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THE MIN-MAX ALGORITHM AND ISOTONIC REGRESSION"
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Memorial University of Newfoundland and University of Iowa

There is growing interest in statistical inference under order restrictions.
A major demand in this subject is to have a fast, direct method to solve the
least squares problem of partially ordered isotonic regression. The Min-Max
algorithm is such a method in which the user searches for the global minimum
and the local maximum successively. A comparison of algorithms for partially
ordered isotonic regression is included. As an application, using this efficient
_algorithm, it is feasible to approximate critical values of isotonic tests by
simulation.

1. Introduction. Isotonic regression is a least squares problem under order restric-
tions. It may appear as (2.1) below, or as its generalizations in [4] and [15]. Pioneering
work is given by Ayer et al. [3] and a summary can be found in Barlow and coauthors
[4]. Applications of simply ordered isotonic regression include maximum likelihood esti-
mation of ordered binomial parameters [3], Poisson extreme problems [4] and [16], ordered
regression lines [1], and multidimensional scalings [11], among others. The prototypical
partially ordered isotonic regression problem involves estimating a real valued function on
the plane, required to be monotonic with respect to the ordinary partial ordering. There
are of course many generalizations of this. Applications of partially ordered isotonic
regression include negative estimates of variance components [17], representation of
similarity matrices by trees [10], juice composition of mandarin oranges [13], legal inter-
ruptions of pregnancy in Hungary [9], and additive structure in qualitative data [12],
among others. A quasi-ordered isotonic regression can be reduced to a partially ordered
isotonic regression.

The first algorithm for the simply ordered isotonic regression was the efficient Pool-
Adjacent-Violators of Ayer et al. [3], but it does not apply in general to partially ordered
isotonic regression. The first algorithm for the partially ordered isotonic regression was
the Minimum Lower Sets of Brunk [6], but this method requires computation of many
weighted averages. Van Eeden [8] introduced an algorithm which is suitable for small
problems. An improved algorithm was given by Gebhardt [9] in 1970. These methods are
not efficient for problems of large size, as shown in Table 7.1. A fast, direct method for
partially ordered isotonic regression, the Min-Max algorithm, is presented in Section 3.
Because of the efficiency of this algorithm, it is feasible for simulations in applications to
the test of homogeneity among means against ordered alternatives and to the test of
goodness-of-fit of isotonicity.

It is well known that isotonic regression with respect to any partial order is constant on
level sets and the value on each of these level sets is given by the weighted average of the
observations in the level set. The problem of ‘computing the isotonic regression therefore
reduces to that of determining these level sets. A level set B cannot be a constant set of the
isotonic regression unless Av(U N B) < Av(B) for all upper sets U intersecting B. Such a
set is termed a block. Which level sets are blocks depends on the values of the observations.
Thus those level sets which are not blocks can be ignored. The Min-Max algorithm
therefore searches for the level sets of the isotonic regression among block classes.
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2. Some terminology. Let X be a finite set. A binary relation < on X is a partial
order if it is reflexive, transitive and antisymmetric. An element x is an immediate
predecessor of an element y if x < y but there is no z in X distinct from x and y such that
x < z <y. An element x is minimal in X if there is no z in X distinct from x such that z
=< x. Two elements x and y are comparable if x <y or y < x. The partial order < on X is
a simple order if every pair of elements are comparable. A binary relation < on X is a
quasi-order if it is reflexive and transitive but not necessarily antisymmetric. In this article,
we shall let X be a partially ordered finite set.

A subset L of X is called a lower set if y € L, x € X and x < y imply x € L. A subset U
of X is called an upper set if x € U, y € X and x < y imply ¥ € U. The complement of a
lower set is an upper set and the complement of an upper set is a lower set. The intersection
of a lower set and an upper set is called a level set. A subset S of X is a level set if and only
ifx,y €S, z€ Xand x < z <y imply z € S. A real valued function fon X is isotonic with
respect to the given partial order < if x, y € X, and x < y imply f(x) < f (y). The indicator
function of an upper set is isotonic.

Let g be a given function on X and let w be a given positive weight function on X. An
isotonic function g* on X is called an isotonic regression of g with weights w if in the space
of isotonic functions f on X it minimizes the sum

2.1) Yrex (8(x) — f(x)} w(x).
The existence and the uniqueness of the isotonic regression have been shown by Brunk
[71.

