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CANONICAL CORRELATIONS OF PAST AND FUTURE
FOR TIME SERIES: BOUNDS AND COMPUTATION

By NicHoLAs P. JEWELL,' PETER BLOOMFIELD? AND FLAVIO C. BARTMANN?

University of California, Berkeley; Princeton University; and IMECC

This paper continues an investigation into the canonical correlations and
canonical components of the past and future of a stationary Gaussian time
series which were introduced in Jewell and Bloomfield (1983). Bounds for the
maximum canonical correlation are provided under specified conditions on
the spectrum of the series. A computational scheme is described for estimating
the canonical correlations and components and the procedure is illustrated on
the well-known sunspot number series.

1. Introduction. In Jewell and Bloomfield (1983) (hereafter referred to as [J-B])
canonical correlations and components of the past and future of certain time series were
introduced and discussed. This article is a sequel which describes some elementary bounds
on the canonical correlations and a basic method for computing the correlations and
respective canonical components. The well-known sunspot number series is used to provide
an example of the computational procedure in the final section.

We refer to [J-B] for definitions, notation and theory concerning canonical correlations.
We repeat here only the notation necessary for this paper. Let {x()} be a weakly stationary
Gaussian time series with zero mean and spectral measure F. We represent the process
{x(t)} in L*(dF) by a sequence of exponentials {e™: ¢ €Z} on the unit circle C inC'.
In this spectral representation the past of the process, 9 is the span in L%(dF) of the
exponentials e™ with ¢ < 0. The future beyond time s, %, is the span in L*(dF) of the
exponentials e”™ with ¢ = s. 4 is known as the future of the process.

H? is the Hardy space of functions in L?(dw) on C which possess analytic extensions
into the open unit disk. The Hardy space H* contains those functions in L*(dw) which are
also in H?

For reasons described in detail in [J-B] we shall restrict our attention to purely
indeterministic processes. For such processes the spectral measure dF = wdw = |k |? dw
where h is an outer function in H? The function w is the spectral density function of the
process and A/A is the phase function. We write L(w) for L3(dF).

The first canonical correlation, A;, of the past and future is the largest correlation
between an element f € %4, and g € 2, i.e.,

A= Sup{j fEwdw:f€ F,8€ 2 |fllrw = 182w = 1}.
c

Alternatively

A= sup{ j e“fgw dw:f, g, are in the span in L*(w) of the functions
c

Le - 5 1 flew = 18w = 1}'

It was also noted in [J-B] that the first canonical correlation of the past and future (if
it exists) is given by the largest eigenvalue of the operator H*H on H? where H is the
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Hankel operator with symbol 4/A. The remaining canonical correlations (if they exist) are
given by the other eigenvalues of H* H arranged in descending order. Questions of existence
are fully dealt with in [J-B]. A useful equality we shall need in Section 2 is H*H = I —
T*T where I is the identity matrix on H? and 7 is the Toeplitz operator on H*? with symbol
h/h.

2. Bounds on the canonical correlations. In [J-B] it is shown that the first
canonical correlation A, is given by

A1 =d(h/h, H*) = infen=(|| A/h — f||}.

The Helson-Szego theorem (see Helson and Szego, 1960) states that A; < 1 if and only
if the spectral density function w admits a representation w = exp(u + ) with u, v real-
valued functions in L, ||v|. < 7/2 where 0 is the Hilbert transform of v. Note that this
implies that /A = c exp i{(v — &)} where c is a constant of unit modulus. The proof of the
sufficiency part of the theorem is based on the fact that under the given condition on w we
may take f = kc exp(—u — i), where % is any positive constant. We have fin H* and

| A/h = fllo = | exp{i(v — @)} — & exp(—u — id)||lo = || 1 — & exp(—u — V)|

It follows easily from this equality that d(A/h, H*) < 1. We will use the equality to
obtain an upper bound for A; when w satisfies the conditions of the Helson-Szego theorem.
Since || v]l» < 7/2 the values of the function exp(—u — iv) lie in the sector
{z:exp(—k1) = |z| = exp(—k2), | arg z| = || v}

where k; < u < k;, almost everywhere. Some elementary geometry shows that if a function
& has values in the sector {z: R: <|z| = R, | arg z| = #}, then the function Mg has values
in a disk centered at 1 of radius r when

M =2cos §/(R; + Rz) and r> = (R? + RZ — 2R, Rycos 20)/(R; + Rs)%
Thus || 1 — Mg|% < r* and, without knowing any more about g, this is the best inequality
we can achieve. Applying this to exp(—u — iv) we find the inequality
[1—%exp(—u — iv)|lo < [1 + exp(—2(k2 — k1))
— 2 exp(k1 — k2)cos(2 || v ||l)]V2/[1 + exp(k1 — k2)]

where £ = 2 cos(]|v|l«)/{exp(—k1) + exp(—k;)}. We have thus established the following
proposition.

