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CONSISTENCY OF THE LEAST SQUARES ESTIMATOR OF THE
FIRST ORDER MOVING AVERAGE PARAMETER

BY BRIAN D. MACPHERSON AND WAYNE A. FULLER

University of Manitoba and Iowa State University

The consistency of the least squares estimator of the parameter of the
first order moving average time series is proven for the parameter in the
interval [-1, 1].

1. Introduction. The first order moving average process is given by
(1.1) Y, = e + Be;-1,

where the et are independent identically distributed random variables with mean zero,
variance o2, and E(e}) = vo*, v < .

The model (1.1) is said to be invertible if |B]| < 1. When |B] = 1, model (1.1) is
noninvertible. The autocorrelation function at lag one for the first order moving average
model (1.1) is given by

(1.2) p(l) =1+ BB,

and it can be shown that p(1) € [—0.5, 0.5]. If B, is a solution to (1.2) and B, # 0, then 85"
is also a solution to (1.2). Therefore, for every noninvertible model with | 8| > 1, there is
an equivalent invertible model. Most work with model (1.1) has restricted the parameter
space to the open interval (—1, 1) so that the model is strictly invertible.

The estimation of the parameter 8 has been the subject of a substantial amount of
work. Whittle (1951, 1953), Durbin (1959), Walker (1961), Box and Jenkins (1970), and
Fuller (1976) provide estimation techniques and properties of some estimators. All authors
cited have restricted the parameter space to be the open interval (— 1, 1) and all of the
estimators and their properties have been determined under this constraint.

The noninvertible situation with 8 = +1 was considered by Plosser and Schwert (1977).
They note the difficulties inherent in this situation, particularly with respect to the
estimation of 8 using approximate likelihood procedures. Plosser and Schwert provide
several situations in which it is reasonable to consider the model (1.1) with 8 = +1, and
report on an extensive Monte Carlo experiment using such a model.

2. Consistency of the least squares estimator. We consider the first order moving
average model with the process initiated at time one with e, = 0. Given a sample of n
observations, Y1, Ys, .., Y,, we write, for model (1.1),

eO(Y; B)=O, et(Y; B)= Yt_ ,Bet—l(Y;B), t=1y 2) ce, R

where the notation e,(Y; B8) is used to emphasize the fact that the e, depend on the
observations, Y;, and on 8.
The least squares estimator of 8 is that value of § € [—1, 1] that minimizes

(2.1) @ (0) = Yi1 {e(Y; 0)).

Let W,(Y; 6) denote the negative of the partial derivative of e;(Y; 8) with respect to 8
evaluated at 8 = 0. Then
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a
@ Qn(a) = '_2ngn(0):

where
2.2) 8.(0) =n"' Y1 e(Y; ) W.(Y; 0).

If @,.(0) has a minimum in the interval (-1, 1), then g,(f) = 0 at that minimum.
The function e,(Y; 6) satisfies the difference equation

(2.3) e(Y; 0) + 0e._1(Y;0) =Y,

and the function W,(Y; 0) satisfies the difference equation

(2.4) We(Y; 0) + 20W,_1(Y; 0) + 0°W,_2(Y; 0) = Y.—1.

It follows that

(2.5) e (Y; 0) = Y55 aiers,

(2.6) W(Y; 0) = Yi=3 biev—1-i,

where ao=bo=1, a;=(B—0)(—=0)"", i=1,2 .-+, b= (—0)"{(B—-0)i—6},i=1,
2 ...

We now prove two lemmas.

LEMMA 1. Let model (1.1) hold with B = 1 and let g,(6) be defined by (2.2). Then
E{g.(0)}>0foralld e[-1,1).

Proor. From (2.5) and (2.6) we have
E{ng.(0)} =Yt E(XiZs Y425 aibje—ies—1-;).

Because the e, are independent, identically distributed random variables with mean zero
and variance o2,

E{W.(Y; 0)e.(Y;0)) =c*{(1—0) + 1 -0’ L1 j(=0)Y ' = 0(1 - 6) Tji=% (- )P}

for t =2, 3, . ... We note that this expression is equal to zero when 6 = 1, and is positive
for § € [—1, 0]. For 6 € (0, 1), we obtain

@7 E{W.\Y; e (Y;0)} = 02[(1 —0)2(1 — 6? )21+ 61— 60— 0*)(—6)**}
— 1=t -21 - 0)>*-6)*"*}].

The last term in (2.7) is positive for all § € (0, 1) because the exponent 2t — 3 is always
odd. The function §(1 — 6 — 6?) defined on [—1, 1] has a minimum value of —1 at § = 1.
Therefore, E{g.(8)} > 0 for all § € [1, 1).

