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CANONICAL CORRELATIONS OF PAST AND FUTURE
FOR TIME SERIES: DEFINITIONS AND THEORY

By Nicuoras P. JEWELL! AND PETER BLOOMFIELD?

University of California, Berkeley and Princeton University

The concepts of canonical correlations and canonical components are
familiar ideas in multivariate statistics. In this paper we extend these notions
to stationary time series with a view to determining the most predictable
aspect of the future of a time series. We relate properties of the canonical
description of a time series to well known structural properties of the series
such as (i) rational spectra (i.e., ARMA series), (ii) strong mixing, (iii) absolute
regularity, etc.

1. Introduction. The problem of predicting the future of a weakly stationary time
series, knowing its values up to and including the present, is one that arises naturally in
many fields. If the series is denoted by {x(¢)}, and the present and past are the values
x(0), x(—1), .., then we may define the (linear) predictability of a (linear) function of
future values, Y ;= a,.x(r), in terms of the ratio of its minimum mean squared prediction
error to its variance. Specifically one can use

1= [infe) E[ (X1 rx(r) = Xm0 byx (=)} 2/ E[{Z51 4% (r))?]]

as a measure of the predictability of Za,x(r).

The first problem of this type to receive attention was the one-step prediction problem,
in which x (1) is the future value to be predicted. The first general result was obtained by
Szego (1920, 1921) and later in a more complete form by Kolmogorov and Krein. It states
that if the spectral distribution function of {x(¢)} is F (w) then the predictability of x (1) is

X4

(1) 1-—27 exp{2i j log F'(w) dw}
K -7

where F'(w) represents the Radon-Nikodym derivative of the spectral measure dF with
respect to Lebesgue measure dw. A proof of this result may be found in Doob (1953).

It is clear that the one-step predictor may be adapted to provide multistep predictions.
We may describe the predictor as the projection of the future value onto the past in a
suitable geometry and thus a multistep predictor may be found by successive projections
one step at a time. Stated in an alternative way one can thus find the (linear) functional
% (s) of the values {x(¢):¢ = 0} which is the least squares approximation of x(s) where s is
any positive integer. In this case the predictability of x (s) can be described in terms of the
correlation coefficient

2 p(s) =[1—o*(s)/E[x(s)]]'"*

between x(s) and % (s), where o%(s) is the mean square error of the prediction; (here and
later we consider, without loss of generality, only processes {x(¢)} with Ex(t) = 0). Neither
the predictor nor the mean squared error for the s-step prediction problem possess such
simple expressions as those for the one-step predictor.

We may likewise construct predictors for any given linear function of future values, and
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838 NICHOLAS P. JEWELL AND PETER BLOOMFIELD

an expression, perhaps complicated, for its mean squared error. Thus, in one sense, solving
the one-step prediction problem provides solutions for all prediction problems. However
certain questions are left unanswered. While the expression for the one-step prediction
error yields much insight into the characteristics of a series with a given spectral distri-
bution function it does not help us with problems such as kow to find the most predictable
aspect (that is, linear function) of the future. In this paper we shall address the latter
problem.

A related problem that has received a great deal of attention is to find conditions (on
dF) under which there is no aspect of the future which is completely predictable, or even
arbitrarily close to being so. A result of Helson and Szego (1960) along this line is discussed
in Section 2. This result characterizes those spectral measures dF for which there is a
bound less than 1 on the predictability of aspects of the future. The exact value of this
upper bound may be described mathematically in several ways which shall be discussed in
Section 3. None are as directly computable as expression (1) for the one-step predictability.
Similarly, the coefficients of the most predictable aspect and of its predictor (should these
exist) may be mathematically described but again they lack the relatively direct comput-
ability of the one-step predictor coefficients.

It is clear that the questions being raised here would, in the context of multivariate
analysis, be answered by examinirig canonical correlations. In Section 3 we adopt an
infinite dimensional version of this theory in order to obtain a different view of the
predictability problems already discussed, and one which may be more familiar to statis-
ticians. As might be expected, we shall see that the canonical correlations turn out to be
eigenvalues of a certain bounded operator on a Hilbert space. This operator belongs to a
certain class of operators called Hankel operators. Independently Grenander (1981) has
observed that the maximum canonical correlation is the norm of a Hankel operator.
However we believe that this is the first comprehensive study of the canonical structure of
a time series which appears in the literature.

