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PROPERTIES OF ESTIMATORS OF QUADRATIC FINITE
POPULATION FUNCTIONS: THE BATCH APPROACH!

By T. P. Liu aAND M. E. THOMPSON

University of Waterloo

Polynomial finite population functions can be expressed as totals over
derived populations of batches, or ordered sequences of units from the original
population. This paper extends the results of Godambe and Godambe and
Joshi on nonexistence of best unbiased estimators and admissibility of the
Horvitz-Thompson estimator to the real batch total case. The admissibility
results are only partly extendible; an example is given to show that Horvitz-
Thompson type estimators of the form ¥ ¥ b;(y: — y;)?/7; need not be
admissible.

.

1. Introduction. In the theory of finite population estimation, most of the emphasis
has always been placed on the problem of estimating the population mean or total of a real
characteristic. This relatively tractable problem is sufficiently general to illustrate most of
the features of the foundational theory (see, for example, the book of Cassel, Sarndal and
Wretman, 1977). It is also of great practical importance in all areas where sampling is
applied; and even the estimation of complex population functions can often be reduced to
a linear problem by Taylor series approximation (see Woodruff, 1971, and Kish and
Frankel, 1974).

At the same time the estimation of quadratic or higher order polynomial population
functions can also be important. A population variance, or the variance of a linear
estimator, are two obvious examples. These population functions, although they may be
relatively complex, have the advantage of being expressible as totals of certain generalized
characteristics over a derived finite population (Hanurav, 1966). In the derived finite
population, the “units” are combinations of units of the original population; and these
combinations, the “units” of the derived population, are what will here be termed batches.
For example,

oly) = 3! EI}]=5+1 Yiyj
is a quadratic polynomial relative to the population P = {1, . .., N}, but may be expressed
as

Ea 2as

where a ranges over all pairs ij with i < j, and z;; = y;y;. Thus ¢(y) is a batch total over the
collection of batches A = {(i, j): i < j}.

In this paper we investigate the extent to which some of the results of Godambe (1955)
and Godambe and Joshi (1965) for population totals can be applied to more general real
valued batch totals. Particular attention will be paid to the estimation of functions having
the forms

(1.1) Ti=YVay, A={i},z=ay;
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(1.2) Te =Y Y ciyiy, A={G, J):i=Jj}, 25 = cyyiys
(13) Ts =Y Y by(yi— 3% A= (G, J):i<j}, z5=by(yi — y)%
14) Ta=%:Y)bylxi—x)(yi—3), A={(G J):i<Jj}, 25 =by(xi — x)(y:i — ¥));

where x and y are real variates. We shall prove that no best unbiased estimators exist for
these, even in the classes of estimators which are linear in the functions y;, y: ¥, (y: — ¥;)*
and (x; — x;)(y: — y;) respectively. However, the generalized Horvitz-Thompson estimators
of Ty, T> and T, are admissible among unbiased estimators under very general conditions,
to be specified. This is not the case for T, of which the usual population variance is a
special case, and an example will be described in Section 5 in which the sampling design
is such that the generalized HT estimator for T3 is actually inadmissible. This example
suggests that there may be many cases of standard estimators of polynomial population
functions which are not generally admissible; a related result, which is easier to prove,
shows that the Yates-Grundy estimator for the variance of the HT estimator of the
ordinary population total may be inadmissible (Biyani, 1980).

REMARK 1.1. The bilinear function T and its corresponding HT estimator T, are
defined on the product space R x R”, but the quadratic function T} and its corresponding
HT estimator T, are defined on the diagonal line D of RN X RY, (i.e. the subset having
x;i=y,i=1,2 ..., N). When we consider properties such as bestness or admissibility of
the estimators for T; we must check the whole space RY X R", but for the estimators for
T we only need check the subset D. That is; the admissibility of the estimator T, and the
inadmissibility of the estimator T, are compatible, since when we consider the restricted
subset D under a specified sampling design there may be an estimator of T} superior to T,
(i.e. an estimator of T’ superior to T5,).