ProposITION 1. If w is given by exp(u + U) where u, v are real-valued functions in L*
and ||v|l. < w/2 then an upper bound for the maximum correlation between past and
future is

S letEleE — 2] e o ll e cos (2] v]l) I
L+[e“llolle”™

It is not clear when we would know, a priori, of such a representation for w, except in
the case when we know positive constants m, M such that m < w < M. This, of course,
implies that w = exp(«) for some « € L”. The bound in the proposition simplifies to A <
(M — m)/(M + m). A similar bound was derived by Bargmann and Schunemeyer (1978)
for the maximum canonical correlation of two finite sets of random variables. Since, in a
certain sense, the “eigenvalues” of the joint dispersion matrix of the past and future are
just the values of w, this result was expected to hold. The result can also be considered as
a generalization of a result of Venables (1976) to infinite dimensional spaces.

It is illuminating that the simple bound may be obtained by elementary arguments as
follows. It was noted in the introduction that A\; = sup | f¢ fg"“w dw | where f, g are in the
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span in L*(w) of the functions 1, e*, e, ..., and f¢|f|'w dw = fclglzw dw = 1. We
suppose that m < w =< M. For f and g as above we have [¢ e*’fg dw = 0 since the conditions
on w imply that f, g € L? and f, g are in the span in L? of the functions 1, e*, e?*, ...
Hence, for any constant &,

f e“fg{l — k/ww dw
C

J e“fgw dw
C

(*)
= (j|fg|wdw>supc|1 —k/w|=sup|l—Ek/w|.

It is easily seen that the best choice of the constant % to make this supremum smallest is
2Mm/(M + m) and, for this value of %, the bound simplifies to (M — m)/(M + m). Notice
that this bound is valid for any fand g with [c| f[’w dw = fc|g|*w dw = 1 and [¢ e*fg dw
= 0. This is a larger class than that in which we are interested. This approach thus
illustrates that the bound for the maximum correlation cannot be sharp. In fact we can be
more explicit concerning this. In (*) the second inequality is sharp if and only if |fl=1gl
almost everywhere and the first is sharp only if fg vanishes almost everywhere on the set
where |1 — k/w| is not equal to its supremum. If f, g € H? this implies that |1 — k/w| =
supc| 1 — k/w| a.e. Additionally, in this situation, sharpness of the first inequality demands
that the argument of e™fg is constant a.e. This is not possible for f, g in H? unless f=g
= 0 a.e., which contradicts the condition on the norm of fand g in L?(w). Summarizing, the
inequality (*) cannot be attained for f, g in the span of 1, e, e, ... in L*(w) with
Je|fPdw= [c| g’ dw=1where m = w =< M. As an example of this phenomenon, consider
a first order autoregression process x(t) = ax(t — 1) + &(¢) where &(t) is a zero mean white
noise process with variance 1 and 0 < a < 1. The simple bound in this case is 2a/(1 + a2
which is strictly greater than the maximum canonical correlation «.

A quite different bound may be obtained for absolutely regular processes using results
of Widom (1976). Recall (see [J-B]) that a process is absolutely regular if and only if w =
|p ’f where p is a trigonometrical polynomial with all its zeros on C and log(f) has a
Fourier series ¥ % fie”* with ¥, |j||f;|* < «. It was shown in [J-B] that a process is
absolutely regular if and only if the essential correlation of the process is zero and

%=1 A < ® where A, is the jth canonical correlation of the past and future.

