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A MINIMAX APPROACH TO SAMPLE SURVEYS

By CHING-SHUI CHENG! AND KER-CHAU L1?

University of California, Berkeley and Purdue University

Suppose that there is a population of N identifiable units each with two
associated values x, and y.. All N values of x are given but y, is determined
only after the ith unit is selected and observed. The objective is to estimate
the population total Y, y,. It is assumed that y, = 0x, + 8,g(x,), L =i < N,
where (81, - - -, 8v) is in some bounded neighborhood of (0, - - - 0). The Rao-
Hartley-Cochran and Hansen-Hurwitz strategies are shown to be approxi-
mately minimax under certain models with g(x) = x'/? and with g(x) = x, the
latter relating to a problem considered by Scott and Smith (1975). These two
strategies are then compared with some commonly-used strategies and are
found to perform favorably when g*(x)/x is an increasing function of x. The
problem of estimating 6 is also considered. Finally, some exact minimax results
are obtained for sample size one.

1. Introduction. Suppose that there is a population U = {1, 2, .-+, N} of N
identifiable units and that two correlated values x; and y;, where x; = 0, are associated with
the ith unit. The values x,, x2, - - -, Xy are given but each y; is determined only after the ith
unit is selected and observed. The objective is to estimate the unknown population total
Y = Y%, y; based on a sample of size n. Without loss of generality, we shall assume that
x < x3 < ... = xn. In practice, x, is often the value of y; at some previous time when a
complete census was taken. Another application is in cluster sampling where y, is the ith
cluster total and x; is the size of the ith cluster. Many procedures have been suggested for
using the auxiliary information provided by x to increase the precision of the estimate
either at the design stage (e.g., using a probability proportional to size design) or at the
estimation stage (e.g., using a ratio estimator) or both. The superpopulation approach of
Brewer (1963) and Royall (1970a) incorporates the auxiliary information into a random
superpopulation model which often leads to the selection of a purposive sample. Whether
one should randomize has been one of the major controversies between the fixed population
approach and the superpopulation approach. In this paper, we shall formulate a regression
type model and use a minimax criterion to justify randomization. We shall assume that

(1.1) yi=0xi+e,, ISI,SN,

where § € ©® C R (usually ® = R or © = (0, )), and ¢; is the “error” from the strict linear
relationship between y and x. We shall further assume that

(1.2) e, = 8;8(x;), 1<i=<N,

where g is a known function of x and (8, ---, 8n)’ belongs to a fixed neighborhood L of
0, - -+, 0). Usually g(x) is an increasing function of x (e.g., g(x) = x°, a = 0). There are
many possible choices for the neighborhood L depending on the measure of distance used.
We may assume L to be the Lo-ball Ly(M) = {(81, +- -, 65)": 31 82 < M} or the L..-ball
L.(M) = {(8, ---, 8n):|8:| = M, for all i} where M > 0 is fixed. This is not a
superpopulation model though it is comparable to the commonly used superpopulation
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model in which yy, .- -, yny are assumed to be independent random variables with
(1.3) E(y) =0x, and Var(y) = o%v(x)).

Note that »(x,) is the counterpart of g%(x;).

Throughout this paper, we shall assume squared loss function and only consider
sampling designs with fixed sample size n. Since a sampling design with replacement can
always be improved by one without replacement, we may consider sampling designs
without replacement only. Thus, without loss of generality, we define a sampling design
to be a probability measure P on = {S:S C U and #(S) = n}, where #(S) is the
cardinality of S. We shall also restrict to linear homogeneous estimators of the population
total Y, i.e.; estimators of the form Y es ais)y:, where S is the selected sample. This kind
of estimator was first put forward by Godambe (1955) and can also be written as
Zziv=1 aus)yi with a;sy = 0 for all ¢ & S. Let as = (al(s), e, aN(s))l. Then a linear
homogeneous estimator is specified by the vectors of coefficients {as}ses. A pair d =
(P, {as}sev) of sampling design and estimator of Y is then called a strategy. The set of all
such strategies will be denoted by ,.

For any #§ € © and § = (31, - - -, 6n)" € L, the mean squared error (MSE) of a strategy
d = (P, {as}ses), denoted by R.(d; 8, 8 or R,(P, {as}ses; 0, 8), is defined to be
Ysesr P(S) (T es ausyi — Y1 ¥:)2 Our goal is to find a strategy to

(1.4) minimize supsesscr R.(d; 6, 8).

When exact minimax strategies are difficult to find, approximately minimax strategies will
be desirable.