Our approach enables us to derive some interesting qualitative results concerning the
canonical structure of the past and future of a time series. In the second paper of this
series, (Jewell, Bloomfield and Bartmann, 1983) we will show how to use the definition of
canonical correlations and components given in Section 3 in their computation and also
look at some examples where we have computed estimates of the values of the canonical
components, etc. The second paper also contains some simple methods for giving bounds
on the largest canonical correlation when the spectrum takes a certain form.

It is hoped that the ideas of canonical analysis should be of value in the study of a time
series, much as they are in multivariate analysis. This usefulness is not always in the sense
of one set of random variables providing predictors of another set, but rather in giving the
canonical components which provide insight into the structure and relationship of the two
sets of random variables. As we shall see, the canonical structure of a time series yields
more subtle information on the predictive properties of the series than is usually available
from other standard procedures or model fitting. In this way, examining the canonical
structure information may be valuable in checking the adequacy of fit of models to the
series. As is shown in the second paper, the computation of the canonical structure is
relatively straightforward and so this procedure could be added to the tools time series
analysts already use to study the structure of a series.

We have already hinted that, in what follows, we shall restrict our attention to predictors
or functionals which are linear combinations of the values {x(#):¢ < 0}. The justification
for this is twofold. First, in practical applications, such combinations are easily handled.
Second and more significantly, for Gaussian processes the best predicted value for x(s) is
the best linear prediction. Thus we can say that the problem of linear least squares
prediction of the stationary process x (¢) is the wide sense version of the general problem
of least squares prediction.

Some of the results we discuss are not new and, as we shall see, have been around in the
literature for some time. The approach of Section 3 and some of the characterizations
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there appear to be new at least in the form we describe. Several of the known results we
make use of have appeared in quite different contexts than that of canonical correlations.

Other work related to the problems discussed here include the paper of Akaike (1975)
on Markov representations of ARMA processes. Other authors have considered the
problem of predictions where we allow non-linear functionals of the past to be used as
predictors of non-linear functions of future values—see, for example, Gelfand and Yaglom
(1959), and Hannan (1961). Yaglom (1965) considered the first canonical component and
correlation of stationary processes with rational spectra.

Throughout the paper we will make use of standard results on analytic functions on the
open unit disk in C (denoted by A) and their extensions to the unit circle in C (denoted by
C). We shall also assume familiarity with the Hardy space, H?, of functions in L? of the
unit circle in C which possess analytic extensions into the disk. A basic reference for this
material is Hoffman (1962). We shall also use some operator theory results and terminology.
Halmos (1974) is a good source for most of these ideas.

2. Characterization of processes. We recall that a weakly stationary stochastic
process x(t) has a spectral representation. Namely the covariances y; = E {x(0)x(¢)} form
a positive definite sequence and so are Fourier coefficients of a finite positive measure ¥
on C, ie., y: = [c e™dF(w). Let P be the probability measure of the process. Then we
obtain an isometry between L%(dF) and the span in L%(dP) of the functions {x(¢):¢t € Z}
by mapping x(¢) to the function e”* and extending by linearity and continuity. Thus the
process {x(¢)} is represented by a sequence of exponentials {e?“:¢ € Z} in the Hilbert
space L%(dF).

We now make some definitions which we shall use in the following discussion. The past
of the process is the o-algebra generated by {x(¢):¢ = 0}. In the spectral representation the
past is the span in L%(dF) of the exponentials e with ¢ < 0 and we denote it by 2. For
future reference 2 is defined to be the span in L%(dF) of the exponentials e’ with ¢ < k.
Similarly the future beyond time s is the o-algebra generated by {x(¢):t = s}. In the
spectral representation this is the span in L?(dF) of the exponentials e with ¢ = s and we
denote it by %. For the case s = 1 we simply refer to % as the future of the process.