A result in Ibragimov and Rozanov (1978) shows that the condition on w for absolute
regularity implies that the Fourier series of 2/A (=Y “., h;je?*) also has the property that
Y%« |j| | A;]* < . Now the Fourier series of 2/A = (h/h)™" is ¥ “.. hie ™ so that this
Fourier series has the same property also. Also h/h = h%/|h |> so that the argument of
h/h is arg(h?). Since A is analytic and non-zero on the open unit disk it follows that the
change in argument of /A as you move round C is zero. Hence A/ satisfies the conditions
of Theorem 7.1 of Widom (1976). This result shows that det T%/7Th/» = exp(Y %=1 jaja—;)
where the Fourier series of log(h/h) is ¥ 2. a;e”* with the appropriate determination of
log(h/k). The determinant is defined for bounded operators on a Hilbert space dlffermg
from the identity by a trace-class operator. Note that T4/ Tw/n = TrnTin = I —H jnHin
(see [J-B]) and since Hj, is Hilbert-Schmidt, H rnHiyn is trace class. The determinant of
Th/hT;,/h = TwiTr/; is given by the product of the elgenva.lues of Th/hT;, o 1e.,
det T Tism = [[5=1 (1 — A?) where A} are the eigenvalues of H}/,Hj;, and the product is
taken to include the multiplicity of each A?. (Hj being Hilbert-Schmidt implies _that
YT A} <  which guarantees convergence of the infinite product.) Now log(k/A) = i(log w)
which implies that the Fourier coefficient of log(h/4) is the respective Fourier coefficient
of lf)?w multiplied by i. Using the well-known relationships between Fourier coefficients
of a function and its harmonic conjugate this implies that a, = —w; (J<0) and a; =
wy (j = 0) where the Fourier series of log w is ¥ “« w,e”*. Thus det T/ Ti/n = exp(—Y. 51
Jw;w-;). Since w_, = w; we have T/ Ti/n = exp(—Y.%-1 j| w;|?). We have just established
the following result.
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PROPOSITION 2. Let {\;}%=1 be the canonical correlations of past and future of an
absolutely regular process. Then [[%=1 (1 — A}) = exp[—Y. %=1 j| w; [], where the Fourier
series of log w = Y % wye”".

Thus, if A} is the square of the maximum canonical correlation, then 1 — A =
II%=: (1 — A;)% Hence A} = 1 — exp[—Y 3-1 /| w;|’]. Again we would not expect this to be
a sharp upper bound. We can have equality only if A} < 1 has multiplicity one and all the
other canonical correlations are zero. Thus only ARMA (1, 1) processes give equality.

REMARKS. 1. The other canonical correlations introduced in [J-B] are those between
2and %, denoted by A\, j=1,2, .- ,n=1,2, -, if they exist. A theorem of Helson and
Sarason (1967) shows that A{ < 1 if and only if w admits a representation w =
| » |?exp (u + J) with u, v as in the Helson-Szego theorem stated above and p a trigonometric
polynomial of degree less than n. If the degree of p is k(<n) then the reasoning behind
Proposition 1 shows that A{? is bounded above by the bound of Proposition 1. In fact this
bound then holds for A {* since %, C %. Concerning the bound of Proposition 2, it is easily
seen that [[5=1 (1 — A/™) = det(Th»Tin)» where the matrix of (T%sT#s). is that of
T'inTin with the first n rows and columns deleted. There doesn’t seem to be any obvious
way to relate this quantity to the spectral density function w.

2. It is easy to show that the Hilbert transform is bounded as an operator on LY (w) if
and only if the maximum correlation between the past and the future is less than 1. See
Section 5 of Helson and Szego (1960). As noted in [J-B] a theorem of Hunt, Muckenhoupt
and Wheeden (1973) shows that the Hilbert transform is bounded on L%*w) if and only if

1 v2/ 4 172
suprl = | wdw — w_ldw) =A<
p’(mff ) (mj,

where I ranges over all subarcs of C. Knowing the constant A and working through the
proof of this theorem produces an upper bound on the norm of the Hilbert transform. By
the statement at the beginning of this remark we can then produce an upper bound for
A1. The details are exceedingly technical and will appear elsewhere.

3. Computation of the canonical correlations. It was shown in [J-B] that the
canonical correlations possess a number of equivalent mathematical definitions. For
instance, A, is both || H,|| and d (¢, H*), where ¢ = h/h and H, is the Hankel operator with
symbol ¢. Either characterization could be used as the basis for calculating A1, given the
function w. We have chosen to use the former.

