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ROBUSTNESS OF FERGUSON’S BAYES ESTIMATOR
OF A DISTRIBUTION FUNCTION!

BY RoOBERT HANNUM AND MYLES HOLLANDER

University of Denver and Florida State University

We derive an explicit expression for the Bayes risk (using weighted
squared error loss) of Dalal’s Bayes estimator of a symmetric distribution
under a %invariant Dirichlet process prior. We compare this risk to the risk
of Ferguson’s estimator of an arbitrary distribution under the %-invariant
prior. This enables us to (i) assess the savings in risk attained by incorporating
known symmetry structure in the model and (ii) provide information about
the robustness of Ferguson’s estimator against a prior for which it is not
Bayes.

1. Introduction and summary. Ferguson (1973) has developed Bayesian nonpara-
metric estimators of various parameters by introducing a class of priors, called Dirichlet
process priors, on a set of probability distributions. Dalal (1979a, 1979b) has further
advanced Bayesian nonparametric methods by introducing %-invariant Dirichlet process
priors, whose realizations are probability measures which are invariant under a finite group
% of transformations. %invariant Dirichlet process priors are useful because they allow
additional information, pertaining to the structure of the underlying distribution, to be
incorporated into the Bayesian estimation procedure. For example, it may be known a
priori that the distribution to be estimated is exchangeable in its coordinates, or symmetric
about a given point, and thus one wants the corresponding Bayes estimator to reflect this
knowledge.

Dalal’s (19793) Bayes estimator of a symmetric distribution with known center of
symmetry, F# n, is given by expressmn (3.1). In Section 3 we derive an explicit expression
for the Bayes risk Rg(F,, n, @) of F,‘ » under the %invariant Dirichlet process pnor with
parameter a (see Definition 2.1). We then compare this risk to the risk R, (F,,, a) of
Ferguson’s (1973) estimator F, (defined by (3.5)) under the %-invariant prior. In this way
we assess the savings in risk attained by incorporating the known symmetry structure
through the use of F,L,n. One way to measure the savings is via the behavior of the quantity
E%w = R, (F,, a)/Rg(F’,L,,,, a). E w depends on the choice of a(-), including the size of
a(R), W, and n. The comparison of F,L,,, and F, can be viewed as a Bayesian analogue of
comparisons given by Schuster (1973), who considered, in a non-Bayesian framework, the
problem of estimating a symmetric distribution with known center of symmetry. Our
comparison thus increases the utility of Ferguson’s estimator F, by providing information
about its robustness against a prior for which it is not Bayes. We find (roughly speaking)
that in the %invariant model where Dalal’s F', ,, is optlmal when a (%) is large relative to
n, then Ferguson’s F, performs nearly as well as Dalal’s F,, . However, F, 1ags far behind
when a(2) is very small compared to n.

Section 2 contains definitions and preliminaries relating to Dalal’s %-invariant Dirichlet
process. (We have omitted preliminaries relating to Ferguson’s Dirichlet process; see
Ferguson (1973) for such background.)
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2. %-Invariant Dirichlet process preliminaries. Although the results in this
section hold for Z-dimensional Euclidean space, where ¢ is any positive integer, we will, for
the sake of notational simplicity, restrict ourselves to the case /= 1.

Let (%, #) denote the real line with the Borel o-field, and let 4= {gy, -- -, g} be any
finite group of transformations # — %. A measure v is invariant with respect to the group
ifforall B€E %, v(B) = v(g:B) foralli=1, - - ., k. A measurable partition (B, +- -, Bn)
of # is a %-invariant if for anyj€ {1, ..., m}, Bj=gB;foralli=1, ..., k.

DEFINITION 2.1. (Dalal, 1979a). Let a be a finite, non-negative, %-invariant measure
on (%, #). We say P, is a %invariant Dirichlet process on (%, #) with parameter a,
denoted by P, € 9 %(a), if P, is invariant a.s., and if for every 2 =1, 2, ... and measurable
%-invariant partition (B, ---, B:) of &, the distribution of (Pg(B;), +--, Pg(Bs)) is
Dirichlet with parameter (a(B), - - -, a(Bg)).