Let Sbe a nonempty subset of X. The weighted average of g over S is denoted by Av(S),
that is,

(2.2) Av(S) = Yres w(x)g(x) /Y xes w(x).

Let [g* = a] be defined as {x:g*(x) = a}. It is well known that if « is a value such that
[g* = a] is nonempty then

(2.3) g% (x) = Av([g* = a])

for each x € [g* = «]. By Theorem 2.4 and Theorem 1.7 of Barlow et al. [4],
(2.4) AviLN[g*=al) =«

for each lower set L which meets [g* = «], and

(2.5) | AviUN[g*=a]) = a

for each upper set U which meets [g* = a].
A subset B of X is called a block (with respect to given g and w) if it is a nonempty level
set and if it satisfies

(2.6) Av(U N B) = Av(B)

for each upper set U of X which meets B. A block B is called a solution block if g*(x) =
Av(B) for each x € B. By (2.3) and (2.5), each nonempty set [g* = a] is a solution block.
A collection A of mutually disjoint blocks of X is called a block class if (i) it can be partially
ordered by an induced binary relation < so that A < B for A, B € A if there are x € A and
¥ € B such that x <y, and if (ii) the union of all blocks in A is a level set. The collection
of all singleton subsets of X is a block class and the collection of all solution blocks
[g* = ] is also a block class. A block A € A is an immediate predecessor of block B € A
if A < B but there is no block C € A distinct from A and B such that A < C < B.If A is
an immediate predecessor of B then there are x € A and y € B such that x is an immediate
predecessor of y. A block B € A is a lower set of the union of all blocks in A if and only if
B is minimal in A.



MIN-MAX ALGORITHM 469

3. The Min-Max algorithm. The first block class, A!, consists of the individual
elements of the design space X. The algorithm then iterates in the following manner:

ParT I. The block V' with the lowest possible weighted average in A’ the I'th block
class, is selected.

1. If that block is a lower set of X’, V' is a solution block. The problem is then reduced
to that of finding the isotonic regression on

3.1) XM =x'-vI
The new block class is
(32) A*! = AI _ {VI}

2. If V' is not a lower set of X?, it will be pooled with an immediate predecessor. Only
certain predecessors will be considered (see Part IT). The eligible immediate predeces-
sor with the highest possible weighted average (the one most able to bring V7 into the
appropriate order) will be joined to V’. The operation space for the next stage remains
the same, that is,

(3.3) XM =Xx"

However, this union P’ U V', which shall be denoted by G’, may not result in a block:
(i) If it does result in a block, the new block class is
(3.4) A = AT (VI Py + (G}

(ii) If it does not result in a block, the upper set U’ of G’ with the highest possible
weighted average will be a block. If there are several upper sets having the same
highest average take U’ as their union. The remaining fragments of individual design
points are also blocks. The new block class is therefore

(3.5) A = AT — (VL Py + (U'Y + ({x):x€FT)
where F! = G' - U".

PaArT II. Which immediate predecessors are considered depends on the value of the
block VL If Av(V!) < Av(VY) for some J < I, V! must not have been a block in A”. Let
oJ be the last such index. Therefore V! must have been created from the fragments when
G was split. In this case, only the remaining fragments are searched for immediate
predecessors. If, however, Av(V’) = Av(V") for all J < I, then there is no restriction on
immediate predecessors of V.

We start with every member of the design space X being an identification element and
then combining members and preserving the identification element of the immediate
predecessor member. The purpose of identification element and that of Part II of the Min-
Max algorithm are to simplify the task of finding the upper set U’ with the highest possible
value. As the algorithm iterates, we have a sequence {Av(V’)}. So long as G’ are blocks,
the sequence will be monotone nondecreasing. The sequence ceases to be monotone
nondecreasing at J when G is not a block. The converse, however, is not true. When G“
is not a block and Av(V ?*!) < Av(VY), the algorithm is executed within the fragments F 7
for the stages J + 1, J + 2, - - -, until stage I such that Av(V?) = Av(V"7).

The isotonic regression g*(x) is Av(V’) for each x € V' when V' is a lower set of X’
The justification of the Min-Max algorithm is given in Section 6 while some methods for
finding the maximum upper set U’ are presented in the next section. We shall illustrate
the Min-Max algorithm by a numerical example in Section 5. The speed of the Min-Max
algorithm depends on the number of stages required to execute a problem and the total
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number of times that weighted averages needed to be computed. Consider the problem
given in Section 5 with data g,, taken as random normal digits. A study of 1000 cases
showed that 888 of them were executed by the minimum number of 16 stages. The largest
number of stages in the study was 20, which occurred only once. We shall discuss the
speed of the Min-Max algorithm in Section 7.