From this point on we restrict our attention to Gaussian processes for reasons
mentioned in the introduction. The process is called deterministic if its past determines
the future, i.e., for each ¢ > 0, x (¢) is measurable with respect to the past. This is translated
in the spectral representation to the property that 2= L*(dF). A necessary and sufficient
condition for this to occur is that log(dF/dw) be not integrable. Conversely the process is
indeterministic if log(dF/dw) is integrable. A stronger restriction that indeterminism is
that the process is purely indeterministic or regular. This is an asymptotic condition
which in the spectral representation becomes the condition that p(s) — 0 as s — c where
p(s) is given by (2). Alternatively this is equivalent to N;=; % = {0}, a condition which is
often referred to by saying that the process has trivial remote future. Results of Szego
(1920, 1921), Kolmogorov (1941a) and Krein (1944) show that {x(¢)} is regular if and only
if dF is absolutely continuous with respect to Lebesgue measure and log(dF/dw) is
integrable. We can then write dF = wdw = | k |*dw, where w is known as the spectrum of
the process and 4 is an outer function in HZ,

A stronger property than that of regularity is minimality. Introduced by Kolmogorov
(1941a), this property says that a process is minimal if the value of the random variable
x(0) cannot be predicted without error from the values of the random variables {x(¢):¢ 7
0}. In other words, a process is not minimal if it is possible to perfectly interpolate any
value of the process from knowledge of the remaining values of the process. Kolmogorov
(1941b) proved that a regular Gaussian process is minimal if and only if w™" is in L'(dw).

In what follows we shall be interested in correlations between elements of Zand 4. It
is trivial that if 2 and % have non-empty intersection, we can obtain a correlation of 1
between elements of £ and £ . It is possible however, even if 2N % is empty, to obtain
correlations between past and future elements arbitrarily close to 1. To discuss this, we
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introduce the notion of the angle between 2 and % . The maximum correlation between
the elements of 2 and 4 is given by A1 = sup{| (f, &) | : f € unit ball of Z, g € unit ball of
%} where the inner product is in the space L*(dF). The angle o between 2 and 4% is
defined by cos a = A;. It follows that a yet stronger condition of independence between 2
and £ than regularity is the requirement that 2 and % are at a positive angle, i.e.,, a > 0
or A; < 1. It is also easy to verify that the condition of a positive angle is strictly stronger
than minimality.

Helson and Szego (1960) supplied the characterization of those processes for which 2
and # are at a positive angle. Their necessary and sufficient condition on dF is that it be
absolutely continuous w.r.t. Lebesgue measure and w = e** where u, v are real L”(dw)
functions and || v]|» < 7/2. (U represents the Hilbert transform of v.) A totally different
characterization of spectra which yield processes for which 2and # are at a positive angle
was found by Hunt, Muckenhoupt and Wheeden (1973). This condition is more appealing
since it gives a structural condition on w. The result is that 2and % are at a positive angle
if and only if w satisfies the following inequality:

.

1 172 1 172
sups| — wdw) (—-—fw‘ﬂw) < o,
f(mf, 111 J,

where I ranges over all subarcs of C.

The problem of when the angle between 2 and 4% is positive is related to the
characterization of processes which satisfy Rosenblatt’s (1956) strong mixing condition.
The linear version of this is that the predictability of all aspects of the future beyond time
k from the past should converge to zero as 2 — . Helson and Sarason (1967) showed that
a necessary and sufficient condition for this is that dF is absolutely continuous w.r.t.
Lebesgue measure and w = | p | 2e“*0 where pis a trigonometric polynomial and « and v are
real continuous functions on C. (The final version of this characterization is due to Sarason,
1972.)

A class of strong mixing processes which will appear later are those which are known as
absolutely regular. Without going into details, they are processes for which the amount of
“information” in £ about %, converges to zero as & — . The necessary and sufficient
condition on the spectrum for absolute regularity is that w = | p |>f where p is a polynomial
with zeros on C and log f has Fourier series Y. fie”* such that Y. |j| | ;| < co—see
Ibragimov and Rozanov (1978) for details.

3. Canonical correlations. Many of the questions raised in the last section would,
in the context of multivariate analysis, be answered by examining canonical correlations
which involves looking at the eigenvalues of a correlation matrix. In this section we want
to extend the finite-dimensional approach to consider canonical correlations of the past
and future. As might be expected, we shall see that the correlation matrix will be replaced
by an operator between infinite-dimensional spaces. i

The correlation between an element f € % and an element g € 2is defined to be

T (LfédF)/<Llf|2dF>l/2<J’cIglzdF)l/Z.