Since it is not obvious how to obtain the joint distribution of ( P;(A1), - - -, P¢(An)) for
arbitrary measurable A, ..., A, via Definition 2.1, we illustrate this procedure for the
case when 4 = {e, g} where e is the identity transformation. Given arbitrary measurable
sets Ay, - -+, Am, form the 2™ sets B, 111, defined by B, 441, = N:21A} where y;=0or 1,
and A} = A; and A) = Aj, for j = 1, .-, m. Then the partition formed by distinct
[(Bu,...om N &B,... ) U (€Bor,..com N By, vi=0o0r 1 and p; = O or 1, is a %-invariant
partition. Thus, given the joint distribution of this invariant partition, Dalal defines the
joint distribution of ( Pg(Ai), - -+, Pg(An)) by

Po(Ai) =3u-1Pe(B,,,...0,),
where
Py(B,,,...on) = Pg(B,,,...0n N &B.....n)
+ % Y s Pe{(Bys,...pn N 8By o) U (B, N &Bus. )}

DEFINITION 2.2. (Dalal, 1979a). Let P, € 2%(a) on (%, #). Then Xj, - - -, X, is said
to be a random sample of size n from P, if for any m = 1, 2, -- ., and measurable sets A,
ooy A, Cyy oo, Co, Pr{X, €Cy, -+, X, € Cy| Pg (A1), - -, Pg(An), Pg(Cy), + -+, Pe(Cy)}
=TI}, P¢(C.) a.s., where Pr denotes probability.

The following theorem shows that the posterior distribution of a %-invariant Dirichlet
process given a random sample from that process is again a %-invariant Dirichlet process.

THEOREM 2.1. (Dalal, 1979a). Let P, € 2%(a) on (%, #) and let X1, ---, X, be a

random sample of size n from P,. Then the conditional distribution of P, given X,

.+, X, is a %-invariant Dirichlet process with parameter a + ¥'-18%, whered%, =
Yk 8 x [k, fori=1, ..., n, and 8x is @ measure degenerate at X.

The %-invariant Dirichlet process construction given by Definition 2.1 yields a measure
on (#, #) which is invariant with respect to the group % of transformations on #. For
example, if ¥ = {e, g} where e(x) = x and g(x) = 2u — x for some known g, then Fg(.) =
P.{(—, ]} is a random df symmetric about the point p. An alternative method for
obtaining a random symmetric df is to choose a df randomly according to Ferguson’s
Dirichlet process and then symmetrize this resulting distribution. More specifically, if P is
a (Ferguson) Dirichlet process on (£, %), and if F(x) = P{(—x, x]} and F(x~) =
P{(—o, x)}, then F*(x) = %{F(x) + 1 — F([2u — x]7)} is clearly a random df which is
symmetric about the point u. How, if at all, do F' * and F, differ? The following result,
which we state here for the general case of a k-element group (for % a positive integer),
shows that F'* and F, have identical distributions.

THEOREM 2.2. (Dalal, 1979a). Let P be a Dirichlet process on (%, #) with param-
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eter a, and let P, € 2%(a) on (R, #) where ¥ = {gi, ---, 8} Is any group of
transformations # — . Define

2.1) P*(:) =Y/ P (-)/k,
where
(2.2) P,()=P(g(-) for j=1,--,k

Then the distribution of P* is identical to the distribution of P,.

A proof of Theorem 2.2 based on Ferguson’s (1973) original definition of the Dirichlet
process can be found, for the case 2 = 2, in Hannum (1979). See Dalal (1979a) for a proof
for the general k-element group based on Ferguson’s (1973) (also see Ferguson and Klass,
1972) gamma process representation of the Dirichlet process. Another proof based on
Sethuraman’s (1978) constructive definition of the Dirichlet process can be found in Tiwari
(1980).