In Section 2 we shall introduce the notions of batch totals and batch based estimators
formally, and discuss conditions for the existence of unbiased estimators. Section 3 deals
with the non-existence of optimal unbiased estimators, even in the restricted class of
homogeneous linear batch based estimators of batch total functions. There follows a brief
discussion of the possibility of generalizing the elegant non-existence proof of Lanke (1973)
for estimators of the ordinary population total.

Lanke’s proof depends on the Horvitz-Thompson (HT) estimator being admissible.
Section 4 is devoted to the formulation of conditions under which the generalized (batch
based) HT estimator can be proved to be admissible, in the classes of unbiased estimators
or linear unbiased estimators for a batch total.

2. Notation. Let P = {1, 2, --., N} denote the finite population under study, and
suppose that with each unit i is associated a multivariate characteristic value

Wi = (Xi, Yi, +++, 2i, i)

of dimension L. The population matrix w is of dimension N X L, and has w; as its ith row.
It may also be written in terms of its columns x, y etc., as

w=(XY, -, 2 ).

Let W denote the space of all w which are possible before sampling in a given problem, a
subspace of the space of all N X L matrices with real entries.

A sample s is a subset of P, and a sampling design p is a probability function on S =
{s:s C P}, the collection of all possible samples. Given a sampling design p, let S*(p)
denote the collection of all samples s such that p(s) > 0.

A batch o is defined as a finite ordered sequence of units in P, not necessarily distinct.
Thus « is representable in the form

a=1;]'..-k
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with i, J, - - -, & belonging to P. The singleton batch a = i can be identified with the unit
{in P.

Let s(a) denote the set of distinct units in the batch a. We say that the sample s covers
a (notation: s 3 a) if s(a) C s. For a given sampling design p and batch a the quantity

(2.1) Ta = Zs:ssa p(s)

is called the inclusion probability of the batch a. Note that 7, is always invariant under
permutations of o, e.g. m; = mji.

Now let A denote a finite collection of batches The size of sample s relative to A is
denoted by na(s) and defined as the number of batches o € A which are covered by s (i.e.
for which s 3 a). For example, since P is the collection of all singleton batches i, np(s)
would be the usual sample size, namely the number of distinct units in the sample.

We shall consider mainly estimation of population functions of the form

(2.2) GA(W) = ZaEA Ga(w))

where A = {a} is a finite collection of batches, and G,(w) is real valued and depends on w
only through those w; for which ¢ appears in the sequence a. Such a function G4(w) will
be referred to as a batch total.

REMARK 2.1. For example, each one of the population functions Ty, T2, Ts and T is
a batch total over its batch collection A defined in (1.1)-(1.4). For (1.1)-(1.3), w = y
and G.(W) = a:yi, c;¥: ¥, bi(y: — ¥;)? respectivély; for (1.4), w = (X, y) and G.(w) =
by(x; — x)(y: — yj).

An estimator for Ga(w) will as usual be a real valued function g(s, w) which depends
on w only through those w; for which i € s. We shall restrict attention mainly to estimators
which are p-unbiased, namely estimators g such that

Epg(s, w) = Yec s p(5)8(s, W) = Ga(w)
and
MSE,g(s, W) = Var,g(s, w) = Y s p(s)8%(s, W) — Ga(W).
An estimator g(s, w) for Ga(w) will be called A-linear if it takes the form
(2.3) &(8, W) = Ya:soa Aa(8) GalW),
where « is restricted to A. We introduce
(2.4) %, = the class of all p-unbiased A-linear estimators for G4(w).

An example of an estimator in %, is the generalized Horvitz- Thompson (HT) estimator

Go(w)

Ta

(2-5) i, gﬂ(sy W) Etx 1$Da

if 7, > 0 for every a € A. For the population functions T, — T} of (1.1)-(1.4) these are
respectively

(2.6) le = Yies @i yi/mi,
2.7 lZZs Y/ i,
o
2.8) Ty, = lzlg; bi(yi — 3 /my,
i<y
(2.9) 22 by — 2,)(yi — ¥))/ms-

i,jEs
i<y
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(When « = i, , is m;; when a = (i, j), 7, is m;.)