Note that all the strategies in 2, have nonrandomized estimators. One can also consider
strategies with randomized linear homogeneous estimators. All such strategies will be
denoted by 2F. Clearly 2, C 2F. On the other hand, since the squared loss function is
used, for each strategy d in 2F, there is a Rao-Blackwellized strategy d’ in 2, which is at
least as good as d. However, sometimes Rao-Blackwellization can only provide a small
amount of improvement at the cost of introducing a quite complicated estimator which
makes the analysis difficult. In such cases the use of a randomized strategy is preferrable.
In this spirit, the well-known Rao-Hartley-Cochran strategy (Rao, Hartley and Cochran
1962), a strategy with randomized estimator, will be shown in Section 3 to be approximately
minimax over 2F under model (1.1)-(1.2) with 8g(x) = x, L = L.(M), and that with g(x)
=x"?and L = Ly(M), when the n largest x values are not too extreme. Also if the sampling
fraction is small, then the Hansen-Hurwitz strategy (Hansen and Hurwitz, 1943), which is
only slightly less efficient than the Rao-Hartley-Cochran strategy, but much simpler to
implement, is also shown to be approximately minimax.

Under model (1.1)-(1.2), 6 is not identifiable, i.e., for given {( x;, 3,)}L,, there exist more
than one # such that (1.1) and (1.2) are satisfied. To make 8 identifiable, we must restrict
8 to a suitable subset I of L. The choice of I, depends on what we think # means. For
instance, if 8 is interpreted as the population ratio ¥¥; y,/3%, x, and we have a situation
where the individual ratios 6, = y,/x; are approximately equal, then ¢, represents the error
of approximating y.(= 6,x;) by 6x,. Under this interpretation, we have

Oy xi=YN1y. = 3N (0x: + dig(x)} = 0 XN, x, + IV, 8ig(x)),

which implies that Y%, 8;g(x.) = 0. Then we are led to L = {§ € L: YN, 8.8(x) =0}, ie.,
it would be appropriate to

(1.5) minimize supgeeosery?,sgix)=0 Ruld; 6, 8).

Sometimes, instead of having a definite meaning for 6, we merely know that the line y =
8x would be a good approximation of the data {( x;, y.)}2., should we have the chance to
observe all the y,’s. If 4 is such that

Y (yi — 0x)*/{g(x)}? = ming N, (3, — 0'x)%/{g(x:)}%,
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i.e., the value which gives the weighted least squares fit, then

(16) 6= Zzlil {g(xi)}izxtyz/Z{il x%{g(xi)}_2>
and it is not hard to see that under model (1.1)-(1.2), we have
(1.7) f\il sz{g(xz)}_lxl =0.

Hence we should

(1.8) minimize Supsee.seLy Vs (gx)x=0 Ba(d; 0, 8).

Clearly Problems (1.5) and (1.8) are the same when g(x) = x'/2. It will be shown later that
for unbounded ©® and L = L,(M ), (1.4) and (1.8) are identical problems for any g. Thus the
results on Rao-Hartley-Cochran strategy mentioned earlier also apply to (1.8).

In Section 2, the problem will be formulated in matrix notation. We shall introduce the
important notion of risk-generating matrix and adjusted risk-generating matrix, which
are very useful in assessing the performance of a sampling strategy when the estimator is
linear. Section 3 is devoted to the approximate minimaxity of Rao-Hartley-Cochran
strategy and Hansen-Hurwitz strategy. In Section 4, we shall compare the Rao-Hartley-
Cochran strategy with two commonly-used procedures: simple random sampling (SRS)
together with ratio estimator and sampling with probability proportional to aggregate size
(PPAS) together with ratio estimator. We find that the Rao-Hartley-Cochran strategy
performs favorably when g*(x)/x is an increasing function of x, e.g., g(x) = x* with a = %.
In Section 5, we shall study the problem of estimating # under the identifiability condition
(1.7). For a quite arbitrary g, approximately minimax strategies are derived. It turns out
that if instead of selecting units with probability proportional to size x,, we select units
with probability proportional to x%/{g(x.,)}? then the modified versions of Rao-Hartley-
Cochran and Hansen-Hurwitz strategies are approximately minimax for estimating 6.

Before closing this section, we shall relate our problem to earlier works in the literature.
Blackwell and Girshick (1954) gave the first minimax result for justifying the use of simple
random sampling. Under the assumption that the space of all possible y = (y1, + -+, yn)' is
permutation-invariant, they showed the minimaxity of simple random sampling for any
permutation-invariant estimator and loss function. Works on minimax estimation of the
population mean under simple random sampling include, e.g., Aggarawal (1959), Royall
(1970b), Bickel and Lehmann (1981), Hodges and Lehmann (1981). Bickel and Lehmann
(1981) essentially studied model (1.1)-(1.2) with x; =x; = --- = x5, § € R and L = Ly(M)
while Hodges and Lehmann (1981) considered model (1.1)-(1.2) with %, = -+ = xn, 8
known, and L = L..(M). They did not restrict to linear homogeneous estimators as we do.
Stenger (1979) obtained the minimaxity of (SRS, sample mean) under the restriction that
the estimators are linear homogeneous and satisfy a condition similar to (2.2) in Section 2
of the present paper.

