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STATISTICAL AND ALGEBRAIC INDEPENDENCE

By JamEs D. MALLEY

National Institutes of Health

Using a simple application of Fubini’s theorem, we examine the connec-
tion between statistical independence, linear independence of random vectors,
and algebraic independence of univariate r.v.’s, where we call a finite set of
r.v.’s algebraically independent if they satisfy a non-trivial polynomial rela-
tionship only with zero probability. As a consequence, we simplify the deri-
vation of a result of Eaton and Perlman (1973) on the linear independence of
random vectors, and settle a matrix equation question of Okamoto (1973)
concerning the rank of sample covariance-type matrices S = XAX’, where X
is p X n, and A is n X n, for the case n = p = r = rank(A). We also derive a
measure-theoretic version of the classical fact that the elementary symmetric
polynomials in m indeterminates are algebraically independent. This has
applications to sample moments, k-statistics, and U-statistics with polynomial
kernels.

1. Introduction. In a multivariate normal setting one makes routine use of the
positive definiteness of the sample covariance matrix. A direct proof of this involves study
of determinantal equations of the form | XX’ | = 0 for a matrix X of random column vectors.
More generally, Eaton and Perlman (1973) and Okamoto (1973) have studied rank and
eigenvalue questions for matrices XAX’, where X is p X n and A is n X n, with the column
vectors of X not necessarily normal.

We unify this discussion by deriving some of the results from elementary use of Fubini’s
theorem, and properties of n-linear functions, and obtain new results, for example, on the
algebraic independence of symmetric functions of statistically independent random vari-
ables (r.v.’s).

2. n-linear function of random vectors. Let R,, be real m-space. A function f(X)
=fXy, -+-,X,) from R, X --- X R, (n times) to R, is said to be n-linear (over R,) if it is
linear in each component: for any X, «-+, X,,, X} € Ry, any j,and o, B € R1:f(Xy, - -+,
aX; + BX}F, oo, Xo) = af Xy, -0, X, o00, X)) + B, o0, XF oo, Xa). (See, for
example, Greub, 1980). The following result is standard.

LEmMA 1. Let f(X) be a non-trivial n-linear function over R,. Then off a fixed plane
in R,, any specification of f(X) at X, = %u, [(Xy, -+ , Xa-1, %), is @ non-trivial (n — 1)-
linear function, and the plane is determined solely by the value of f on the set of products,
e;X -+ X e;, of all n-tuples of unit basis vectors in R,.

In R, a flat is the set of x € R, satisfying a’x = b for some fixed @ € R,, a # 0, b € R1.
Call a p-variate r.v. flat-free if it assigns zero probability to every flat in R,, and non-
atomic (Taylor, 1973, page 237) if it assigns zero probability to any point in R,. Note that
X € R, and flat-free implies that X is non-atomic, as is each component of X. Towards a
converse of this, a result given in Farrell (1976, page 124) states that if the components are
independent and non-atomic, then X assigns zero probability to the boundary of every
closed convex set in R,, hence such X is also flat-free. We can now state:
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THEOREM 1. Let X;, 1 <j < n, be independent, flat-free p-variate r.v.’s, and suppose
f(x) is a non-trivial n-linear function over R,. Then P{f(X) =0} = 0.

Proor. Use induction on n, Fubini’s theorem and Lemma 1. For n = 1, the result is
simply P{a’X; = 0} = 0 which holds for X; flat-free. O

NoTe. For the theorem we need not assume that the X; are identically distributed.

3. Polynomials in random variables. We derive a univariate version of Theorem
1 using the following well-known polynomial fact:

LEMMA 2. Letg(t) =g(t, « -+ , tn) be a non-trivial polynomial in m indeterminates.
Then except for a finite set in Ri, it follows that g(t, +--, tm-1, ¢) is a non-trivial
polynomial in (m — 1) indeterminates, for ¢ € R,.