4. Methods for searching the maximum upper set. A major task in the Min-Max
algorithm is to find the maximum upper set U’ of G’ = P’ U V. The maximum upper set
U is the largest upper set of G such that

(4.1) Av(U') = max{Av(U): U upper set of G'}.

If there are several upper sets having the same highest average, take U’ as their union.
But upper sets of G’ may be numerous when G’ contains a large number of elements. Five
methods are presented in this section with their comparison being given in Section 7.

Every block B at each stage of the Min-Max algorithm contains a special element. This
special element is called an identification element and is denoted by e(B). An identification
element is a minimal element of the block to which it belongs. If B is a singleton block {x}
then e(B) = x. If B is not a singleton block, then B must be a maximum upper set at some
stage. The identification element e(U’) of the maximum upper set U’ is defined as the
identification element e( P’) of P. We shall show in Theorem 4.2 below that e( P’) belongs
to U”.

LEMMA 4.1. Let I be such that Av(V') < Av(V ) for some H < I. Then there exists
a J such that (a) Av(VY) > Av(V), (b) Av(VE) < Av(V)) for K=dJ + 1, ---, I, (c) VX,
PX¥ are covered by F? for K=dJ + 1, ---, I, (d) V¥ is not a lower set of F” for K = J +
1, .-, I

ProoF. Let J < I be the last index such that Av(V’) < Av(V?). Then (a) and (b)
hold. Clearly, Av(V”) > Av(V“7*!) and U” is a proper subset of G’. Every block in A” has
a weighted average no less than Av(V”). So is U”. The blocks that can have weighted
averages less than Av(V”) are the ones covered by F”. By Part II of the Min-Max
algorithm, (c) holds. Let L be a lower set of 7. Then Av(L) is a weighted average of
Av(L N P?) and Av(L N V7). By (2.6), the last two values are no less than Av(V ).
Therefore Av(L) = Av(V?) and (d) holds. O

THEOREM 4.2. Let U be an upper set of G, If U does not contain e( P') then Av(U)
=< Av(V). Consequently, e( P') belongs to U’ and U’ is the largest upper set of G' such
that

(4.2) Av(U") = max{Av(U): U upper set of G', e( P') € U}.

Proor. Assume that each nonsingleton block B at the beginning of the I'th stage can
be expressed by

(4.3) B={e(P")}U(V"NNim; UMV ... U (V"N U")

with Av(V"Y) = Av(V") forj =1, ..., r where e( P") = e(B) is the unique element in P".
The only new nonsingleton block, if any, created at the Ith stage is U’. By mathematical
induction, it suffices to show that (4.3) holds for U’ so that (4.3) holds for every nonsingleton
block.

Suppose that P’ is nonsingleton. Then P’ can be expressed by (4.3). By Lemma 4.1 and
Part II of the Min-Max algorithm, we have that Av(VY) < Av(V/) forj=1, ---,r.Let U
be an upper set of G’. By (2.6), each nonempty level set V¥ N (N, U%* N U) has a
weighted average no more than Av(V ") for each j. It follows that Av(U) < Av(V') if U
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does not contain e(P’) = e(P"). Consequently, e( P’) belongs to U’ and U’ can be
expressed by (4.3). It is trivial for the case that P’ is singleton and the proof is complete. [

Non-singleton blocks are listed in the last column of Table 5.2 with their expressions
(4.3) while the leading elements are the identification elements for the numerical example
given in the next section. The number of upper sets in (4.1) is reduced significantly to
that in (4.2). Further reductions can be achieved. Let e = e(P’) and let U, = {x:x € G,
e =<x}. An element y in G’ — U, is said to be excessive if g(y) = Av(G’). An element z in
G' — U, is said to be deficient if g (z) < Av(G'). A sequence of elements x1, - - -, x,, are said
to be non-comparable if every pair of elements are not comparable. Let Y1, c++,Ynben
non-comparable excessive elements. The smallest upper set of G’ — U, which contains 1,
-+ +, ¥n is called an excessive upper set; we denote it by U[y;, -+, y,]. Let z1, - -+, 2, be
non-comparable deficient elements. The smallest lower set of G’ — U, which contains 21,
-++, 2, 1s called a deficient lower set; we denote it by L{zy, - - -, z,].