3. Risk analysis of Bayes estimators of a symmetric distribution. Let X, =
(X1, -+, X,) be a random sample of size n from an unknown symmetric df F,, where the
point of symmetry p is assumed known. In this section we consider Bayesian estimation of
F, based on X,,. We take the parameter space to be the set of all df’s on (£, %) which are
symmetric about u, while the action space .« is the set of all df’s on (£, %). We assume
that the loss incurred by using ' € &/ as an estimate of F, is of the form L(F, F,) =
I {F‘(t) — F,(t)}? dW(¢t), where W is a given finite weight (measure) on (£, #). Using a
%-invariant Dirichlet process prior with ¥ = {e, g} where e(x) = x and g(x) = 2p — x,
Dalal (1979a) has shown that the Bayes estimator of F, is given by

3.1) Fyn(t) = puFo(t) + (1 — pn) Tt {8x,(t) + 82,-x,(8)}/(2n),
where

(3.2) Prn=a(R)/{a(R) + n},

(3.3) Fo(t) = a{(—=, t]}/a(R),

and

a9 0= {5 S

In addition to the fact that F",L,,l has minimum Bayes risk with respect to the %-invariant
Dirichlet prior, it is also a natural choice as an estimator of a symmetric df. Ferguson
(1973) has shown that the Bayes (with respect to the Dirichlet process prior) estimator of
an arbitrary df on (%, #) can be written

(3.5) Fo.(t) = p.Fo(t) + (1 — pa) Y1 8x(t)/n.

It is straightforward then to see that Dalal’s proposed estimator of a symmetric df, F, ,, is
a symmetrized version of Ferguson’s Bayes estimator of an arbitrary df, F,:

(3.6) Fon(t) = %{Fot) + 1 = Fu([2p — £]7)},

where the notation F ([x] ) denotes the probability that X is less than x if X has df F. This
form (expression (3.6)) for the Bayes estimator of a symmetric df is analogous to the non-
Bayesian estimator suggested by Schuster (1973) in which he symmetrizes the empirical

df. In fact, replacing F.(¢) by F.(t) on the right-hand side of (3.6), where F.¢) =
YiL1 8x,(¢)/n is the empirical df of the sample, yields Schuster’s non-Bayesian estimator of
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a symmetric df:
(37) py,n(t) = l/z{pn(t) +1- pn([zlu‘ - t]i)}'

Schuster examines the virtues of the estimator F,L,,, by computing the variance of I'A’,‘,,,(t)
and comparing this variance to that of the usual non-Bayesian estimator F,(¢). We now
undertake an analogous comparison in the Bayesian framework utilizing the risks of F,‘ n
and F,.

By interchanging orders of integration, the Bayes risk of F. w,n With respect to the %-
invariant Dirichlet prior can be written as

(38 R(F, ., a) = Ex J [Epx,(F.n(t) — Fu(£))*] dW(2).

Now in order to evaluate the expectations in (3.8) we use algebraic manipulations similar
to those in Korwar and Hollander (1976). Proofs of Lemma 3.1 and Theorem 3.2 are given
in Hannum and Hollander (1982).

LEMMA 3.1. Let % be the symmetry group on (%, %) with the point of symmetry p
known. Let P, € 9 %(a) on (R, AB), let F,(t) = P,{(—, t]}, and let X, = (X, - - - , X,) be
a random sample of size n from P,. Then

() Erx, Fu(t) = F,a(0),
() Erlx,Fi(t) = Fun@U{Fun@ B(R) + %) + (Fon(t) — 38,01/ (B(2) + 1),
(il) Ex, F..(¢) = Fo(t),
(iv) Ex Fn.(6) = (Fo(t)/2n)} + [(n — 1)/{a(R) + 1}n]Fo(t) {Fo(O)a(R) + 5}
+ [{a( ) + n}/{a(R) + 1}R]{Fo(t) — %}8,(t),

where B(R) = a(R) + n, F'#,,,(t) = Y =1{0x(¢) + 8.x(t)}/(2n), and where §,(t) = 1 if t =
pand$.(t) =0ift<p.