More generally, an estimator g(s, w) will be called A-based if g(s, w) depends only on
G.(w) for those a covered by s. For example, an A-based but not A-linear estimator for T
of (1.8), where A = {(i, j):i < j}, w = y and G;(w) = b;(y; — y)?, might take the
“trimmed” form

22 Bii(s, W) (3 — )%,
l,L]G‘S

i<j

where

i -2 .
0 if [(yi—y) n(n_l)g;;(y; | >M

Bij (3, W) = <

By otherwise

for appropriate constants ;.

It should be noted that besides being the natural generalization of linear estimators for
batch total estimation, A-linear estimators are appealing because they tend to have
properties similar to those of the estimand. For example, the generalized HT estimator

e )2
(2.10) vy iZ %)
e my
i<j
for
(2.11) o Y (yi— )?

is always non-negative, and is 0 when the estimand (2.11) is 0. It may be noted that if the
estimand (2.11) is written in the bilinear form

L yiN = 1) — 2 3 S o vy,
the linear batch-based HT estimator is
(N = 1)(Ties yi/m) = 2 XY, yi i/ 7y
i,JES

i<j

this estimator is both non-negative for all y € R™ and 0 when y; = constant only if it is
equal to (2.10) (Vijayan, 1975).

A sufficient condition for the existence of A-based p-unbiased estimators of G4 (w) is
that 7, should be positive for each a for which G, (w) is not identically constant. Conversely,
we may show that this condition is necessary if each non-constant G, (w) can be varied (by
suitable choice of w) independently of the others. For simplicity in what follows, we shall
assume that for all given sampling designs, 7, > 0 for all « € A.

3. Non-existence of p-best A-linear estimators. In this section we shall discuss
conditions for A-linear estimators to belong to % of (2.4), and will prove two theorems on
the non-existence of minimum variance p-unbiased estimators of G4 (w). Use will be made
of two practically non-restrictive conditions in the statements of the results:

ConpITION L. There is a subset {w”: 8 € B} of W of cardinality equal to the number
of batches a in A such that the rows of the matrix GW whose (a, 8)™ element is Go(W*)

are linearly independent.

ConDITION N. There exist s € S™(p) and w, w’ € W such that w; = w{ for alli€s
and G4 (W) # Ga(W').
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It is easy to construct situations for which these are not satisfied; but it is also easy to show
in the cases of Ty — T4 in (1.1) — (1.4) that if the constants a;, b;j, c;; are non-zero, and W
is large enough that each x; or y; may be 1 or 0 independently of the others, then L is
satisfied, and N is satisfied if the design is not a census.

The property of p-unbiasedness for A-linear estimators imposes constraints on the
coefficients A, (s), as described in the following lemma.

LemMA 3.1. Suppose Condition L holds. Then an A-linear estimator
81(8, W) = Yussa Aa(s)Ga (W)
belongs to 9, of (2.4) if and only if ¥, ss5. P(8)As(s) = 1 for every a.

ProoF. The proof follows easily from the observation that
Epg)\ (S, W) = Ea {Zs:saa P (3))\0( (s)}Ga (W),
and that for p-unbiasedness of g, this must equal Y, G,(w).O

Given a sampling design p, the collection S*™(p) will be called a disjoint cover of A if
each a € A is covered by one and only one sample s € S*(p). Lemma 2.1 applied in this
particular case proves uniqueness of a p-unbiased A-linear estimator.

CoROLLARY 3.1. If Condition L holds and S*(p) is a disjoint cover of A, then the
unique estimator in %, is given by

Ea:sao: Ga (W)/P (S) =8 (S’ W)’

the generalized HT estimator.

REMARK 3.1. For examples, the S*(p) of a unicluster sampling design (Cassel et al,
1977, page 67) is a disjoint cover of the batch collection A = P = {i}, and the S*(p) of a
fixed sample size two sampling design is a disjoint cover of the batch collection A = {(i, j):

i1#J,i,J € P}.
The first non-existence result we prove is for general A-based estimators, and is an

analogue of Godambe’s (1955) result for estimators of the population total; the proof

follows that of Basu (1971).
Let % be a class of estimators of G4(w). We say that g* is p-best in 4if g* € ¥ and

E,{g*— Ga(W)}’ < E,{g — Ga(w))?
for all g € ¥and w € W, and the import of Theorem 3.1 below is that p-best p-unbiased

A-based estimators can be found only in exceptional circumstances.