METHOD 1. Excessive upper sets. It is obvious that (4.2) can be reduced to
(4.4) Av(U") = max{Av(U. U U): U excessive upper set U[ y1, - - -, Y]}

where Av(U, U Uly,, -+, y-]) can be computed as the weighted average of the two values
Av(U.) and Av(U[y,, - -+, ¥2]).

METHOD 2. Connected excessive upper sets. Let B be a level set of X. It is said to be
connected if for any of its partitions of B; and B, there are a pair of elements, one in B;
and one in Bs, which are comparable. It follows from Theorem 4.2 that every block in the
Min-Max algorithm is connected. Therefore, (4.4) can be reduced to

4.5)  Av(U") = max{Av(U, U Ulyy, +-+,5.D: U, U Uly, ---, ¥.] connected} .

The amount of reduction from (4.4) to (4.5) depends on the partial order < over the set
G'-U..

METHOD 3. Deficient lower sets. In the Min-Max algorithm, it is likely that the
number of excessive elements is larger than that of deficient elements. It is economical to
consider lower sets instead of upper sets in (4.4) and (4.5). In this method, we find the
largest deficient lower set L * which satisfies

(4.6) Av(L[z, -+, 2,]) < AV(G').

The maximum upper set U’ is G’ — L*. It is trivial that lower sets L[z, ---, 2,] covered
by P’ do not satisfy (4.6) and they shall not be considered in searching for L *.

METHOD 4. Deficient lower sets as complements of excessive upper sets. This
method is the same as Method 3 but we exclude those lower sets L[z1, - - -, zn] such that
G'-U,- L[z, ---, 2,] contains a minimal element which is deficient. In other words, the
lower sets L[z, .- -, z,] we shall consider are complements of excessive upper sets with
respect to G’ — U..

METHOD 5. Deficient lower sets as complements of connected excessive upper
sets. 'This method is the same as Method 4 but we consider only those lower sets
L[z, ---, z,] which are complements of connected excessive upper sets.

When G’ — U, contains no more than ten elements, Method 3 performs well. When G!
— UL contains a large number of elements, Method 4 and Method 5 are better. The degree
of improvement of the last two methods over Method 3 can be illustrated in Table 7.1.
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5. A numerical example. The following hypothetical example has been created to
illustrate the operation of the Min-Max algorithm. The index set X = {(i, j):1 < i =< 4,
1 =/ = 4} is partially ordered so that (i, j) < (¢/,j’) ifi = i’ and j <. Element (1, 1) has
no immediate predecessor, elements (1, 2), (1, 3), (1, 4), (2, 1), (3, 1) and (4, 1) have one
immediate predecessor each, while the remaining nine elements have two immediate
predecessors each. Let g;; = g[(Z, /)] be given in Table 5.1 and w;; = w[(i, )] = 1.

The stagewise procedure is shown in Table 5.2. At stage 1, block V' = {(2, 2)} has two
eligible immediate predecessors {(1, 2)} and {(2, 1)}. The latter is selected as P’ because
it has a larger average. At stage 8, G® = {(1, 2), (2, 1), (2, 2), (3, 1), (4, 1)} and it contains
ten upper sets among which four of them contain the identification element e = (1, 2). By
Method 1, we need to consider three upper sets. They are U., U. U U[(2, 1)] and U, U
U[(3, 1)] where U. = {(1, 2), (2, 2)}, U[(2, D] = {(2, 1), 3, 1), (4, 1)} and U[(3, 1)] =
{(3, 1), (4, 1)}. The upper set U, U U[(3, 1)] is not connected and it is excluded in Method
2. There is only one deficient lower set L[(4, 1)] = {(4, 1), (3, 1), (2, 1)} to be considered by
Method 3, Method 4 and Method 5. Since L[(4, 1)] fails to satisfy (4.6), the maximum
upper set U® is G°. At stage 12, U = U, = {(1, 4), (2, 4), (3, 4)} is a proper subset of G
and elements (3, 2) and (3, 3) are now placed in singleton blocks {(3, 2)} and {(3, 3)}. At
the next stage, {(3, 2)} is the only eligible immediate predecessor of V** = {(3, 3)}. At
stage 14, there is one excessive upper set U[(4, 3)] = {(4, 3)} but there are no deficient
lower sets. Therefore, it must be that U' = G'. There are four levels of solution blocks
V4, V', V' and V'®. The problem is solved by computing weighted averages 25, 24, 17, 17
and 17 times respectively for the five methods in the preceding section.