Since || H, |]? is the largest value in the spectrum of H}H,, a convergent sequence of
approximations may be constructed using the power method (Riesz and Nagy, 1955, pages
230-241). To be specific, suppose that x is a eigenfunction associated with this point of the
spectrum. If we start with any function x, satisfying (xo, x) # 0, and define x,, n > 0,
recursively by

b= HiHy%n1, %= &/]4

then x, — x and || &, || = | HiH, | = AL

In our case, we know that the eigenfunction x is not orthogonal to the constant function,
and hence we may begin with x, = 1. For convenience we have used a two-stage version of
the power method, in which x, is defined recursively by

Nn = H¢xn—l, Yn = 77n/" Nn ", &= H;:yn, Xn = gﬂ/"& "

It is easily seen that the sequence {x,} is the same as before, and the pair (x», y») converges
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to a Schmidt pair (x, y) for H,, namely a pair for which
Hyx = \1y, Hjy=MAx.

Furthermore, 7, = || & || = A:.

It is a general property of the power method that the successive approximations to A
‘converge monotonically from below. Thus each successive I, gives a lower bound for A;.
We may use the fact that A, = d(¢, H*) to construct corresponding upper bounds.
Adamjan, Arov and Krein (1971) give the functional form of the function F € H*” for
which ||¢ — F|l.. = A1, namely,

F = ¢ — \iexp(i arg yx).
Thus
F, = P{¢ — L.exp(i arg y.x,)}
converges to F, where P is the projection onto H?. Hence, provided || F; |l < © we have
Un =||¢ = Fnlle = A1 = infpeg® || ¢ — F .

Thus we can find an interval [/,, u,] that contains A;.

To implement these ideas numerically, we need to approximate two operations. In the
first place, we have to factorize the spectral density function w into |4 |* where A is an
outer function, to obtain the function ¢ = A/h. Secondly, we need a mechanism for
approximating the iterations of the power method.

We actually obtain ¢ directly by noting that if w = exp u = |A|%, then A =
exp (u + i)/2 and ¢ = h/h = exp(—iti). The harmonic conjugate i, of u, is calculated as

IZ(w) = Zk<o iukexp(ikw) - Zk>o iukexp(ikw),
where u;, is the 2th Fourier coefficient of u. We approximate these by
ur = N7 Y01 ulw))exp(— ikw)),

where w; = 27j/N, for a suitably large value N.

For a more detailed discussion of the empirical factorization of an estimated spectrum,
see Bhansali (1974).

It remains to describe the approximation of one step of the power method. For instance,
we have to obtain 1, = Hyx,-1, given the function x,,—;. Now Hyx,—1 = (I — P)¢x,_1, where
P, as before, is the projection onto H2 We carry out this calculation in two steps, first
multiplication by ¢ and secondly the projection. Suppose that we know the values of ¢ and
Xn—1 at each w; = 27j/N. Then the product can be calculated at the same values of w. Now
the effect of the operator (I — P) is to replace the Fourier coefficients with non-negative
indices by zero, while leaving the Fourier coefficients with negative indices unchanged. We
approximate this operation by using the discrete approximation

(@) = N7 Tl leo))nr(oy)exp(—inwy), || < N/2
(I = P)(¢pXn—1) (@) = Y<opg<nyz (pXn—1)€Xp(ikw).

While the resulting function, which is our approximation to 7, = H,x,_1, could be evaluated
for any w, we in fact only need its value at the same places, w,, as ¢ and x,—;. Note that the
next step, ¥» = 1./|| 1. |, may be carried out with no further approximations, since

I na |* = f [ nn()|* de
is given exactly by

2 2
w7 Sl )P



CANONICAL CORRELATIONS FOR TIME SERIES 853

200 —
150

3 ~

E |

3 :

4

« 100 — [

a |

[7] |

a ‘

23

? 1r | ) ‘

50 —
| T T T 1
1700 1750 1800 1850 1900 1950
Year
Fi6. 1. The annual sunspot numbers 1704-1960.
TABLE 1
Model Source
1 X(¢) —1.34X(t — 1) + .65X(t — 2) = e(?) Yule, Box-Jenkins, etc.
2 X)) -1.62X(t—1) + Xt — 2) = e(?) Yule