Using Lemma 3.1 to evaluate the expectations in (3.8) yields the Bayes risk of F, ,

Ry(F, ., a) = [a(R)/{a(R) + 1}{a(R) + n}]

{f Fo(t){% - Fo(t)} dW(¢) +J {Fo(t) ——} dW(t)]

Analogous calculations for the risk of Ferguson’s F, against the %-invariant Dirichlet prior
yield

Ro(Fo, @) = Re(F,n, @) + [n/2{a(Z) + n)?]

(3.9)

(3.10) u »
[f Fo(8) dW(2) +J {1 = Fo(t)} dW(t)].

I

Thus (3.9) gives an exact expression for the Bayes risk of the symmetrized estimator F,‘,,,,
and (3.10) relates this Bayes risk to the risk of the ordinary estimator F, against the %-
invariant prior. Using these results we can now determine the savings obtained when using
F# » instead of ', as an estimator of a symmetric distribution function. Since the underlying
distribution, F,, is assumed to be symmetric about . we will henceforth assume that the
weight function, W(-), is also symmetric about p. With this condition the right hand sides
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of (3.9) and (3.10) simplify so that the ratio of the risk of F. to the Bayes risk of F#'n can
be written as

E"w = Ry(F,, a)/Rg(F, ., a)
(3.11) =1+ [n{a(R) + 1}/a(R){a(R) + n}]

. [J Fy(t) dw(t)/f Fo(t){1 — 2Fo(¢2)} dw(t)] )

where w(-) = W(.)/ W(%) is the normalized version of W(-). Using (3.11) we obtain:

THEOREM 3.2. Let Elw = Ry(F., a)/R¢(F, ., a) where Ry(F,, a) and Ry(F, ,, a)
represent the ilsk against the %-invariant Dirichlet prior of Ferguson’s F, and Dalal's
symmetrized F, , respectively. Then

(i) Ew is monotonically increasing in n, with Edw = 1 and lim, ..Eftw = 1 +
[{a(R) + 1}/a(R)]| Do w where Dow = [“uFo(t) dw(t)/["x Fo(t){1 — 2Fo(t)} dw(t),

and

(ii) E" wis monotonically decreasing in a(R), withlim, 4)~oE&w= © and lim, s).-Eaw
= 1.

We mention some implications of Theorem 3.2. Since F,L » is Bayes, F, . is always as
good as, and usually better than, F,. Note that when n = 0, F,,=F,andso Ew=1.Part
(i) says that when n is increased, the performance of F,‘ » can only get better relative to
that of F', for a fixed a(%). Part (ii) sheds light on the performance of F, compared to that
of F,L,,l for changes in the value of a(Z%). It is clear from the forms of F, and F,L,,, given in
(3.5) and (3.1) respectively that when a(Z) is large relative to n, both estimators give
much weight to the prior guess at ¥, which, for a given symmetric a, is the same (Fo(t)) for
both F, and F. . Roughly speaking then, F, and F, , will tend to agree (both will be
“near” Fj) when n is small compared to a(%) and so R, (F,, a) will be close to R, (F, .,
a). Thus it would seem reasonable that there is little to be gained in using the symmetrized
F, . to estimate F, instead of Ferguson’s F., in the case that a(2) is large relative to n.
This is reflected by Theorem 3.2 in the fact that when n is fixed, E, w decreases to 1 as
a(R#) — . These remarks support an interpretation by Ferguson (1973), later advanced
from a different viewpoint by Korwar and Hollander (1976), that a(£) be viewed as the
“prior sample size” of the process. (But see Sethuraman and Tiwari (1982), for a probabi-
listic context in which the case a(Z%) — 0 corresponds to much “informaticn.”) If one has
a great amount of faith in the prior guess, Fy, then a(#) should be chosen very large
relative to the size of the sample to be taken, n. In this case it will matter little which of F,
and F, , is used as an estimator of F,, since both will have risk values against the %
invariant Dirichlet prior near R,(F, «). The magnitude of the difference between
Rg(ﬁ,l, a) and Rg(ﬁn,n, a) in this situation will depend on the particular choice of a(-)
(including the size of a(£)), the sample size n, and the exact weight, W(.), which is used
in the loss function (including the size of W (£)).