TABLE 5.1
Given values g,

4 48 16 14 6
3 37 12 9 26
2 19 2 25 17
1 8 27 21 4
i1 1 2 3 4
TABLE 5.2
Stagewise Procedure of the Min-Max Algorithm
StageI Av(V') e(V') Av(P') eP') Av(U’) U’
1 2.00 (2,2) 27.00 2,1) 1450  {(2,1)} U {(2,2)}
2 400 (41) 2100 (3,1) 1250  {(3,1)} U {(4,1)}
3 6.00 (4,4) 26.00 (4,3) 16.00  {(4,3)} U {(4,4)}
4 8.00 (1,1)
5 9.00 (3,3) 25.00 (3,2) 17.00  {(3,2)} U {(3,3)}
6 12.00 (2,3) 37.00 (1,3) 24.50  {(1,3)} U {(2,3)}
7 12.50 (3,1) 14.50 2,1) 1850  {(2,1)} U {(2,2)} U {(3,1), (4,1)}
8 13.50 (2,1) 19.00 (1,2) 14.60  {(1,2)} U {(2,1), (2,2), (3,1), (4,1)}
9 14.00 (3,4) 17.00 (3,2) 16.00  {(3,2)} U {(3,3)} U {(3,4)}
10 14.60 (1,2)
11 1600  (24) 4800 (1,4) 3200 {(1,4)} U {(24)}
12 16.00 (3,2) 32.00 (1,4) 26.00 {(1,4)} U {(24)} U {(34)}
13 9.00 (3,3) 25.00 (3,2) 17.00  {(3,2)} U {(3,3)}
14 16.00 (4,3) 26.00 (1,4) 22.00 {(1,4)} U {(24)} U {(84)} U {(4,3),
(4,4)}
15 17.00 (3,2) 24.50 (1,3) 20.75  {(1.3)} U {(2,3)} U {(3,2), (3,3)}
16 17.00 4,2) 20.75 (1,3 20.00  {(1,3)} U {(2,3)} U {(3,2), (3,3)} U
{(4,2)}
17 20.00 (1,3)

18 22.00 (1.4)
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6. Justification of Min-Max algorithm. Let X be a partially ordered finite set with
a partial order <. Let A', - - ., A’ be a sequence of block classes with a transition from A’ to
A" as defined by (3, 2), (3, 4) or (3.5) of the Min-Max algorithm, where A! is the initial
class of all singleton subsets of X. The union of all blocks in A’ is the space X’ of all
elements in operation and X — X’ is the set for which the isotonic regression has been
solved at the beginning of stage I. If V’ is a lower set of X’ then the isotonic regression
g*(x) = Av(V7) for each x € V’. We shall justify the Min-Max algorithm by the following
four theorems.

THEOREM 6.1. If V'is not a lower set of X', then it has at least one eligible immediate
predecessor.

ProoF. Suppose that Av(V?) = Av(V’) forJ =1, - - -, I. Since V" is not a lower set of
X', it is not minimal in the partially ordered block class A’. Therefore, V has at least one
eligible immediate predecessor.

Suppose that Av(V’) < Av(V?) for some JJ < I. Let J be the last such index. By Lemma
4.1, VI c F? and V' is not a lower set of F”. Therefore, V! has an immediate predecessor
which is covered by F’.0

THEOREM 6.2. The algorithm produces a block class at each stage.

Proor. Let A’ be the block class at stage I of the Min-Max algorithm. We shall show
that A™! defined by (3.2), (3.4), or (3.5) is also a block class. Suppose that V7 is a lower set
of X’. Then V' is a minimal element in the partially ordered block class A”. By (3.2), the
collection A™" of blocks is a block class with a partial order inherited from A”.