Scott and Smith (1975) probably is the first and only paper on the minimaxity of
unequal probability sampling schemes. Their interesting results to a certain extent stim-
ulated our work. They considered the minimax estimation of a population total Y =
SN . y, where y, = x,2,, with the observable z, taking values in a fixed interval, say
0 < z, < B. They fixed the estimator to be X Y% z;/n, where z1, - - -, 2, are the n observed
values of z, and showed that under some condition, if a sampling scheme with replacement
is to be used, then the probability proportional to size design is approximately minimax.
Their restrictions on the competing strategies, however, rule out many commonly used
procedures, e.g., (SRS, ratio estimator) and (PPAS, ratio estimator). In fact, in Scott and
Smith’s model, 0 < y, = Bx,. Consequently y, can be expressed as y, = (B/2)x, + & with
|&| < (B/2)x,. Now it is clear that this is a special case of our model (1.1)-(1.2) with 8 =
B/2, g(x) = x, and L = L(B/2). Thus our results also apply to Scott and Smith’s problem;
the restrictions are then removed.

2. The risk-generating matrix and adjusted risk-generating matrix. In this
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section we shall formulate our problem in matrix notation and derive an important matrix
for assessing the performance of a sampling strategy. For convenience, the following
notations will be adopted: 1 = the N X 1 vector of 1’s; G = the N X N diagonal matrix with
&(x;) as the ith diagonal element; x = the N X 1 vector (x1, - - -, xn)"; ¥y = the N X 1 vector
(y1, +++, yn)'; and X = Y, x,. Then for any d = (P, {as}ses) € Dn,

R.(P, {as}secs; 0, 8) = ZSES/’P(S)(ZLIZI a;s)yi — Zfil yi)2

(2.1) =Yses P(S)y'(as— 1)(as — 1)y
= Yser P(S)(6x + G&)'(as — 1)(as — 1)’ (fx + G9).

Clearly (2.1) is a quadratic function of 8 if (as — 1)’x # 0 for some S with P(S)>0.If0Ois
unbounded, then the maximum MSE will be infinite unless we have (as — 1)’x # 0 for all
S with P(S) > 0, i.e.,

(2.2) YN ausxi=X forall P(S)>0.

Therefore for unbounded ©, e.g., ® = R or (0, ), we may restrict to estimators satisfying
(2.2). We shall also make the same restriction when © is bounded. Condition (2.2) in fact
is equivalent to the unbiasedness of an estimator in the usual superpopulation model (see,
e.g., Cochran, 1977, page 159). Such a restriction is reasonable and is indispensable when
© is unbounded. Clearly (2.2) holds for the ratio estimator and the estimator used by Scott
and Smith (1975). A strategy satisfying (2.2) was called a representative strategy by Hajek
(1959). We shall denote the collection of all the representative strategies in 9, by Z,.
For a strategy in 2,, we obviously have

Ru(P, {as}scs; 0, 8) = Yses P(S)¥G (as — 1) (as — 1/GS
(2.3) = 8G{Yses P(S)(as — 1)(as — 1)} GS

which is independent of § and is a quadratic form in the matrix G{Yses P(S)(as — 1)(as
— 1)'}G. This matrix plays an important role in assessing the performance of the strategy
d = (P, {as}scs). We shall call Yseo P(S)(as — 1)(as — 1)’ the risk-generating matrix, and
G{Ysecs P(S)(as — 1)(as — 1)'}G the adjusted risk-generating matrix of the strategy
(P, {as}sev); and we shall denote the adjusted risk-generating matrix of a strategy d by
R.(d), or simply by R(d), when n is clear.

We have the following basic property of R(d).

ProrosiTiON 2.1. If d is representative, then R(d) is singular and satisfies the
condition R(d)G'x = 0.

This is a straightforward consequence of (2.2); the proof is thus omitted. The identifia-
bility condition (1.7) can be written in vector form &G 'x = 0. Now in view of (2.3) and
Proposition 2.1, we have the following.

ProrosiTiON 2.2. If (i) L = L2(M) and (ii) © is unbounded or ® is bounded and the
estimators satisfy (2.2), then (1.4) and (1.8) are identical problems. Moreover, a minimax
strategy minimizes the maximum eigenvalue of R(d).

This brings out an interesting connection to the theory of optimum designs. A minimax
strategy in Proposition 2.2 is like an E-optimum design; see Kiefer (1974) for some
terminology of optimum design theory. In fact, when x; = x, = ... = xy (i.e., there is no
auxiliary information), one has R(d) 1 = 0 under (2.2), i.e., R(d) has zero row sums. In this
case, if d * is the strategy (simple random sampling, N - sample mean), then R(d *) minimizes
tr R(d) and is completely symmetric in the sense that all the diagonal elements are the
same and all the off-diagonals are the same, i.e., R(d*) behaves like a multiple of identity
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matrix in the nondegenerated directions. An argument similar to Proposition 1 of Kiefer
1975) then shows the minimaxity of d* when the space of all y = (y;, ---, yn) is
permutation-invariant. The so-called C-matrix of a balanced incomplete block design is
also completely symmetric. Thus d* plays the same role as a balanced incomplete block
design in block design setting.