Since we are restricting our attention to regular processes we can write corr(f, g) =
[ f8 wdw where we only consider elements f, g of norm 1 in L%(dF).

Before going any further, we digress to introduce some machinery which is crucial in
what follows. Recall that for regular processes we can write dF = wdw = | h |*dw where h
is outer in H? Consider the mapping T:L?*(df) — L*(dw) given by Tf = hf. It is easily
verified that T is an isometry of L%(dF) into L*(dw). Also T maps % onto H3, the set of
functions in H” whose analytic extension into the disk vanishes at the origin, and 7 maps
2 onto (h/h)H? Using the isometry T we thus have
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corr(f, &) =J f&|R|* de =J (fr)(Zh)(h/h) dw =J FG(h/h) dw
C C C

where F € H}, G € H?, | [F|ls=1, || G|z = 1 where | - ||; represents the norm in L>.
Hence corr(f, g) = ((h/h)G, F') where the inner product is in L?

= ((h/h)G, I — P)F) where P is the orthogonal projection of L*
onto H?

= ((I — P)(h/h)G, F) = (H;»G, F) where Hj;,,G is the Hankel operator with
symbol A/h.

[If ¢ is a function on the unit circle in L* then the Hankel operator with symbol ¢ is
defined as a bounded linear operator from H? to L?*0H? by H,(f) = (I — P)(¢f) for f€ H>.
The norm of the Hankel operator with symbol ¢ is given by

| Hy|| = inf{|| ¢ — h|:kh € H}

where H* is the closed subspace of L given by L functions which are the boundary
values of bounded analytic functions on the open unit disk. For a proof of this and other

results on Hankel operators, see Power (1980).] o
Now since T maps % onto H% and 2 onto (h/h)H?, we have that the maximum

correlation between elements in 2 and % is given by
sup{|corr(£, &) |: fE A, IIfl=1L, €2 | gl =1}
= sup{|corr(f, &)|: fE A, |fl=L g€ 2 |gl=1}
=sup{|(Hs»G, F)|: FEH},|Fll.=1, Ge H?, |G|. =1}
= || Hisnl| = inf{||2/h — u||»:u € H*}, ie., d(h/h, H).
Alternatively,
I Hrm I* = || HitynHin |
= sup{|u|:ul — HinHpn is not invertible}
= sup{u:p € sp(HinHrm)} = r(HinHin),
where r(S) is the spectral radius of S

[The spectrum of a bounded linear operator T on a Hilbert space is the set in C given by
sp(T') = {A:AI — T is not invertible}. Of course if the Hilbert space is finite dimensional
this is just the set of eigenvalues of T. The spectral radius of 7T is given by r(T) =
sup{|A|:A € spectrum of T}. See Halmos (1974).]

If ¢ is a function on the unit circle in L* then the Toeplitz operator with symbol ¢ is
defined as a botunded linear operator from H? to H? by T,(f) = P(¢f) for f € H®. The
norm of a Toeplitz operator is given by || T4 || = || ¢ || ». Further details and information on
Toeplitz operators can be found in Chapter 7 of a book by R. Douglas (1972). Toeplitz
operators are related to Hankel operators in many ways, the simplest given by the following
algebraic identity which is easily established:

3) HfH, =Ty — T/T: (f,gE€L").
Using this identity we can describe the maximum correlation in terms of Toeplitz

operators. We substitute f = A/h, g = h/h into (3) and obtain H}Hin = I — TinTin.
For simplicity we write H = Hj;;, and T = Tj;,. Thus the maximum correlation is given by

Vsup{p:p € sp(H*H)} = Vsup{u:p € sp(I — T*T)}
=1 —inf {u:p € sp(T*T)} = V1 + r(=T*T).
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Thus we have the following theorem.

THEOREM 1. The maximum correlation between 2 and 1 is given by d(h/h, H*)
= Vr(H*H) = V1 — inf {u:p € sp(T*T)}.

Since one of our descriptions of the maximum correlation involves the spectrum of the
operator H*H we want to consider the properties of this set briefly. Trivially H*H is a
positive, self-adjoint operator and | H*H || < 1 since || 2/k ||~ = 1. Hence sp(H*H) is a
compact subset of [0, 1]; it may be a “continuous” set (i.e., not discrete) but since H*H is
self-adjoint any discrete (i.e. isolated) points in the spectrum correspond to eigenvalues
(possibly of infinite multiplicity).