Proor. Consider g(#) as an element of the polynomial ring in (m — 1) indeterminates
ty, « -+ , tm1, With coefficients located in the polynomial ring in one indeterminate ¢.. Since
g(8) # 0, there exists a term of g of the form M = M (¢, -+, tn) = ¢{" -« - t77 p(tn) With
p(t.) a non-trivial polynomial in #,., and such that no other term in g has identical
exponent type (ai, - -+ , an-1), @; positive integers. For £, = ¢ not one of the finite number
of roots of p(t,), we have M (¢, « - , tm—1, ¢) # 0, so that g(¢,, + -+ , tm-1, ¢) # 0.0

Let us call a finite set of r.v.’s algebraically independent if they can satisfy a non-trivial
polynomial relationship only on a set of measure zero. Thus a single, univariate r.v. if non-
atomic is trivially algebraically independent. Hence using induction, Lemma 2, and Fubini’s
theorem again, we get:

THEOREM 2. Statistically independent, non-atomic univariater.v.’s are algebraically
independent.

Thus for a random sample of a non-atomic, univariate r.v., the sample moments, k-
statistics, and U-statistics with polynomial kernels, are all non-atomic. The Theorem also
allows us to derive a measure-theoretic version of the classical fact that the m elementary
symmetric polynomials, and the m power-sum polynomials, in m indeterminates are
algebraically independent.

Take S;m = Sim(tt) = Sim(Us, ++ + , Un) to be the ith elementary symmetric function in m
indeterminates u = (u1, « - - , tm) and let @im = Qim(U) = Qim(Us, - -+, Un) = UL+ -+« + b
be the ith power-sum polynomial, 1 < i< m.

THEOREM 3. The elementary symmetric polynomials, as well as the power-sum
polynomials, in: statistically independent, non-atomic, univariate r.v.’s are algebraically
independent.

Proor. We verify the result for the elementary symmetric polynomials, the power-
sum version being completely parallel.

Consider indeterminates ¢ = (¢, -- - , ¢,) and a non-trivial polynomial f(f) = f (¢, -- -,
tn). Re-write f(sim(uw), +++, Smm(u)) as a polynomial g(u) = g(ui, -+, Un) in the
indeterminates u1, -+, Um. If g() = 0 then f(#) = 0, since the s;. are known to be
algebraically independent for (non-random) indeterminates u, « -« , Um.

To conclude then, let x;, -- -, x, be statistically independent, non-atomic, univariate
r.v.’s and apply Theorem 2 to the non-trivial g(z) and the random polynomial g(X;, - -,
X), to get

P{f(sl,m(Xl) e )Xm): b )sm,m(XI) e ,Xm)) =0} =P{g(X1: M )Xm) =0} =0. 0
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COROLLARY. Given a random sample of size m of a non-atomic, univariate r.v., the
first m raw sample moments, or all the jth central sample moments, 1 <j < m, as well as
the first m k-statistics, are algebraically independent.

Proor. The first m raw sample moments, based on a sample of size m are, up to a
constant 1/m, exactly the power-sums a;,, 1 < i < m, so the Theorem applies directly.

Next, let vy, - - - , U, be in turn the first m k-statistics, or central sample moments, where
we redefine the first central sample moment to be a;.. One can then show that, for
polynomial f(¢) = f(t1, - -+ , tw), f(U1, -+ -, Un) can be re-written as f (v, -+« - , Uw) = A(Qim,
e+, @mm) for polynomial A(u) = h(u,, - - - , Un), such that f(¢£) non-trivial implies A(z) non-
trivial.

To see this, briefly, do an induction on j, the largest subscript appearing non-trivially in
f (#), and use the equations connecting the k-statistics, central sample moments and power-
sum functions (see Kendall and Stuart, 1977, Section 12.6-Section 12.11). The case for j
= 1 follows from &; = (x1 + - -« + xn)/m = (a1,m)/m.

Applying Theorem 3 to h(u) now completes the proof. O

For a sample of size n < m, the polynomials u} + --- + u, 1 < i < m, are no longer
algebraically independent and the Corollary is no longer valid: puttingn =2, m =3, § =
Uy + U, o= ul + ud & = ul + ud leads to 2& — 3£,& + £3 identically zero in u, uo.

4. Further application of the theorems. For matrix A we will write rank(A4) =
r(A), and p.d. = positive definite, p.s.d. = positive semi-definite.

An immediate application of Theorem 1 is to f(X) = | X| the determinant function of
X=(X|-+] Xp), X; € R, since f is (skew-symmetric) p-linear. Consequently p
independent, flat-free r.v.’s in R, are linearly independent. Similarly for n > p, X = the
matrix having the X; as columns, is of full rank.