For a strategy with randomized estimator, a representativeness condition similar to (2.2)
is also necessary for the maximum MSE to be finite when © is unbounded. The mean
squared error of a strategy d € 2 satisfying the representativeness condition is also a
quadratic form 8’R(d )8 with the adjusted risk-generating matrix R(d) satisfying R(d)G "'x
= 0, too. Later on, we shall show that when L = L.(M) and g(x) = x'/?, all the nonzero
eigenvalues of the adjusted risk-generating matrix of the Rao-Hartley-Cochran strategy
are the same. This may explain why the Rao-Hartley-Cochran strategy performs very well
under the minimax criterion; it is like a2 halanced design in experimental design settings.

For convenience, hereafter the maximum eigenvalue of a matrix A will be denoted by
}\max (A) .

3. Approximate minimaxity of Rao-Hartley-Cochran strategy. For a sample
size n, the Rao-Hartley-Cochran strategy first forms n random groups of units, one unit to
be drawn from each group. The number of units Ni, Na, - .-, N, in the respective groups
are made as equal as possible, i.e., |N,— N,|<1foralli,j=1,2, ..., n. Let X, = Y.cgroup, X:.
Then the probability of selecting the ith unit in the jth group is x,/X,, and the estimate of
the population total is

?RHC = Y"1 Xy/%,

where y,, x, refer to the unit drawn from group ;. This strategy will be denoted by dgruc.
Clearly druc is not in 9, since the estimator Yryc is a randomized estimator. Therefore
druc can be improved by some strategy in 2,. However, since druc is well-known and is
easy to implement, we shall ignore its improved version in 2, and state our main results
in terms of druc.

We shall calculate the adjusted risk-generating matrix of druc, R(druc), through the
Hansen-Hurwitz strategy (denoted by dun) since druc is closely related to duy and that
the mean squared error of dun is easy to calculate. Recall that strategy dun is a with
replacement scheme in which the probability of selecting the ith unit at each stage is x,/X
and the estimator of the population total is Yun = n'X M1 yi/x., where (x1, y1), ---,
(xn, y») are the observed values of (x, y) with possible repetitions. When n > 1, this strategy
is in neither 2, nor 27 because of the “with replacement” feature.

For n = 1, the mean squared error of duy is Ri(dun; 6, 8) = §G{X., P(i)(a, — 1)-
(a; — 1)’}G& where a, is the N X 1 vector with X/x; as the ith coordinate and all the other
coordinates are zero. Through some simple calculation, we obtain

Ri(dun; 0, 8) = §'G{diag(x1'X, - - -, x5'X) — Jn}GS,

where Jy is the N X N matrix of ones. For n > 1, Yuu is an unbiased estimator of Y and
is essentially the average of a random sample. Therefore

(8.1)  Ra(dun; 0, 8) = n"'Ri(dun; 6, 8) = n'8'G{diag(x7'X, -- -, x5'X) — Jn}G8.
Now, write N = nR + k, where R and k are integers with 0 < £ < n, and let
p=(N-1)""(N=-n)+ N N-1)""kn - k).
By (9A.66) and (9A.67) of Cochran (1977), we have
R.(druc; 0, 8) = u- Ru(duu; 6, 9),
which leads to
(3.2) R.(druc) = p-n"'G{diag(x7'X, - - -, x5'X) — JN}G.
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Furthermore, when g(x) = x'/%, we obtain
R.(druc) = un (XTI — GING),

which has all the nonzero eigenvalues equal to un~'X. Thus we obtain the following
proposition.

1/2

ProrosITION 3.1. Let g(x) = x"/“. Then for any M > 0, we have

supgeoseL,anBa(dun; 0, 8) = n7' XM, and supseeser,anRn(druc; 6, 8) = un"'XM.

To establish the approximate minimaxity of druc, we need to give a lower bound for
the maximum MSE of an arbitrary strategy. The following proposition provides such a
useful lower bound.

ProposITION 3.2. Let g(x) = x'2 and © be unbounded. Then for any M > 0,

Mingeo,SUpsesser,anBa(d; 0, 8) = n ' XM{(TYV7" x:)? + n YN 2} /(X2 = ¥, x)).

If © is bounded, then the above inequality holds for d € 2,.

Proor. For any ¢ >0, let
(3.3) Z=R.(d) + t(Vx1, - -, Van) (Vi - oo, VEn).