We now look at how we shall extend the finite-dimensional concept of canonical
correlations. If the largest point in the spectrum, A3, of H*H is a positive eigenvalue of
finite multiplicity we shall say that A, is the first canonical correlation, (A; > 0). We now
show how to obtain canonical components in this situation. Let f € H? be a unit eigenvector
for H*H corresponding to Af; then Hf € L*©H”. Consider the correlation between fi =
Hf/\h and f; = f/h. Clearly i€ %1, € Pand | fi|| = || f2|| = 1. Also

Hf
o= [ ] - [ 2(E)
leore(fi, 1)1 = | | ok L 1h17 do N R)

< f,Hf> (HﬂHf)——<H*Hﬁf)—>\1

Thus the elements fi € %, f: € 2 have (absolute) correlation equal to A;. They are called
the first canonical components.

By analogy with the finite-dimensional definition of successive canonical correlations
we are next led to consider

A2 = sup{| corr(f, g) | :f € %, orthogonal to 1st canonical component in %

£ € 2, orthogonal to 1st canonical component in 2
IFl=nel=

If A, is an eigenvalue of finite multiplicity greater than one, then we can choose f' in H?
which is a unit eigenvector for H*H corresponding to A} and is orthogonal to f in H? In
this case A; is also the second canonical correlation and the second canonical components
are Hf /Ah € % and f /h € 2 (It is easy to see that Hf'/\ andf /h are orthogonal
to the appropriate 1st canonical components in % and 2 respectively.)

If the multiplicity of A; is £ we repeat this procedure to obtain the first 2 canonical
correlations and respective canonical components. We next consider

Ar+1 = sup {| corr(f, g) | : f € &1, orthogonal to first £ canonical components in %,

£ € 2, orthogonal to first 2 canonical components in 2

IFl=lell=1
=sup{|(HG,F)|:FEH;,|F||:<1,GEH? |G|.=1
F, G L eigenspace of H*H corresponding to A%}.

This follows since as f € #; moves through all the elements orthogonal to the first 2
canonical components in %, Af moves through all the elements in H3 orthogonal to the
eigenspace of H*H corresponding to A%. Similarly as g € 2 moves through all the elements
orthogonal to the first £ canonical components in 2, hg moves through all the elements in
H? orthogonal to the eigenspace of H*H corresponding to A%.
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It follows that A3.; = sup{u:p € sp(H*H) and u < \:} (see Butz, 1974) i.e. Ai.1 is the
(k + 1)th largest “element” of sp(H *H), counting multiplicities.

If A},1 is an eigenvalue of finite multiplicity then A is the (2 + 1)th canonical
correlation and we define the appropriate canonical components as before, and continue to
seach for further canonical correlations. If A%.; is not an eigenvalue of finite multiplicity
then we stop the process.

In order to describe the canonical correlations more succinctly we introduce some
notation from operator theory. We recall that for a bounded operator A on a Hilbert space
which is normal the essential spectrum consists of the limit points of sp(A) together with
those eigenvalues of A which have infinite multiplicity. Enumerating the “upper part” of
the spectrum of (A*A)*? we thus have a sequence of eigenvalues A; = A\, = .- counted
with multiplicity and then we reach the supremum of the essential spectrum of (A*A)'?,
denoted by A.. Of course there may be only a finite number of eigenvalues of finite
multiplicity before A.. is reached. The sequence Ai, Az, --- of eigenvalues of finite
multiplicity is thus either finite or countable in which case it converges to A-. A; is known
as the jth s-number of the operator A. (For reference on this material see Gohberg and
Krein, 1969.) Our earlier work is thus summarized by the following theorem.

THEOREM 2. The jth canonical correlation of the process is the jth s-number of the
Hankel matrix H. There may be only a finite number of these or a countable number
(which converge to \.., the supremum. of the essential spectrum of (H*H)'?).

A will be referred to as the essential correlation of the past and future of the process.
At this point, however many canonical components with correlation A, are removed, the
correlation of the remainder of the past with the remainder of the future remains A.

We now return to considering various types of regular processes and characterize them
in terms of the operator H rather than the spectrum w.