A proof of this begins with recalling that 7(X) = p & XX’ not p.d, or, | XX’| = 0.
Yet XX’ is always p.s.d. Now partition X as X = (X1|X;), where X; is p X p and X; is
pX((n—p).Then a’'XX'a=0< a’'X;X1a + a’XoXba=0< a'X:Xa=aXsX%a=0
since X; X and XX} are p.s.d. By Theorem 1 however X; X1 is p.d. (a.e.). Alternatively,
simply consider, say, the first p columns of X. By Theorem 1 this submatrix has rank = p
(a.e.), so r(X) =p(a.e.).

A generalization of the full rank property appears in Eaton and Perlman (1973, page
712). We restate this as:

REsuLT EP (Eaton and Perlman, 1973). Let X* = (if) where (1) X = (X1 |-+ | Xa)

with X; € R, being statistically independent and flat-free, (2) I" is constant, r X n, r(I') =
r,and (3) n = p + r. Then X* has full rank = p + r (a.e.).

We provide a proof which begins as in Eaton and Perlman, uses the notation of Eaton

and Perlman, but which concludes using our Theorem 1. Partition

" « (X X
where Xisp X (n —r), Xisp X r,I'is r X (n — r), and I"is r X r, such that we can assume,
with possibly some permutation of the columns of X*, that I" non-singular. Then X* has
full row rank if and only if W = X — XI"'I" does.

For given I' constant, write W = W(X, X), and let Ix x be the indicator function for the
set Axx = {W= W (X, X) has reduced low rank}. Then P(X* has reduced row rank) =
P(Axx) = E(Ixx) = E{E(Ixx|X = %)} = E{E(Ix)}, since X and X are statistically
independent, which equals E[P(Ax,,)]. As the columns of X are flat-free, W(X, %) has its
columns flat-free, since a flat-free random vector remains flat-free upon addition of a
constant vector. Applying Theorem 1 as at the beginning of this section, W (X, %) has full
row rank (a.e.) so P(Axy) = 0.0
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Eaton and Perlman use Result EP to show: For n = p + r, X; € R, statistically
independent and flat-free, and a fixed n X n matrix A, positive semi-definite, r(4) = n —
r, it follows that S = XAX" is positive definite (a.e.); see also Dykstra (1970). For proof, we
follow Eaton and Perlman (1973). Let A have rank n — r, n = p + r, and suppose I', r X n,
has rows which are a basis set of orthonormal eigenvectors for the zero eigenspace of A.
Then XAX' has less than full rank < XA'? less than full rank & 3 a # 0, ¢’ XAY? = 0=

for some vector b, a’X = bT. Thus the matrix {.\( does not have full rank, and this

contradicts Result EP, so | XAX'| >0 (a.e.).

We note that in Result EP some condition, such as A being p.s.d., is required, for 3 B,
of full rank and {X;} absolutely continuous such that S = XBX’ fails to be even p.s.d. on
a set of positive probability. In particular, let B = I, — hee’, h a constant exceeding 1/n, €’
= (1, «++, 1) (1 X n) and let X; be iid multivariate normal. Then it can be shown that
P(dXBX'd'=0somed €ER,,d #0) > 0.

Continuing with the X; € R, flat-free and independent, Okamoto (1973) raises the
following question: Forn =p + r, S = XAX’, X being p X n, r(A) = r, and A being n X n,
symmetric but not necessarily positive semi-definite, is it true that 7(S) = min(p, r) (a.e.)?
In Okamoto (1973) it is shown that the result holds for r.v.’s X; having a joint distribution
absolutely continuous with respect to pn-dimensional Lebesgue measure. A key lemma in
Okamoto (1973) is: the solution set in R, of a non-trivial polynomial equation in m
indeterminates has m-dimensional Lebesgue measure zero. From this it follows that a
random p X n matrix having a prn-dimensional density must assign zero probability to the
zeros of a non-trivial polynomial in the components of the matrix.

We first partly settle the rank statement here by showing: For n = p = r, rank(S) = r
(a.e.), and then, further, we show the usefulness of Theorem 2 by deriving the key matrix
result just mentioned, using a wonderful insight provided by Roger H. Farrell.