Suppose that V' is not a lower set of X’. The blocks in A can be ordered as a sequence
B,, - - -, B, so that A precedes B for each pair of blocks A < B in A and there is a suitable
i such that B; = P’ and Bi+; = V. Since U’ is the maximum upper set of G/, it is a block
which satisfies (2.6). Suppose that F/ = G’ — U’ is nonempty. The elements of F can be
ordered as a sequence x;, - - -, X, so that x precedes y for each pair of elements x < y in F’.
Let A be the Ath block of the sequence

(61) Bl> M) Bl*h {xl}> Ct {xr}a UI’ Bi+2’ ccy Bm'

Members of A’™*! as defined by (8.5) are the blocks listed in (6.1). Let a binary relation <’
be defined on A™*! so that A, <’ A, if there are x € A, and y € 4, such that x < y. Apply the
reflexivity and the transitivity to <’. The binary relation <’ is a quasi-order on A’*'. Since
it is not possible to have A, <’ A, for j > i, <’ is a partial order on A’™*'. For the case that
U’ coincides with G, the collection A’*! of blocks defined by (3.4) can be shown similarly
to be a block class by deleting {x;}, -- -, {x,} in (6.1). This completes the proof. 0

THEOREM 6.3. The sequence of block classes A', A - .. of the Min-Max algorithm
will terminate after a finite number of stages.

ProoF. Since X is finite, the number of distinct block classes of X is finite. Therefore
the theorem will be proved once it has been established that the block classes selected by
the algorithm are distinct. Clearly A’*! differs from A’. Furthermore, unless U’ # G/, A’™*!
contains one fewer block than A’ (either by elimination of a block or by amalgamation of
two). Suppose that A’ = A’ for some C > 1. Then there exists a loop (if each step in the
algorithm is uniquely defined). Furthermore, there exists a JJ, I < J < I + C such that U’
is a proper subset of G’ and Av(V?) = Av(VX) for K=I,1+1, ..., I+ C.If U’ is a proper
subset of P then from (2.6) Av(V?) < Av(U”) =< Av(P?). If U” intersects both P’ and V”
then Av(U”) is a weighted average of Av(U? N P”) and Av(U? N V7). By (2.6) the last
two values are no more than Av(P”) and hence Av(V?) < Av(U?) < Av(P”). By Theorem



474 CHU-IN CHARLES LEE

4.2, U’ contains e(P”). Clearly U” cannot appear as VX for K=J + 1, ---, J + C. If U’
= P¥ for some K, J + 1 = K < J + C then by Part II of the Min-Max algorithm either
Av(PY) = Av(U¥) > Av(V¥) = Av(V”) with U¥ a proper subset of PX or Av(P¥) >
Av(UX) > Av(VX) = Av(V”). The block U¥ is the one in A¥ which contains e(P¥) =
e(P”). Therefore, if B € A”* is a block which contains e(P”) then either B is a proper
subset of P or Av(B) < Av(P?). In either case, we have that PY & A7*°. Since it is not
possible to have A”*¢ = A7, the block classes selected by the algorithm are distinct. 0

THEOREM 6.4. The isotonic regression at a point in a terminal block is equal to the
average over that block, and hence the isotonic regression is the average over the blocks
which the algorithm selects.

ProOF. Let V' be a lower set of X/, let x € V' and let a = g*(x). We shall show that
(6.2) g*(x) = Av(VY).
By (3.1), X' is an upper set of X. It follows from theorem 2.4 of [4] that
(6.3) AviX'N[g*<a]) =a
From (2.6), we have that
(6.4) Av([g* = a] N B) = Av(B) = Av(VY)

for each block B € A’ which intersects the lower set [ g* < a]. Since the left hand side of
(6.3) is a weighted average of those left hand sides of (6.4), we have that Av(V’) = a. It
remains to show that Av(V’) = a.

Let L' = VI U (X— X’). Then L' is a lower set of X. This lower set is the union of all
blocks By, - .-, B, which have been eliminated by the Min-Max algorithm at the end of
stage I. It follows from Theorem 2.4 of [4] that

(6.5) AvL'N[g*=a)) = a

Since V' is a lower set of X, by Lemma 4.1 we have that Av(V’) = Av(VY) for J = 1,
..., I. From (2.6), we have that

(6.6) Av((g* = a] N B)) = Av(B)) = Av(V')

for each block B,,j =1, .- -, t, which intersects the upper set [ g* = a]. Since the left hand
side of (6.5) is a weighted average of those left hand sides of (6.6), we have that Av(V’) =
a. The proof is complete. [