The necessary and sufficient condition for £ and % to be at a positive angle is easily
determined. Recall that the angle o between 2 and % is given by cos a = sup{| (f, &)

|:f € unit ball of %, g € unit ball of 2} = || H||. Thus 2 and % are at a positive angle
ifand only if | H| < 1.

This simple result also extends to considering the angle between 2 and 4%, call it ay.

We have

cos(a,) = sup{| {f, &) | :f € unit ball of %, g € unit ball of 2}

= J' 2" 'FG(h/h) do as before,
(o]

where FEH}, GEH? and ||Fl:=1, |G|.=1
= || Horvin || = d(z"*h/h, H”).

Hence cos(ax,) — 0 as n— o if and only if d(z""'h/h, H*) — 0 as n — . This is equivalent
to d(h/h, H* + K) = 0 where K is the space of the continuous functions on C. But H* +
K is a closed subspace of L”—see Helson and Sarason (1967). Thus h/h € H* + K and this
is equivalent to H being compact by a theorem of Hartman (1958). Thus the process is
strong mixing if and only if H is compact. Since compact operators are exactly those
operators whose spectrum consists of a countable (perhaps finite) number of non-zero
eigenvalues of finite multiplicity together with perhaps a point at 0 the above discussion
shows that strong mixing processes are exactly those processes with a countable (perhaps
finite) number of non-zero canonical correlations and essential correlation equal to zero.
This gives perhaps the simplest extension of the finite dimensional theory in the sense
that all the correlation between the past and future can be described using a countable
number of canonical components.
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What about processes with only a finite number of canonical correlations and essential
correlation zero? For such processes (H*H)'? is finite rank and so H must be finite rank.
A theorem of Kronecker (1881) shows that a Hankel matrix is finite rank if and only if its
symbol is the sum of a rational function and an H* function. (By a rational function we
mean the quotient of two polynomials in z where the zeros of the denominator all have
absolute value less than 1.) Now suppose A/A is of this form i.e., &/h = (p/q) + [ where p,
g are polynomials and the zeros of g all lie in the open unit disc, and f € H”. Then hqg =
ph + fgh. The LHS € z*H*? where % is the degree of ¢, and the RHS € H2 Hence both
sides are polynomials of degree k; i.e., Ag = r where r is a polynomial of degree k. This
implies w = | 2|2 = | r|?/| q|? i.e. the spectrum is the quotient of two positive polynomials
the zeros of the denominator all lying in the open unit disc. If w is such a function, it is
straightforward to show that A/A is rational. We have thus shown that the process
possesses only a finite number of non-zero canonical correlations and has essential
correlation zero if and only if the spectrum is the quotient of two positive polynomials, the
zeros of the denominator all lying in the open unit disc, i,e. the process is an ARMA
process. This result can also be easily derived from the Yule-Walker equations. In fact, for
an ARMA (p, q) process the number of non-zero canonical correlations is max(p, q).

It will be useful when constructing bounds for the maximum canonical correlation to
consider absolutely regular processes which were defined at the end of Section 2. We now
characterize these processes in terms of H. Recall that the process is absolutely regular if
and only if w = | p |%f where p is a polynomial with zeros on C and log f has Fourier series

> fie% where Y% | j| | ;]2 < . In fact it is easier to prove (see Ibragimov and Rozanov
(1978), page 129) that absolute regularity is equivalent to ~/h having a Fourier series
¥*, c;e¥ with the property that Y., | j|| ¢;|? is convergent. It is well-known and easy to
prove that a Hankel operator with symbol ¢ is Hilbert-Schmidt if and only if the Fourier
series of ¢, Y'> ¢;e”* has this same property, i.e. ¥« | /| | ¢|* converges. Hence the process
is absolutely regular if and only if H is Hilbert-Schmidt (a bounded linear operator 7 is
Hilbert-Schmidt if it is compact and its sequence of countable non-zero eigenvalues is
square-summable). The Hilbert-Schmidt property of H is equivalent to demanding that
¥%.1 A? < o where A, is the jth canonical correlation of the past and future.