By Proposition 2.1, we have R,.(d )(\/;1, cee, \/J—CN)' = 0; i.e., each row of R,,(d) is orthogonal
to (\/J_Cl, cee, \/o—cN)'. Therefore if A1, Az, - -+, Ay—1 and O are the eigenvalues of R,(d), then
the eigenvalues of Z are A, Az, -+, An—1, and ¢ Y%, x, = tX. We shall first give a lower
bound for the maximum eigenvalue of Z and then by suitably choosing ¢ we may derive a
good lower bound for the maximum eigenvalue of R.,.(d).

Now, the maximum eigenvalue of Z, denoted by An.x(Z), satisfies

Amax(Z) = the maximum diagonal element of Z
= maxi<i=n{ Yser L. P(S) (ays) — 1) + tx,}
(3.4) = maxicn { Tses 27 P(S) (aus) — 1)* + txF}) /x.]
= [YY; (Tser xIP(S)(ais) — 1) + tx7}]/T N1 x.
= [{Zser P(S)(Zees (aupx — x)” + Fog s i)} + tTE xi]/X.

Next, as was demonstrated in Section 2, (2.2) must hold if we want the maximum MSE
finite. An important consequence of (2.2) is the following inequality:

Ses (@usyx — x)? = n(n! Tes @usxe — 17 Yies x)°
= n(n_IX - n_l ELES xl)2 = n_l(Zz &8s xz)2‘

Now, due to the assumption that x; < x; < .-+ < xn, we have Y, ¢s5 x, = Y¥" x, and
Y es &2 = Yo" x2. Therefore, back to (3.4), we obtain

(3.5)

(3.6) Amax(Z) = [{(n7 (TN x)2 + TN 23 + 630, x7)/X.

Consider any ¢ such that ¢ < {n (X" x)? + ¥5" x7}/(X? — YL, #9). A simple
computation leads to

X <[{(n "5 %)+ Y 2y + ¢ TN 27X

Therefore, tX can not be the maximum eigenvalue of Z. Thus from the discussions
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following (3.3) we obtain Amax(R.(d)) = Amax(Z). Finally, in (3.6), by letting ¢ tend to
(I ) + TN xB /(X2 — Y, x3), we get the desired bound. O

By Propositions 3.1 and 3.2, we have the following.

THEOREM 3.1. Let g(x) = x'/? and © be unbounded. If
pX2 =Y/ {CEN x) + n YN x) < 1 + ¢,

then the Rao-Hartley-Cochran strategy is (1 + ¢)-approximately minimax in the sense
that for any sampling strategy d € 92,

supseoseL,anBn(druc; 0, 8) = (1 + €) supgeo ser,anRa(d; 0, 8).

If © is bounded, then the above inequality still holds if d €%,. If n|N and x; = x; =

- = xn, then p(X?% — I, «H A" )2 + nY X" %% = 1 and druc is the same as
(SRS, N.sample mean) the mlmmax1ty of the latter follows In general, a rough calculation
shows that w(X? — Y, x3)/ ((TX3" 22 + nXN" 27} = (@ + S nepir 2/ 277" x:)2 Thus
druc is approximately minimax if the n largest x values are not too extreme.

Note that because of Proposition 2.2, the Rao-Hartley-Cochran strategy is also
(1 + ¢)-approximately minimax when the identifiability condition (1.7) is imposed. Fur-
thermore, the Hansen-Hurwitz strategy will also be approximately minimax if u is close to
1, i.e,, if the sampling fraction is small.

Now let us turn to the case g(x) = x and L = L..(M ). We need the following propositions.

ProposiTioN 3.3. If M is a N X N matrix such that 1’ M1 = 0, then there is an
N X 1 vector 8§ with +1, —1 entries such that 8 M& = N(N — 1)~'. trace M when N is even,
and M8 = (N + 1)N 7! trace M when N is odd.

Proor. Let P be the set of all the N X N permutation matrices P. Clearly, the matrix
(N)7! Ypep PPMP is of the form aly + bdy for some real numbers a and b. Moreover, a
and b can be determined by the fact that trace (al + bJy) = trace M and that 1’(al +
bJn)1 = (N))"' Tpep I'P’MPL = (N!)™' Ypep 1'M1 = 0. After some computation, we get

a=(N—-1)""traceM, and b=-N"YN —1)"!trace M.

Consider first the case where N is even. Let 8° be the vector with the first N/2
coordinates equal to 1 and the last N/2 coordinates equal to —1. Then we have

Max{0’'M§|8 = P& forsome P in P} = (N!) Yper 6”P’'MPS°
= 8Y(al + bJ)8° = Na = N(N — 1)! trace M.
This proves the case where N is even. Next, consider the case where N is odd. Let 8° be the
vector with the first (N + 1)/2 coordinates equal to 1 and the last (N — 1)/2 coordinates
equal to —1. A similar computation leads to Max{8’M§ | 8 = P§° for some P in P} = Na
= (N + 1)N " trace M. The proof is now complete. 00
ProPOSITION 3.4. Let g(x) = x and © be unbounded. Then we have
minges,SuPsco ser, anRn(d; 6, 8) = (n(TL" x)* + T 2NN — 1)'M?,

if N is even, and

miNgey, Supseoser, anBald; 8, 8) = (n(TX" x:)? + YN (N + )N ' M?,

if N is odd. If © is bounded, then the above inequalities hold if d € %,.
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Proor. Without loss of generality, we may assume M = 1. By Proposition 2.1, we
have R,(d)1 = 0; i.e., all row sums of R,(d) are zero. Therefore by Proposition 3.3, there
exists a 8* € L.(1) such that 8*'R,.(d)8* = N(N — 1) " tr R.(d) if N is even and §*'R.(d )8*
= (N + 1)N ' tr R,.(d) if N is odd. It remains to be established a lower bound for tr R.(d).