7. A comparison of algorithms for partially ordered isotonic regression. The
purpose of this section is to compare algorithms for partially ordered isotonic regression,
to examine the five methods in Section 4, and to discuss the speed of the Min-Max
algorithm. We shall proceed to investigate these by considering the following five problems:

ProBLEM 1. Let X = {(i,j):i=1, ---,4,j =1, ..., 4}be partially ordered so that
(Z,7)=< (@', j)ifi=i’andj =<' Let w, = 1 and let g,, be random normal digits. Four sets
of 16 values of g, are executed independently. The data are listed in the order (1, 1), (2, 1),
-eey (4, 4). :

PrOBLEM 2. Let X = {(i,j):i=1,---,8,j=1, -.., 8} be partially ordered so that
(Z,j)=<(@,j)ifi=i"andj=<j' Let w,, = 1 and let g;, be random normal digits. The data
are listed in the order (1, 1), (2, 1), .- -, (8, 8).

PrOBLEM 3. Let X = {(i,j, k):i=1,---,4,j=1,-..,4, k=1, ..., 4} be partially
ordered so that (i, j, k) < (i, j', k') if i< i’,j<j and k < k’. Let w,,» = 1 and let g, be
random normal digits. The data are listed in the order (1, 1, 1), (2, 1, 1), - - -, (4, 4, 4).
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ProBLEM 4. The data are the legal interruptions of pregnancy in Hungary appearing
in Gebhardt [9]. There are 93 observations in a partially ordered set X of 76 elements
among which 61 of them have one observation, 13 of them have two observations and 2 of
them have three observations so that w;, is the number of observations and g, is the
arithmetic average of observations at each (i, j). The data are listed in the order (43, 1),
(44, 1), -- -, (65, 15).

ProBLEM 5. This problem is the same as Problem 4 but the data are listed in the
order (38, 8), (43, 1), -.-, (71, 4).

For convenience, the 64 given values of g for the first three problems are identically the
first 64 random normal digits in [5], reading along columns. We solved these five problems
by the Minimum Lower Sets algorithm of Brunk [6], Van Eeden’s [8] algorithm, Gebhardt’s
[9] algorithm, and the Min-Max algorithm with five methods. The efficiency of Van
Eeden’s algorithm and that of Gebhardt’s algorithm depend on the order in which the
data is listed. We considered the last two problems of the same data but two different
ways in which the data are ordered. The efficiency of the Minimum Lower Sets algorithm
does not depend on the order of the data while that of the Min-Max algorithm is affected
by the order of the data when there are ties among averages.

The total number of times that weighted averages were computed for the four algo-
rithms to solve each of the five problems are given in Table 7.1. In the last four problems,
those total numbers were too costly to find by Van Eeden’s algorithm so we inserted their
lower bounds instead. It is clear that Van Eeden’s algorithm and the Minimum Lower Sets
algorithm are not efficient for problems with 16 or more values. It is also clear that the
Min-Max algorithm is the most efficient one. For larger problems we have difficulty in
finding the total numbers of computations needed by the Minimum Lower Sets algorithm.
For problems of smaller size, the Min-Max algorithm can be shown again as the most
efficient one.

The speed of the Min-Max algorithm depends on the total number of stages and the
total number of times that weighted averages needed to be computed. Those stages such
that V” are lower sets are easier to execute. The number of those stages are the number of
solution blocks. Those numbers were 22, 7, 7, 21 and 24 respectively for the five problems.
If we exclude those stages, then the number of stages needed for the five problems were
43, 57, 64, 58 and 56. Therefore, the total number of stages needed by the Min-Max
algorithm is about the size of the problem.

The total number of times that weighted averages needed to be computed depends on
the problem as well as the method. There were 43, 57, 64, 58 and 56 computations of
weighted average of Av(P’) and Av(V’) for the five problems. The remainder of the
computations were due to searching for the maximum upper sets U’ They were compu-
tations of Av(U. U Ul y1, +++, ¥»]) or Av(L[z1, .-+, 2,]) as defined in Section 4. It is clear
that Method 3 is superior to Method 1 and Method 2. By this method, the computations
of Av(L[zi, ---, 2,]) were 6, 61, 325, 7 and 4 times respectively for the five problems. The
last number of 4 for the problem of size 76 is smaller than the first number of 6 for the
problem of size 16 in four tries. This is because the data in Problem 5 showed a strong
isotonicity while the data in Problem 1 did not. Consequently, a very large problem can be
solved easily if the given function g shows a strong isotonicity. Only in Problem 3 is there
an appreciable improvement from Method 3 to Method 4 and Method 5. Even though the
last two methods are not so easy to use as Method 3, they are superior for the case that the
order restricted regression has more than two independent variables and the number of
data points is large.

