981), we take M; = M + (1/i)];, then lim j o J(M;) = v, but lim d,(M;) = 36/25 > 1.
Thus any algorithm based on minimizing d, will produce optimizing sequences for problem
(P), but may not catch all of them; compare the remark on G- and D-efficiency in Kiefer
and Studden (1976, page 1118).

Inclusion of the closure of g in statement (b) of Theorem 3 relates to the problem of
whether it is possible that

infye +dy(M) > 1 = minye »do(M).

Obviously this cannot happen when g is closed, nor when problem (P) admits an optimal
solution, as is shown by the proof of Theorem 3. Whittle’s (1973) equivalence theorem
does not answer this question either, since its proof does not cover the case when an
optimal solution for (P) fails to exist.

Finally we note that Theorem 3 may be reformulated in terms of directional derivatives.
Define D,(M) = supae 8’ (M; A — M).

COROLLARY 3.1. Suppose the matrix M € _# lies in c/(K). Then the following three
statements are equivalent:
(a) M has . #-maximal j-information for K'B.
(b) M minimizes D, over /.
(c) D,(M) =

Its proof is quite similar to that of Theorem 3 and is therefore omitted.

REFERENCES

ATwooD, C. L. (1969). Optimal and efficient designs of experiments. Ann. Math. Statist. 40
1570-1602.

BAzARAA, M. S. and SHETTY, C. M. (1979). Nonlinear Programming. Wiley, New York.

FEDOROV, V. V. (1972). Theory of Optimal Experiments. Academic, New York.

GAFFKE, N. (1983). Directional derivatives of optimality criteria at singular matrices in convex desxgn
theory. Unpublished manuscript.



1068 F. PUKELSHEIM AND D. M. TITTERINGTON

KARLIN, S. and STUDDEN, W. J. (1966). Optimal experimental design. Ann. Math. Statist. 37
783-815.

KIEFER, J. (1974). General equivalence theory for optimum designs (approximate theory). Ann.
Statist. 2 849-879.

KIEFER, J. and STUDDEN, W. J. (1976). Optimal designs for large degree polynomial regression. Ann.
Statist. 4 1113-1123.

KIEFER, J. and WOLFOWITZ, J. (1960). The equivalence of two extremum problems. Canad. J. Math.
12 363-366.

MALYUTOV, M. B. (1975). Note on the equivalence theorem. In Optimum Design of Experiments, Ed.
M. B. Malyutov, 161-163. State University Press, Moscow.

PUKELSHEIM, F. (1980). On linear regression designs which maximize information. J. Statist. Plann.
Inference 4 339-364. )

PUKELSHEIM, F. (1981). On c-optimal design measures. Math. Operationsforsch. Statist., Ser. Statist.
12 13-20.

ROCKAFELLER, R. T. (1970). Convex Analysis. Princeton University Press.

ROSEN, J. B. (1965). Pattern recognition by convex programming. J. Math. Anal. Appl. 10 123-134.

SiBSON R. (1972). Discussion of a paper by H. P. Wynn. J. Roy. Statist. Soc. Ser. B 34 181-183.

SIBSON, R. (1974). D,-optimality and duality. Collog. Math. Soc. Janos Bolyai 9 11, 677-692. North
Holland, Amsterdam.

SILVEY, S. D. (1972). Discussion of a paper by H. P. Wynn. J. Roy. Statist. Soc. Ser. B 34 174-175.

SILVEY, S. D. (1978). Optimal design measures with singular information matrices. Biometrika 65
553-559.

SILVEY, S. D. (1980). Optimal Design. Chapman Hall, London.

SILVEY, S. D. and TITTERINGTON, D. M. (1973). A geometric approach to optimal design theory.
Biometrika 60 21-32.

TITTERINGTON, D. M. (1975). Optimal design: some geometrical aspects of D-optimality. Biometrika
62 313-320. '

WHITTLE, P. (1971). Optimization under Constraints. Wiley, New York.

WHITTLE, P. (1973). Some general points in the theory of optimal experimental design. J. Roy.
Statist. Soc. Ser. B 35 123-130.

LEHRSTUHL FUR STOCHASTIK

UND IHRE ANWENDUNGEN DEPARTMENT OF STATISTICS
UNIVERSITAT AUGSBURG UNIVERSITY OF GLASGOW
MEMMINGER STRASSE 6 UNIVERSITY GARDENS
D-8900 AUGSBURG GLAsGOw G12 8QW

FEDERAL REPUBLIC OF GERMANY SCOTLAND