LEMMA 3.2. Suppose Condition N holds. Then there is no estimator g(s, w) for
G4 (W) which has zero mean square error for allw € W.

THEOREM 3.1. If Condition N holds then there is no p-best p-unbiased A-based
estimator for G4(w).

Proor. It need only be shown that for each wo € W a p-unbiased A-based estimator
& (s, w) exists such that
Var,g(s, wo) = 0.
Such an estimator is given by

(3.1) GA (WO) + Zm:ssa {Ga (W) - Ga (WO)}/ﬂa' D
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CoROLLARY 3.2. If Condition N holds for the cases of Ty — Ty of (1.1) — (1.4), there is
no p-best p-unbiased A-based estimator for any of the population functions T; — Ts.

Since the estimator (3.1) contains a constant term, it is not A-linear by our definition.
Thus we may ask whether there might exist a p-best p-unbiased A-linear estimator for
G4(w). Again, while such an estimator does exist under Condition L when S*(p) is a
disjoint cover (Corollary 3.1), the answer is generally in the negative.

THEOREM 3.2. Suppose that S*(p) is not a disjoint cover of A, and that Condition L
holds. Then there is no p-best estimator in the class %) of (2.4).

ProoF. Assume there exists a p-best estimator
F:2) (sy W) = Za:saa )\a (S)sz (W).

Since

(3.2) Es:saa P (S)Aa (S) =1

for all a € A, the coefficients A (s), s € S*(p), must satisfy the system of equations
d

(3~3) m [Val'pgx (S, W) - 2 ZaEA T'a {Zszsaa P(S)}\a (S)}] = O)

where r, is a Lagrange multiplier and the variance Var,g, (s, w) is given by
Var,g\(s, w) = ¥, p(s)gi(s, w)— G4 (w).
If p(s) > 0 and s D a then (3.3) implies
(3.4) G.(W)gr(s, W) =r,.
If there are two samples s;, s; € S*(p) which cover a, from (3.4) we have
(3.5) Ga(W) (51, W) = Go(W) &1 (52, W)
for all w € W; and when G, (w) is not zero, from (3.5) we have
Zﬁzseﬂ }\B(SI)G,H (w) = Z,B:szaﬂ As (s2)Gp(w).
That is,
2psiopsnszs M (81)Gs(W) + Yo nsop {(As(s1) — Ap(s2)} Gs(w)
= Ypsopanszp N(82)Gp(w) = 0

for all w € W such that G, (w) # 0 for some a covered by s; N s;. Since by Condition L the
subspace of vectors

{Gs(w), 51D Ror 52 D B, G.(w) # 0 for some o covered by s; N s;}

will always contain a set of linearly independent vectors of cardinality at least equal to
na(s1) + na(sz) — na(s; N sz), then

As(s1) = Ag(sz) for all B covered by s; N sg,
As(s1) = 0if s, B B, and
Ag(s2) =0if s; & B.
This implies that
As(s) = Ng
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for all s B 8, and that
}\B(S) = }\p =0

whenever f is covered by a sample which intersects with a sample not covering g. Since p
is not a disjoint cover this condition is satisfied for some B; however, if Az = 0 for some g,
constraints (3.2) cannot be satisfied, and this implies the theorem. [

COROLLARY 3.3. In the cases of Ty — Ty of (1.1) — (1.4) suppose that S*™(p) is not a
disjoint cover of A. (For Ty — T this means in particular that S*(p) must include
samples of size at least 3.) If also Condition L holds, then there is no p-best p-unbiased
A-linear estimator for any of Ty — Ts.

Lanke (1973) has given an alternative proof of Theorem 3.3 for the case A = P, but it
is possible to generalize his argument only partially. The difficulty, as will be seen in
subsequent sections, is that we cannot always show the generalized HT estimator g (s, w)
to be admissible, as it certainly is (for sufficiently extensive W) in the special case where
A= {l}, G,(W) =Yi.

4. p-admissibility. We begin by defining p-admissibility formally.