By a straightforward computation, we have

tr Ru(d) = YN, Yser P(S) (ais) — 1)*x? = Tser P(S) T (aus) — 1°x%
= Yser P(S) {Dies (ausyxi — x)? + > esx?} (by (3.5))
= Ysesr P(S)- (n'Sigs x): + Yies XD = n71(2£]" x)? + Zfi_ln xi.

This completes the proof.

PROPOSITION 3.5. Assume g(x) = x. Then for any M > 0, we have
supscoser anBn(dun; 6, 8) = nlXM?

and

supgee,ser, ) Bn(druc; 0, 8) = un ' X*M2

Proor. Without loss of generality, we assume M = 1. From (3.1), we obtain R,(dun)
= n Y{diag(x.X, ---, xvX) — GJnG)}. Since GJnG is nonnegative definite, we conclude
that for any 8 € Lu), R, (dun)d = n™' T2L, x,.X = n7'X” as desired. Similarly, we obtain
the bound for druc. O

THEOREM 3.2. Let g(x) = x and © be unbounded. If uN (N — 1)X*/ {(TE" x)* +
n YY" %%} =1 + ¢ when N is even, and (N + DINX2/{(XRE" %) + nIX" 23} =
1 + & when N is odd, then the Rao-Hartley-Cochran strategy is (1 + €)-approximately
minimax in the sense that for any sampling strategy d € 2., we have

supece,ser, mBr(druc; 0, 8) = (1 + ¢) supgeeserL, anRn(d; 0, 8).

If © is bounded, then the above inequality holds if d € Dn.

Again the Rao-Hartley-Cochran and Hansen-Hurwitz strategies are approximately
minimax if the n largest x values are not too extreme and the sampling fraction is small.

Now take ® = {B/2} and M = B/2. Then our result applies to the problem of Scott and
Smith (1975), for which the Rao-Hartley-Cochran strategy is approximately minimax over
all the strategies in 7, (note that © = {B/2} is bounded) if pX >/{(TL" x)° + nyis" x7)
is close to 1. Note that we do not put any restriction on the sampling designs and the only
restriction on the estimators is the representativeness condition (2.2) which is reasonable,
while Scott and Smith (1975) fixed the estimator and restricted to sampling schemes with
replacement. Furthermore, our result applies'to more general models.

So far the approximate minimaxity results were only established for g(x) = x% L =
Ly(M) and g(x) = x, L = L.(M). Results for other forms of g(x) are rather difficult to
derive. We do not have satisfactory results in this direction. Therefore in the next Section,
we shall compare the Rao-Hartley-Cochran strategy with two commonly-used strategies
(SRS, ratio estimator) and (PPAS, ratio estimator) under a variety of functions g. It turns
out that the Rao-Hartley-Cochran strategy performs favorably when g(x) = x* with a = %.

4. Comparisons. Comparisons of various sampling strategies had been done in the
literature, see, e.g., Chapter 7 of Cassel, Sirndal, and Wretman (1977) and the references
cited there. They were mostly empirical studies or based on some superpopulations. The
criteria used were often expected (with respect to superpopulation) mean squared error
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and hence were “average” type criteria. The comparison we shall make here is different
and is based on a minimax criterion. Borrowing optimum design theory terminology, one
can say that our criterion is like an E-criterion and the earlier comparisons were more or
less based on something like the A-criterion.

We have seen that the Rao-Hartley-Cochran strategy is approximately minimax under
model (1.1)-(1.2) with L = Ly(M ) and g(x) = x'/°. A comparable superpopulation model is
(1.3) with »(x) = x. Under this model Brewer (1963) and Royall (1970a) showed that the
best strategy is to select a purposive sample S* which consists of the n units with the
largest x values and then use the ratio estimator. Under our assumption that x; < ... <
xn, we have 8* = {xn_n+1, - -+, Xn}. Let this strategy be denoted by dgr. Now let us first
compare dpr with druc and duu, when g(x) = x'/%

Since the rank of R, (dsr) is 1 (R.(dsr) = G(as: — 1)(as: — 1)'G),

Amax(lr\.'n (dBR)) = tr(Rn (dBR)) = (X Ef\i—ln xi)/(zf\;N—n+l xi)~
Comparing this value with the result of Proposition 3.1, we get the following proposition.