Thus, recall that any real symmetric matrix A can be factored as A = LL’ where L

isnxXrrlA)=r(Ly=r,L= (4] ---|4), & =AU, N\ # 0,1 <i=r, each A, either pure
real or pure imaginary, U = (U;| -+ | U;) n X r and real, U'U = I, (see Rao, 1973, page
40).

LetX=(§;),where YiisrXnand Yzis (p —r) X n, so

s — x5 (1) 1oyt yo (YLL'YE YiLL'Y
§=XAX'=XLL'X = (Yz) LL il yy= (YzLL’Y'l YéLL’Yé)'

Hence r(S) = r(XLL'X’) and if we can show r(Y,LL'Y}) = r (a.e.) then since r(X)
p (a.e.) for n = p by Theorem 1, it would follow that r < r(S) < min{r(X), r(A)}
min(p, r) = r (a.e.) as required.

Now Y,LL'Y]is r X r as is Y1L. While it is not in general true that r(AA’) = r(A) for
complex-valued 4, it is the case that, for any commutative ring with identity, | AB|=|A |-
| B| for square A and B. Hence Y,LL'Y is non-singular if and only if YL is non-singular.
Suppose 3 a, a complex r-vector, such that a’Y,L = 0. Then ¢'Y i/, =0, 1<i=<r, =
Y U:=0,1=<1i=<r,since 4 = \U;, so {Re(a)} YU =0, and {Im(a)}' Y U} =0, all i,
1 =i = r. Hence we can assume a is real, and show that a’Y ;U =0=a =0 (a.e.), U =
(U] -+ | Up.

Let T" have rows which are a basis for the orthocomplement of the column space of U;

Tis(n—r) Xn. Then Y, U=0= 3 b € R,—,, such that a’'Y; = b'T, so (a’, —b') IICI

=0.Sincen — (n —r) =rand Y:is r X n we apply Result EP to get (a.e.) a =0, b= 0, and
Y.L non-singular. 0

Next, the key matrix result of Okamoto (1973) is derived from our Theorem 2. Let the
univariate r.v.s x;, ---, X, have a joint density f(¢) = f(¢1, ---, ¢.) with respect to n-
dimensional Lebesgue measure. Let yi, - - -, ¥, be any independent univariate r.v.’s having
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a joint density g(¢) = [[gi(t;) where g;, the density of y;, is strictly positive for all real ¢;,
and g; need not equal g;, and i, j. For any non-trivial polynomial A(¢) = h(¢;, + -, ¢,) let A
€ R, be its hypersurface, A = {a € R, | h(a, -+, a,)= 0}.

Let P, be the measure induced in R, by y = (y1, - -+, y»). Then

f(8) f(&)
P cee, X)) =0} = =\ == ) )
{A(xs, -+, x2) =0} L i) de NN (®) dt L £@

But [4 dP, = P{h(y1, - -+, y») = 0} = 0 by Theorem 2, so using the absolute continuity of
the integral [ dP, we get [4 (f(¢)/g(¢)) dP, = 0 as required.

Staying with this circle of ideas, note that, for every realization of X, X = x = (x1] - -+
| %), if n > p then the columns of X = x must be linearly dependent, so xa = 0 for some a
€ R,. Nonetheless:

THEOREM 4. Let X = (Xi]| --- | X,) be a random matrix whose columns X;, 1 <j <
n, are statistically independent and flat-free. Then the rows of X are also flat-free, and
for any a € R, a # 0, Xa is flat-free. Hence P(Xa = 0) = 0.

Proor. We first show that the rows are flat-free. Let X} = (Xy, ---, Xp), 1 =j=n.
Since each X; is flat-free we know the components X;;, 1 < i < p, are non-atomic, and since
the X; are statistically independent, the components X;;, 1 = j < n, i fixed, are also
statistically independent. By Theorem 2 then a linear relation Y-, a;X;; = 0 can obtain
only on a null set, so the rows are flat-free.

That Xa is flat-free follows from: X;, X, independent, flat-free = X; + X is flat-free,
and this obtains from Fubini’s Theorem.

Finally, P(Xa = 0) = 0, since Xa flat-free = Xa non-atomic. [0
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