DEerFINITION 1. Given a sampling design p, a p-unbiased estimator g is p-superior to
another p-unbiased estimator g* if and only if

Var,g*(s, w) = Var,,g(s, w)
for all w € W, with strict inequality for some w € W.
DEFINITION 2. Given a sampling design p, an estimator g* is p-admissible in a class

{ g} of p-unbiased estimators if there does not exist another estimator g in { g} which is
Dp-superior to g*.

The following general admissibility proof for A-based estimators is patterned upon an
argument of Godambe and Joshi (1965). In the statement of the theorem,

Wi(A)

denotes the set of w € W such that G, (w) # 0 for exactly k of the batches a € A. Also, for
a given w, S} C S*(p) will consist of those s € S*(p) for which G.(w) # 0 for exactly j of
the batches a covered by s. The proof is by induction, and the kth induction step requires
that the following “chain condition” be satisfied:

ConpitioN C. For each w* € W,(A) and each s € S}, 0 < j < k, we can find a
w € W,A) for some j < ¢< k such that G, (w) = G,(w?*) for all batches a € s.

Condition C is generally satisfied in the situation of T} of (1.1), forif y* = (y1, - -+, ¥n)
from w* € W, (A) is such that (say) yi, - - - , yx are the only non-zero components, and s
contains only units {1, -+, j} from {1, --., 2} then y obtained from y* by replacing y:

by 0 will cause the new w to belong to WAA) where =k — 1; and clearly G;(w) = Gi(w*)
for all i € s, since k & s. Condition C is also generally satisfied in the situation of T’ of (1.2).
It should be noted that in this case W, (A) is non-empty only for £ = 1, 2 = 3 (when two
y/’s are non-zero), k = 6, etc. However, Condition C is not satisfied in general in the
situations of T3 and T}.

THEOREM 4.1. Let a sampling design p be given. Suppose that Wo(A) is non-empty,
and that the “chain condition” C is satisfied for all k. Let g*(s, w) be an (A-based)
estimator which depends on s and w only through G.(w) # 0 for a € s. Then g* is p-
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admissible in the class of all p-unbiased A-based estimators for E,g* (s, W). (Here Epg*(s,
w) is not necessarily a batch total function.)

Proor. If the theorem is not true, there exists another p-unbiased A-based estimator
g for E,g*(s, w) which is p-superior to g*. Let

g(s, w) = g*(s,w) + h(s, w).

Then we have

4.1) Ysp(s)h(s,w) =0

for all w € W, and it follows from the p-superiority of g that

(4.2) Y p(s)h*(s, W) = =2 3. p(s)h(s, w)g* (s, W)
forallw e W.

Now assume that Wy.1(A4) is not empty, and that p(s)h (s, w) has been proved to be 0
for all s € S and w € U’ W;(A). If w* € Wi+1(A) then (4.1) implies that

4.3) Y Teesy P(S)h(s, w*) =0,
and (4.2) such that
4.4) 3 Y es P(8)R(s, W*) = =2 T 120 ey P ()R (s, W*) g™ (s, w*).

Now if s € S} for some 0 < j < k& we have G,(w*) # 0 for exactly j batches a € s, and by
(C) there exists ¢satisfying j < /<kand aw € WAA), such that G, (w) = G, (w*) for all
o € 5. Thus we have g*(s, w) = g*(s, w*) and (s, w) = h(s, w*), and since by hypothesis
p(s)h(s,w) =0fors € Sand w € Uk, W;(A), it follows that p(s)h (s, w*) = 0. Hence
p(s)h(s,w*) =0foralls € U%o SF. Thus from (4.3) and (4.4), we have

(4.5) Yeest, P(S)h(s,w*) =0
and
(4.6) Y st P(8)R%s, W*) = =2 Ycsyp,, P(s)h(s, Ww*) g (s, W™).

However, in (4.6) g*(s, w*) for all s € S*%.+1 is constant, so that
Y oest., P(s)h%(s, w*) = — g*(s, W) Tsesp,, P(S)h(s, w*) =0,

and p(s)h(s, w*) = 0 for all s € Sy+1, hence for all s € S.
Since clearly p(s)h(s,w) =0foralls € Sand w € W, (A), by induction we must have
p(s)h(s,w) =0foralls€ESand w € W, and the theorem is proved. O

Theorem 4.1 is immediately applicable to the generalized HT estimator.