PROPOSITION 4.1. Assume g(x) = x"2 UYNT" x, = n™' Y L n_n+1 Xi, then for any M
>0,

R.(d1; 0, &) R, (dun; 0, 8) = R, (druc; 0, 8).

>
SUPycg seL.) = SUPycg ser.n SUBgc o se L)

Therefore, if the n largest x values are not too extreme, then dgr is worse than duyy and
dRHC~

Two sampling designs which are commonly used together with the ratio estimator are
SRS and PPAS. Let (SRS, ratio estimator) and (PPAS, ratio estimator) be denoted by
dsr and dpg, respectively. Recall that in a PPAS sampling scheme, each sample S is
selected with probability proportional to Xs = Y;csx,. Such a sampling design was proposed
to make the ratio estimator design-unbiased, see, e.g., Cochran (1977, page 175). We shall
show that both dgr and dpr are inferior to druc under model (1.1)-(1.2) with g(x) = x/2
and L = L,(M). Later we shall extend the result to an arbitrary function g such that
g%(x)/x is increasing in x. Some conditions on the configuration of x1, - - - , xy are needed
there.

Now assume g(x) = x'/? and write Xs = Ycs x;. Then we have

tr Ra(dsr)= Y1 [{Tsues P(S)x: (X?/X% — 2X/Xs)} + x.]

-1
= (g) Yser Yies x:(X?/ X% — 2X/Xs)+ X

B (z:) Yser X*/Xs — X = (11)"2/(2@&) —X=nT(N-n)X

Since R, (dsr) is singular, we conclude that Anw(R.(dsr)) = (N — 1)7! tr R,.(dsg) =
n™'(N — 1) (N — n)X, and the equality holds only if x; = x, = - . - = x». Comparing with
the result of Proposition 3.1, we establish the following proposition.

PROPOSITION 4.2. Assume g(x) = x'/* and N/n is integral. Then we have

R, (dsr; 0, 8) = R, (drxuc; 0, 9),

SUPyco se L. SUPgeo,se L, ()

and the equality holds only if x, = x3 = - -+ = xn.

After some computation we can show that tr R, (dpr) = tr R, (druc). Therefore a similar
argument leads to the following proposition.

PROPOSITION 4.3 Assume g(x) = x'? and N/n is integral. Then we have

R, (dpr; 9, 8) R, (drxuc; 9, 8),

>
SUPyco seL. () = SUPpcq ser, ()
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and the equality holds only if x, = - -+ = xn.
Now consider a general function g such that g%(x)/x is increasing in x. Substituting G
= diag(g(x1), - -+, g(xn)) into (3.2), we have
R, (druc) = pn"{diag(X g¥(x1)/x1, - - - , Xg*(xn)/2n) — G InG)}.

Since G JnG is non-negative definite and g%(x)/x is an increasing function of x, it follows
that

Amax Ry (druc)) < pn™'X g*(an) /2.
On the other hand, we have
Amax(R, (dsr)) = the Nth diagonal element of R, (dsr)

= g%(xn) (g) Ysves X5'X —1)°

= £(an) (ZZ ) (’Z - ;){(’;’ - f)X/(zs:Nes Xs) - 1}

= g%axn) Z% [(N = DX/{(N — n)xy + (n — DX} — 1]°.

Therefore, to show that Amax(Rx (druc)) = Amax(Rx (dsr)), it suffices to demonstrate that
(4.1) n*N7%n X '[(N - DX/{(N —n)ay + (n — DX} — 1= 1.

Let a = Nxy/X and f = I% ‘Then we may rewrite (4.1) as

N7'(1 = f)*fa® — (1 — £)*@2nf + 1)’
(4.2)
+1=-H{r*A-f)-2(n—-D}a—(n—1)%=0.

Discarding the first term of (4.2) and changing (n — 1) and (n — 1)2 to n and n?
respectively, we obtain the following sufficient condition for (4.2) to hold:

(4.3) —-1-H*2nf+a®>+ (1 —fin{n(1 —f) —2}a—n?=0.
Now, letting
(4.4) I=%+%{1-40+/)/n(Q-HD"=n7'1~-1)",
and solving (4.3), we get
(4.5) 1-£f"""=a=<In®N/2n?+ N).
This leads to the following result.