3 X(t) —1.30X(¢t — 1) + .54X(¢t — 2) + .15X(¢t — 3)

—.19X(¢t — 4) + .24X(¢t — 5) —.14X(¢ — 6) = e(?) Bailey
X(¢) —1.57X(¢t — 1) + 1.02X(t — 2) — .21X(¢t — 3) = e(t) Box-Jenkins
X(t) —1.42X(¢t — 1) + .72X(t — 2) = e(t) — .15e(t — 1)  Phadke and Wu
X(#) —1.25X(¢t — 1) + 0.54X (¢t — 2) — .19X(¢ — 3) = e(t) Morris, Schaerf

S G

The action of H} which is needed to compute £, is approximated in a similar fashion, using
the fact that H%y, = Pgy,.

We also wish to find the coefficients of the canonical components. These are given by
the appropriate Fourier coefficients of /A and 7/A, for the components in the past and
future, respectively. For real-valued time series, where the spectral density function w is
symmetric, these sequences of coefficients are reverses of each other.

The computational error introduced into these operations is that of approximating the
first N Fourier coefficients of a function by discrete sums instead of integrals, and replacing
the remainder by zero. We have not analyzed the magnitude of the resulting error in detail.
It is clear, however, that if w is reasonably smooth then the error can be made small by
choosing a sufficiently large number, N, of points on the unit circle. It should also be
pointed out that in most instances we shall work with estimated spectral density functions,
which are typically both smooth by construction, and computed only at finite grid of
points. In these cases the statistical uncertainty in w is likely to dominate the numerical
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F1G. 2. Common logarithm of smoothed periodogram of yearly sunspot numbers.

TABLE 2
Canonical Correlation Associated Vector
(squared)

1 .8565 X(¢) —0.362X(¢t — 1)

2 .8518 X(t) —0.171X(t - 1)

3 .8641 X(t) —0.285X(t — 1) — 0.138X(¢t — 2)
+0.191X(¢ — 3) — 0.191.X(¢ — 4) — 0.080X(z — 5)

4 8712 X(¢) —0.514X(¢t — 1) + 0.087X(¢ — 2)

5 8476 X(#) —0.296X(t — 1) — 0.044X (¢t — 2)
—0.067X(t — 3) — 0.001X(z —4) —...

6 ) 8677 X(t) —0.409X(¢ — 1) + 0.126X(¢t — 2)

Spec .8923 X(t) +0.264X (¢t — 1) — 0.170X(¢t — 2)

+0.253X(t — 3) — 0.231X(t — 4) + ...

errors introduced by our computational procedure. We have only described the computa-
tions of the first canonical correlation and components. It is easy to extend the above
comgutation scheme to provide further canonical correlations and components.

4. An example—Sunspot numbers. Gray and Woodward (1978) discuss the well-
known sunspot number series, shown in Figure 1, and tabulate the various models that
have been fitted to the data. See Table 1.

We have calculated the first canonical correlation and component for each of these
models, and also for the nonparametric spectrum estimate shown in Figure 2 using the
methods of the previous section. The spectrum estimate was obtained by smoothing the
periodgram of the data, tapered 10%, by three passes of a seven-term simple moving
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average. For ARMA processes the canonical correlations can be computed exactly and the
canonical component coefficients can be found by solving a system of linear algebraic
equations. This result is essentially in Helson and Szego (1960). A simpler proof which is
more statitical in nature can be found in Bartmann (1981). See also Yaglom (1965).

Table 2 shows the results of these calculations giving the first canonical correlation
squared and the associated canonical component in the past.

Model 2 requires special discussion as it does not represent a stationary time series. Its
spectral density function is both unbounded and nonsummable. However, it still possesses
a factorization w = | A |* where A is analytic and nonzero in the open unit disk, and this
factorization may be obtained by the general method described in the previous section.
The results are perhaps best interpreted as the limits of calculations for a sequence of
stationary second-order models.

We note that the canonical correlations are remarkably similar, and that several of the
models also give very similar canonical components. The most striking similarity is between
Bailey’s model and the spectrum estimate; however, this is not surprising, since the six
parameters used in Bailey’s model make it the closest to the nonparametric approach used
in spectrum estimation. The fact that the nonparametric spectrum estimate gives the
largest estimated correlation is presumably associated with extra sampling variability
induced by the large effective number of parameters implied by its calculation.
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