In order to get some idea of how close Rg(F,, a) can be to R(F, ., a) in the case that
a(R) is large relative to n, the reader is referred to Tables 3.1 through 3.3 which list values
of Ew for some particular choices of a and W, and for selected values of a(g?) and n.
These tables will also illustrate the extent to which F, , performs better than F, when
a(2) is chosen small relative to the sample size n. In this situation more weight is placed
on the sample observations and hence the difference between R, (F,, a) and R,,(F,L ns a)
may, depending on the particular « and W chosen, be quite large. In fact, when (%) =
both F, and ﬁ,",, place all the weight on the sample observations and no weight is given to
the prior guess F; (see (3.1) and (3.5)). Thus, when a(£) is small relative to n (little faith
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in the prior guess Fy), the value of E w may be much larger than 1. A further analysis of
the behavior of E” w is given in the examples which follow.

ExaMmPLE 3.3. Let W(-) be the uniform measure on the interval {[—c, c]} for some ¢
> 0, and let Fo(-) = a(-)/a(Z) be a double exponential distribution centered at zero with
scale parameter A > 0. In this case (3.11) becomes

21 — e )n{a(#) + 1}

(3.12) aw=1+ A R){a(R) +n) (1 —e™)?’

In studying the behavior of (3.12) for different values of A and ¢ we note that these two
parameters enter expression (3.12) only in their product form A-c. Thus we denote § = Ac

and consider the behavior of E” w as a function of §. Standard derivative arguments yield
the following proposition.

PROPOSITION 3.4. If W(.) is uniform on {[—c, c]} and Fo(-) is double exponential
centered at zero with scale parameter A > 0, then Eiw is strictly monotonically
decreasing in 0, with limy_,o E5w = © and

limyoEfw =1+ [2n{a(#) + 1}/a(R){a(R) + a(R) + n}].

The fact that E* w is strictly monotone as a function of § = Ac gives the Bayesian
decision maker who wishes to estimate a possibly symmetric df a rough guide as to how to
choose an appropriate value for the scale parameter A, depending on his degree of belief
that the underlying distribution really is symmetric. For a given value of c, the value of

TABLE 3.1
Selected values of E w when W is uniform {[—c, c]} and a is
double exponential ().
#=Ac=0.1

a(R) n=1 n=2 n=10 n=25 lim, .

0.01 2103.98 211445 212289 212416  2125.01
0.10 211.30 221.31 230.04 23141 232.33

1 22.03 29.04 39.24 41.44 43.06

2 11.51 16.77 27.29 30.21 32.54

10 3.10 4.86 12.57 17.52 24.13

100 1.21 1.42 2.93 5.25 22.24
0=Ac=10

a(R) n=1 n=2 n=10 n=25 lim,..
0.01 317.39 318.97 320.24 320.43 320.56

0.10 32.64 34.15. 35.46 35.66 35.80
1 4.16 5.22 6.75 7.08 7.33
2 2.58 3.37 4.95 5.39 5.75
10 1.32 1.58 2.74 3.49 4.48
100 1.03 1.06 1.29 1.64 4.20
limﬂﬁm

a(R) n= n=2 n=10 n=25 lim,.»
0.01 201.00 202.00 202.80 202.92 203.00
0.10 21.00 21.95 22.78 2291 23.00
1 3.00 3.67 4.64 4.85 5.00
2 2.00 2.50 3.50 3.78 4.00
10 1.20 1.37 2.10 2.57 3.20

100 1.02 1.04 1.18 1.40 3.02
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E; wis smallest when A is very large and the value of E w is largest for A near zero. Thus,
for example, if one is quite certain that F, is symmetric (about zero), it would be appropriate
to choose a relatively small scale parameter A in the double exponential prior, since it is in
this situation (when  is small) that the symmetrized estimator F, , performs best against
F.. Proposition 3.4 implies that the smaller the value of A (for a fixed c) the larger the
value of E;w. On the other hand, choosing a relatively large value of A would be
appropriate when the degree of belief in the assumption of symmetry is not as strong. To
get an idea of the increase in performance of FM,,[ relative to that of F,, measured by the
ratio of their risks against the %-invariant Dirichlet prior, the reader is referred to Table
3.1 which lists the values of E; w for selected choices of n and a(Z) for the cases § = .1,
# = 1.0, and limy_, -, respectively. More complete versions of Table 3.1 (and of Tables 3.2
and 3.3 which follow) can be found in Hannum and Hollander (1982).