We finish this section by establishing some results on the canonical correlations of the
interpolation error process connected with the process {x(¢)}. Suppose {x(¢)} is a minimal
process. Let £(¢) be the projection of x(¢) onto the subspace spanned by {x(s):s=¢ %1,
t+2, ...} ie. £(¢) is the best prediction (in terms of mean squared error) of x(t) from all
the other random variables x(¢t + 1), x(¢ £ 2), --. . Let y(¢) denote the error in this
prediction, ie., y(t) = x(t) — Z(¢t). It is well-known that y(¢) is then a regular (in fact

minimal) weakly stationary Gaussian process whose spectrum is given by w™.

THEOREM 3. The interpolation error process {y(t)} has an identical canonical
correlation structure to the original minimal process {x(t)}.

ProoF. We can write w™ = | 2|2, where A" is also an outer function which is in H*
due to the minimality of {x(¢)}. By Theorem 2 the canonical correlations and components
are described by the spectrum of the operator H}/;H} ;. By (3) this equals I — Tz Th/s.
But for Toeplitz operators T = T; (this property does not hold for Hankel operators).
Hence Hi/iHys = I — TinTwis = I — TimThn. Now for any pair of bounded linear
operators A, B on a Hilbert space sp(AB)\{0} = sp(BA)\{0}. Hence the spectrum of the
operator H},;H,, /i is the same as the spectrum of H 7/, Hj/» except for possibly the point
1. We claim that 1 € sp(H 7, Hj,) if and only if 1 € sp(H iz H7 /). Recall that || His ||
= | HinHiipn || = sup{\:\ € sp(H#nHin)}. Hence 1 € sp(H s Hijn) = || Hiyn || = 1. This
implies that the past and the future are at zero angle for the process {x(f)}. But this
implies that the past and the future are at zero angle for the process { y(t)} (for either the
Helson-Szego characterization or the Hunt-Muckenhoupt-Wheeden result show that, if
w™ € L', the process {x(#)} with spectrum w has the property that the past and future are
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at positive angle if and only if the process { y(£)} with spectrum w ' has the same property).
Thus || Hu/z || = 1 and this in turn implies that sup{A: X € sp(H}%/zHs/5)} = 1 and thus
1 € sp(H}/;Hyi) since the spectrum of any bounded operator on a Hilbert space is a
compact set. We can reverse this reasoning and thus establish our claim. We have now
shown that sp(H}/»Hj/n) = sp(H}/sHy/z). To complete the proof of the theorem, we need
to show that eigenvalues of finite multiplicity for H, Hj;,n correspond to eigenvalues of
the same multiplicity for H,;H}/;. Suppose A is an eigenvalue of the operator A*A (where
A is a bounded linear operator on Hilbert space) of multiplicity k; another way of putting
this is that ker(A] — A*A) is a k-dimensional subspace. Now it is trivial to check that
A(ker(AI — A*A)) C ker(AI — AA*). Substituting T%,, for A we have Tj(ker(A\I —
T;f/hTII/h)) C ker(AI — T}’f/h'f['h/i{) or Tﬁ/h(kel‘(H;f/hHi{/h -1 - NI)) C kel‘(Hl"i/EHh/li—
(1 — M)I). Now T/ is one-one for otherwise there exists a non-zero function f € H” such
that Tsf = 0. This would imply that HuuHinf = (I — ThnTin)f = f. Writing g =
£/l {12 we then have 1 = || Hing 2= || I = P)(h/m g |l2= || (4/1)g |2 = | g ]| = 1. Thus
(h/h) g € L*©H?. 1t follows easily from this that /A € 2 N. ;. Hence 2 N %; # {0}. But
the process {x(f)} is minimal and thus, by Proposition 3 of Bloomfield, Hayashi, Jewell
(1983), 2 N # = {0}. Hence Ti is one-one and so dim ker(HjxHin — ul) =
dim ker(H}/zHp/i; — pI) for any p € C. This completes the proof.

Theorem 3 leads one to suspect that there must be an appropriate finite dimensional
analog. There is and we include it since it seems to be little known. Let X, ---, X, be a
finite set of Gaussian random variables with covariance matrix =. Let Zi, - - -, Z, be the set
of random variables given by the “regression errors” when a single X is predicted from all
the othersie., Z; = X; — E(X;| {Xi:i# j}).

THEOREM 4. When partitioned in the same way, the X set of random variables and
the Z set of random variables have the same canonical correlations.