LEMMA 2. Let g.(0) be defined by (2.2), let g,.(0) denote the derivative of g,(B) with
respect to B evaluated at B = 0. Then

|£2(6) | =3 —18])"y
for 8 € (—1, 1) and all n.
Proor. We have
—2ngn(0) =2 Y1 {ei(Y;0)}* + 2 Y1 e (Y; )el (Y3 0),
where
e(Y; 0) = Yot (—0) Y, =Y'2b af Yi-;.
et (Y; 0) = X521 (<) (=0Y 7' Y, = X521 b} Yoy,
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and

e/(Y;0) = X575/ (G — 1)(=0Y Y, = Xizh ¢} Yooy
Using the convolution inequality,

Yi-1 (2 taib) = i 1|b¢|)2 = lat,
we obtain
Yie1 {ei(Y; 0))® = i1 (T521 07 Ye) = (Rier YE)(Th-1 | 7 D2
Using the Cauchy-Schwarz Inequality, and the convolution inequality, we have
(Zt1 e(Y; 0)ef (Y;0)) =< (Tio1 YoV (Th-o | af DP(T5=2 | ).
Therefore,
(2.8) |82(0) | = {(XF-1 16} + Z7=o laf | Xi=2 el 1}y
=31 - 16]) . ‘

We now prove the following theorem.

THEOREM. Let Y, satisfy the model
Y;=et+,3et 1 =1 2 DY

where eo=0and the e,t=1,2, ..., areiid. random variables with mean zero, variance
o’ and E(e?) = vo*. Let B € [—1, 1]. Then the least squares estimator ,8 converges to 3 in
probalnhty asn —o,

Proor. Given 8 € (-1, 1) and §; > 0, let § be the minimum of &;, % (1 — 8) and
% (1 + B). Then e.(Y; ) defined in (2.3) is converging to a stationary autoregressive
moving average (1, 1) with autoregressive parameter equal to —f and moving average
parameter equal to 8 as ¢ — . Therefore, for § € [-1 + §, 1 — §],

(2.9) n7'@.(0) — (1 — 6%)71(1 + B2 — 286)0?

in mean square. For example, see Fuller (1976, page 68 and page 237). The function on the
right of (2.9) is continuous and has continuous first and second derivatives on [—-1 + §, 1
— 6]. Furthermore, the variance of n '@, ()is bounded on [—1 + 8, 1 — §]. It follows that
B is consistent for  €[—1 + 8, 1 — 8].

We now consider 8 = 1 and first demonstrate that for 8 = 1

(210) limn—woP{Qn(_l) > Qn(l)} =1L

We have

+2¥l e, t=23, ...,
e,(Y;—1)={Z L e t=1

and letting Z,_; = 2 Y1 e,;,

27=1 etz(Y; -1) — Z?=1 etz(Y; 1) =Yk, Zt2—1 + 2 Z?=1 Z_1e.
By the results of Dickey and Fuller (1979)
e 22 Yi1Zi1e.=0,(n")

and n™2 $\7_1 Z}_; converges in distribution to a linear combination of Chi squared random
variables. Conclusion (2.10) then follows.
We now consider the function g.(6) given in (2.2) and demonstrate that, for given § >
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0, the probability that g, () is positive on the interval [—1 + 8, 1 —8] approaches one as n
— oo, The function g, (6) is a continuous differentiable function of §. By Lemma 1, there is
a K such that E{g,(6)} > K for § €[—1 + 8, 1 — §]. The variance of g,(8) is O(n™?"), (for
example, see Fuller, 1976, page 237) and, by Chebyshev’s inequality, P{ g,(§) > K} — 1 as
n — o for any § € [-1 + §, 1 — §]. By Lemma 2 and because Var{yy(0)} = O(n™), it
follows that given & > 0, there exists an Ny, and M < « such that

P{lgr(0)| <M, forall 6€[-1+61—06]=1—Y%e

for all n > N;. Hence, there exists an 1, 0 < 7 < (2M) 'K such that for all n > N; and (6,
6) e[-1+8,1-34],

P{supjg,_g,<;[|8:(01) — 8:(62) | <% K1} = 1 — Y%e.

We now subdivide the interval [—1 + §, 1 — 8] using the points d; = -1+ 8 +in,i=0, 1,
., A, and da+1 = 1 — 8, where A is the largest integer such that 2(1 — §)— nA > 0. Given
e > 0, there exists an N such that for all n > N, .

P{g.d)>K}=1-[24+2)]'s, i=0,1,...,4+1
and hence,
P{g.®)>K;i=0,1,.--,A+ 1} =1 — %e.
Let N = max(Ni, N:), then for all n > N, it follows that
P(g.(0) >0 forall €[-1+81-8])=1—¢

Thus, with probability greater than or equal to 1 — ¢, the derivative of @, () is negative
and Q,.(f) is a decreasing function on the interval [—1 + 8, 1 — §]. Therefore, with
probability greater than or equal to 1 — ¢, @, (f) achieves its minimum value for | §]| = 1
— 8. Combining this result with (2.10), we obtain the conclusion that B is a consistent
estimator of B for 8 = 1. The argument for 8 = —1 is completely analogous to that for 8
= 1 and is omitted.
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