8. Applications to hypothesis testing. Let y,, i=1, ---, &k, j=1, ..., n, be
independent normal variates with unknown means p(x,) and with given variances o?.
Suppose that the regression curve u is known to satisfy some order restrictions. The set X
= {x1, -+ -, X%} is partially ordered according to those restrictions so that u is isotonic on X.
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TaBLE 7.1*
Total Numbers of Computations for Isotonic Regression Algorithms
Algorithm Problem 1 Problem 2 Problem 3 Problem 4 Problem 5

Minimum

Lower Sets 692 25702 681687 227172 227172
Van Eeden’s 211205 (1.4 x 10")* (1.4 x 10" (8.8 x 10'%) (8.8 X 10'%)
Gebhardt’s 118 4086 22138 133 557
Min-Max:

Method 1 74 407 869 82 71
Min-Max:

Method 2 74 346 617 78 70
Min-Max:

Method 3 49 118 389 65 60
Min-Max:

Method 4 49 101 190 65 60
Min-Max:

Method 5 49 95 157 65 60

* Gebhardt’s subalgorithm in Section 4 of [9] is defective, and a suitable replacement has been used
in the execution. It was intended to include the Minimax Order algorithm of [2] in the study but the
algorithm is defective in the sense that it fails to maintain the excesses of adjacent independent sub-
blocks in nondecreasing order.
" These are the lower bounds.

Barlow et al. [4] considered a likelihood ratio test of homogeneity against ordered
alternatives. The null hypothesis is

Ho:p(xr) = -+« = plx)
and the alternative hypothesis is H; — H, where
H, :u(-) is isotonic.
The test sttistic is
(8.1) Xk = Y= w(i@F = )%,

where i} are the isotonic regression of y, = Y*, y,;/n, with weights w, = n;e;% and ji =
Y1 wy/Y %1 wi. The P-value of an observed test statistic x3 > 0 is

(8.2) P =3%, P(4, B)Pr(x’-1 = X7)

where P(¢, k) is the probability that the isotonic regression ji* takes exactly ¢ distinct
values when Hj is true, and the notation x? is used to denote a random variable having the
x? distribution with » degrees of freedom.

It has been shown in Barlow et al. [4] that if X is simply ordered and w; = --- = w;,
then .

P4 k) =|SE|/R, ¢=1,..-k,

where | S{| is the coefficient of z in the expansion of z(z + 1) --- (z + & — 1). However,
there is no closed form expression for these probabilities P(¢, k) in the general situation
and direct computation is not feasible for moderate or large k. But the P-value P can be
approximated by simulation with the aid of the efficient Min-Max algorithm. Consider the
example in Section 5. Suppose that 16 values of g;, are observations of independent normal
variates with n,, = 1 and ¢}, = 100. The observed test statistic (8.1) was 3 = 2.572. The
approximated P-values of x} in a simulation study were 0.4889, 0.5263, 0.5306, 0.5258,
-+, 0.5324 respectively after the 50th, 100th, 150th, 200th, - . ., 1000th cases. The approx-
imation may be terminated at some point when the convergence of the P-values is

satisfactory. The rate of convergence is governed by the multinomial distribution of
P(¢ k).
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This approximation can also be applied to the test of goodness-of-fit by Robertson and
Wegman [14]. The isotonicity of u(-) is tested against all possible alternatives. The
likelihood ratio principle leads to a test statistic

(8.3) Xi= Yk w5y — X
The P-value of an observed test statistic X% > 0 is
(84) P =Yy%21 P(¢, B)Pr(xi-, = X7).

The observed test statistic (8.3) for the same example was x% = 20.412. The approximated
P-values of ¥ in the same simulation study were 0.0629, 0.0568, 0.0555, 0.0561, - - -, 0.0552
respectively after the 50th, 100th, 150th, 200th, - - -, 1000th cases.

In the situation with variances o? = a,¢% where a, are known constants and o? is
unknown, see [4] and [14] for likelihood ratio statistics. The P-values in this situation have
expressions similar to (8.2) and (8.4).
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