PROPOSITION 4.4 Assume that g*(x)/x is non-decreasing in x. Suppose (4.5) holds,
where a is the ratio of xy and the average of the x.’s, i.e., a = xn/(N™'X) and [ is defined
by (4.4). Then we have

Rn (dSR; 0) 8) = Rn (dRHC; 0, 8)-

SUPjeo seL.on SUPyeo, seL. )

Note that the possible values of a are between 1 and N; and [ is very close to 1 if the
sampling fraction f is small. Therefore, (4.5) almost amounts to saying that Xy <
(N7'X){n®N/(2n* + N)}, which is a reasonable condition if n or N is large enough, because
it simply means that the largest x value is not too far away from the average x value. We
further remark that because of the asymmetry of R, (dsr), we would expect that even if
(4.5) does not hold, druc may still be better than dsg.
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A similar argument also applies to the comparison between druc and dpr. So druc
performs favorably when g (x) = x* with a = %. Some comparisons of drzuc with strategies
using the ratio estimator can be found in Chapter 7 of Cassel, Sirndal, and Wretman. The
comparison there was based on superpopulation model (1.3) with »(x) = x# (comparable to
our model with g (x) = x#/*) and the assumption that N is very large and that the frequency
distribution of the auxiliary variable values xi, ---, xy is approximately a gamma
distribution. On page 171, the authors wrote that druc was a good choice for 1 < 8 < 2.
This seems to be consistent with our finding that dgruc is good for a (comparable to B/2)
= Y.

5. Estimation of §. Sometimes one may be more interested in estimating 8 than the
population total Y especially when x; is the value of y, at some previous time. In this
section, we shall study the minimax estimation of § under model (1.1)-(1.2) with identifi-
ability condition (1.7). We shall focus the discussion on the case L = L, (M).

When g(x) = x'/%, by (1.6), we have § = Y/X; the estimation of Y is then the same as
that of f. Therefore Theorem 3.1 is applicable. In Section 3, for the estimation of Y, we
were only able to derive satisfactory results for g(x) = x'/% In this section, however, we
shall show that for estimating 6, parallel minimax results can be established for an
arbitrary g. Thus Theorem 3.1 could be viewed as a special case of the results in this
section.

Let us again restrict ourselves to linear homogeneous estimators and use the same
notation as before. By (1.6),

0= {gx)} 2y /3N {gx)) 2,

and hence @ can be viewed as a population total Y\, §; with
0. = {g(x)} "xyi/Tils {g(x)) 2l
Let z; = { g(x:)} ?x? and Z = ¥, z,. Then we have
0. =Z7'[{g(x:)} *x:(6x, + 8:g (x.))] = Z71 (02, + 8,2172).

Since Z is a known constant, the problem of estimating @ is now reduced to that of
estimating a population total in model (1.1)-(1.2) with x and g(x) replaced by z and g(z)
= z'72, respectively. Therefore by Theorem 3.1 an approximately minimax strategy is to
divide the NV units into n random groups of sizes as equal as possible, choose one unit from
each group with probability proportional to z = x%/{g(x)}? and then estimate 6 by
Y7-10,2;'Z, or, equivalently, Z7 (Y- x;'y,Z;), where x;, y; refer to the unit drawn from
group /, and Z; = Yicqrouns 2i-

We may also generalize the Hurwitz-Hansen strategy for the estimation of # for arbitrary
& as follows. The sampling scheme is to select n units with replacement such that at each
stage, the probability of selecting the ith unit is proportional to z; = x?/{ g(x,)}? and the
estimator is n™' Y7~ y,/x, where y,, x, refer to the unit selected at the Jth stage. If the
sampling fraction is small then this strategy will also be approximately minimax.

6. Some exact minimax results for n = 1. Scott and Smith (1975) derived some
exact minimax results for n = 1. Similar results also hold for our problem.

When the sample size n = 1, there is only one estimator satisfying the representativeness
condition (2.2), i.e., ¥ = x;* ¥.X. Therefore the problem is purely the choice of designs. Let
P* be the design such that the ith unit is selected with probability proportional to x., then
we have the following

THEOREM 6.1. Letn =1, g(x) = x'% and ¥ be the estimator x7'y.X. If Yics, X =
Y% YN, x, for some So C {1,2, -+, N3}, then P* minimizes sup R, (P, Y; 6, 8) over

. . 0€0,8€ Ly(M)
all sampling designs P for any non-empty © and M > 0. oo
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Proor. By Proposition 2.2, without loss of generality, we may impose the identifiabil-
ity condition (1.7) on 6, i.e., # = Y/X and Y, 8,x.”*> = 0. Then the mean squared error of
(P*, V) is X' T, xix i X — V)P = X T, 82 Let Lo(M) = {8 € Lo(M): ¥ 8,212 = 0).
Then sup,cq scr,an B1(P*, ¥; 6, 8) = MX. On the other hand, let

§F = (Mxi/X)1/2, ifie S,
- Mx/X)VE ifiE S,.

Then 8* = (8¢, -+, 8%)’ € L.(M) and for any P,
R\(P, Y; 0, 8*) = MX.
Therefore SuPaee,seEz(M)Rl (P, Y;0,8) = MX = sup,_, GEZZ(M)RI (P*, ¥:0,8).0

One can also write down a similar result for the problem of estimating 6. The condition
needed is 3, .z, =% Y1 z for some Sy, where z, = x7/{ g(x:)} %
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