ExampPLE 3.5. In this example we assume only that W(.) and «a(:) are the same

TABLE 3.2
Selected values of E&;, w when Fo(+) = w(-)

a(R) n=1 n=2 n=10 n=25 lim,..
0.01 301.00 302.49 303.70 303.88 304.00

0.10 31.00 32.43 33.67 33.87 34.00

1 4.00 5.00 6.45 6.77 7.00

2 2.50 3.25 4.75 5.17 5.50

10 1.30 1.55 2.65 3.36 4.30

100 1.03 1.06 1.28 1.61 4.03
TABLE 3.3

Selected values of E, w when W is normal (u. = 0, 0% and a is
double exponential ().
w=0A=0.1

a(R) n=1 n=2 n=10 n=25 lim,..
0.01 1389.57 1396.48 1402.06 1402.90 1403.46

0.10 139.86 146.47 152.23 153.13 153.74

1 14.89 19.51 26.25 27.70 28.77

2 7.94 11.41 18.36 20.29 21.83

10 2.39 3.55 8.64 11.91 16.27

100 1.14 1.28 2.28 3.80 15.02
w=0A=1.0

a(R) n=1 n=2 n=10 n=25 lim, ..
0.01 281.80 28320 |, 284.32 284.49 284.61

0.10 29.08 30.42 31.58 31.76 31.89

1 3.81 4.74 6.11 6.40 6.62

2 2.40 3.11 4.51 4.90 5.21

10 1.28 1.51 2.54 3.21 4.09

100 1.03 1.06 1.26 1.57 3.84
w=0\A=15

a(R) n=1 n=2 n=10 n=25 lim,..
0.01 232.88 234.03 234.96 235.10 235.20

0.10 24.19 25.29 26.25 26.40 26.51
1 3.32 4.09 5.22 5.46 5.64
2 2.16 2.74 3.90 4.22 4.48
10 1.23 1.43 2.28 2.82 3.55

100 1.02 1.05 1.21 147 3.34
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measure. This entails both that a{(—, t]} = W {(—x, t]} for all ¢ € # and that a(Z#) =
W (2). Then (3.11) reduces to

(3.13) Eiw=1+[3n{a(#) + 1}/a(R){a(ZX) + n}].

Table 3.2 provides a list of values of E5 w given by (3.13) for various choices of n and
a(Z). We note that in this example the value of E5 w does not depend on the particular
measure chosen for a(-) and W (), except through the values of a(#) and W(£). As
expected, Table 3.2 shows that when «( %) is large relative to the sample size n, F, is quite
robust (in terms of risk) compared to the symmetrized F~,‘,n. This is reflected by the near-
unity values of E7 w in the lower left part of the table. Also note that in this example
lim,oEfw=1+ [3{a(Z) + 1}/a(£)], agreeing with result (i) of Theorem 3.2, since in
this example, [“.Fo(¢) dw(t) = % and [“ F§(¢) dw(t) = Y.

ExaMPLE 3.6. Let w(-) be the normal probability distribution with mean zero and
variance o and let Fy(-) be the double exponential distribution centered at zero with
scale parameter A > 0. Then (3.11) becomes

(814 Eiw=1+[n{a(2)+ 1}/ R){a(R) + n}]/[1 — exp(3w?/2)®(—2w)/P(~w)],

where w = oA, and ®(-) denotes the standard normal df. Table 3.3 lists the values of E% w
as given in (3.14) for selected choices of n and a(Z£) for the cases w = 0.1, w = 1.0, and w
= 1.5 respectively.
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