ProoF. Let Y = 37'X where X = (X3, -+ -, X»)%. Then cov(X, Y) = EXYT) = I, and
cov(Y,Y) = E(YY”T) = 7. Now when partitioned the same way the covariance matrices
S and X' possess the same canonical correlation structure. For suppose X possesses
canonical correlations di, ---., dr when partitioned in a certain way. Then there exist
invertible matrices A;, A, such that

Zu i B Ay oI | DJ[A} © I'!'D
I R et ol Il e e | R poos]|-mq----| = A]---d--- AT
PV 0! A Jlp t 1jlo | A4, D! I

where D is the matrix

d, 0 ... 0

where the number of zero columns depends on the difference in the size of the two parts
of X given by the partition. Thus there is a unitary matrix P such that

T
T4 0] pfar 0
2‘[0 Az]PDP[O Az]

where D* is (2 X 2) block diagonal with block diagonal elements

1 d 1 d 1 0] [10
di 11”7777 de 1|’ 0 1”70 1]
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Then it follows that = = (A™)7P(D*)"'PTA™!. Now (D*)~' = D,E*D,, where D, is the
diagonal matrix with diagonal entries (1 — d?)™% (1 — d?)7'2 ..., 1 — d3})~'?
(1-4d3) %1, ..+, 1, and E* is the same as D* except that each d, is replaced by —d;.
Then there exists another unitary @ such that (D*)™ = D,QD*Q7D;. This implies that
3! can be written in the form of (4) where D is the same, but A;, A; may change; i.e. Z™*
has canonical correlations dj, - - -, d, when partitioned in the same way as X. To turn Y
into the regression errors Z we merely have to rescale the Y entries, i.e.

Y, = 0%X; + Y4.j 0™*X, where oYis the (i, j)th entry of 7!

1 o’
Zi=5 Y =X = S |~ 57 )X )

However the canonical structure of Y is invariant under such a rescaling and so, when
partitioned in the same way, all three of X, Y and Z possess the same canonical structure.

4. The remaining canonical correlations. The other canonical correlations in
which we might be interested are those other than the first between £ and %, and
those between 2 and %,. We denote the latter (if they exist) by A?, j=1,2, ..., n =1,
2, . ... In the light of the discussion of Section 3, we shall assume in what follows that all
necessary canonical correlations are well-defined.

By arguments which parallel those of Section 3 we may show that A{Y =
d(h/h, 2" H*). Every function in Z"\H® may be expressed as a sum r + & where r € R?,
h € H* and RY is the set of functions on C which are boundary values of a rational
function on A with a single pole of order n at the origin. The Helson-Sarason theorem
states that A{” < 1 if and only if w admits a representation of w = | p |2exp(z + ) with p,
a polynomial of degree less than n, and u, v real-valued functions in L* with || v ]| < 7/2.

We now return to the set of canonical correlations of 2 and %;. Adamjan, Arov and
Krein (1971) have shown that A; = d(A/h, R; + H”) when R, is the set of functions on C
which are boundary values of a rational function on A with poles only in A, the number of
which (with regard to their order) does not exceed j. Similarly A = d(z"a/h, R, + H®).
Thus A® = d(z"h/h, R, + H*) = d(h/h, 2"H* + Z"R,). But clearly for 0 < m < j,
(Z)™™R;_, C (Z)"R; so that A"™ = A, In particular A; = A = A?, = ... =AY, These
inequalities correspond to the familiar interlaced properties of canonical correlations of
finite sets of random variables. Also it follows from work of Adamjan, Arov, and Krein
(1971) that

and

AP =d(h/h, H* +K) (n=1).

5. Extensions. In Jewell, Bloomfield and Bartmann (1983) we discuss how to derive
some simple bounds for the canonical correlations, especially the largest. We also discuss
ways of computing the canonical correlations and components and illustrate these ideas on
some simple time series and real data.

We are also presently investigating extensions of these ideas beyond the single discrete
time series case. Of most interest are the extensions to (i) discrete vector time series
including the situation where a single component of a vector series in the future is predicted
using knowledge of all components of the vector in the past; (ii) discrete processes in
multidimensional time; (iii) continuous time processes. There are also several important
problems relating to the statistical properties of estimates of the canonical correlations
and components from a finite set of observations. Details of work on these topics will
appear elsewhere.
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