COROLLARY 4.1. Given a sampling design p, suppose that Condition C is satisfied.
Then the generalized HT estimator g, is a p-admissible estimator in the class of all p-
unbiased estimators for G4 (w).

COROLLARY 4.2. Given a sampling design p, suppose W is sufficiently extensive (e.g.
suppose each y; may be 0 or not independently of the others). Then
(i) 7% of (2.6) is p-admissible in the class of all p-unbiased estimators for T of (1.1)
(ii) Ton of (2.9) is p-admissible in the class of all p-unbiased A-based estimators for T of
(1.2).

It is easy to see that the role of the 0 batch value in Theorem 4.1 can be assumed by any
number d. For if we replace 0 by d in the chain condition and the definitions of W,(A), S},
the proof remains valid.
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The chain condition C is, as we have seen, rather restrictive. However, to prove p-
admissibility of g, in the smaller class of p-unbiased A-linear estimators we may use an
analogue which is much easier to verify, involving W;(A).

THEOREM 4.2. Suppose that Wy(A) is non-empty and that for each o € A the set
W1(A) contains at least one w for which
G, (W) #0

and
GB(W) = 0, B # a.
Then given a sampling design p, g.(s, w) is p-admissible in the class of all p-unbiased A-

linear estimators for G4 (w).

Proor. If g is A-linear, p-unbiased and p-superior to &n, then A (s, w) = g(s, w) —
g*(s, w) takes a linear form

h(S, W) = ZaEs }L(S, a)Ga (W).

The arguments of Theorem 4.1 can be used to show that p(s)h (s, w) = 0 for every w €
Wi1(A). Thus from the hypothesis on W;(A4)

nis,a) =0
for every s € S™(p), a € s. Consequently p(s)h (s, w) = 0 for every w € W and s € S*(p),
and the theorem is proved. 0

From Theorems 4.1 and 4.2 we have the following.

CORAOLLARY 4.3. Given a sampling design p, suppose W is sufficiently extensive.
Then Ti,, T and T4, are respectively p-admissible in the classes of all p-unbiased A-
linear estimators for T1, T: and Ty.

ProoF. The results for 7', and T, follow from Corollary 4.2. For ﬁ,,, we note that to
make
(i = %) (y: — 3)) # 0= (i, J) = (i, Jo)
we need only ensure that
x#0i=1i
and
y#0e ) =j.0

Although the chain condition C is not satisfied for T3, there is a relatively simple
sufficient condition for T, (w) to be p-admissible among p-unbiased estimators. That is,
we may note that

Ts(w) =YX SX, cijyiy),
where Cij = —2b,’j ifi <j and ¢; = Zfi,”l bij +2;:{ bﬁ. Also
Tou(W) = 33 (=2 bis/m5)yi3; + Ties ¥ (S jeoioi bisf iy + T jenjeibis/mi).
i,JES
i<j

Defining b;; = bj; if i > j, we can see that if
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4.7 Yimijes bij = Wi Y ji jes bji/mij
for every i and s € S*(p) containing i, then T, has the form of T%,, and is p-admissible.
The estimator T,(w) will also be p-admissible under (4.7), which is clearly highly
restrictive. It is satisfied if the design and the estimators T, are symmetric with respect to
certain groups of permutations of {1, - - - , N}, namely those for which S*(p) is separably
transformable in the sense of Liu (1981). When b;; = 1, (4.7) is satisfied for simple random
sampling, stratified random sampling, and two stage simple random sampling with PSU’s
of constant size.

5. Inadmissibility of T5,. The following example shows that 7%, of (2.8) need not be
admissible in general. We shall consider here estimators of
N.

N
221 (yl - yj)zy

Lj=
i<j

taking b;; = 1, which is equivalent to the usual population variance, but it will be clear that
such examples can be constructed for any choice of b;;.
Let N = 4, and S*(p) consist of samples of size 3. Denote the sample probabilities by

a=p({1,2,3})>0, b=p({1,24}) >0,
c=p({1,3,4}) >0, d=p({2,3,4})>0.
Let
Ty, = ¥ (3= y)*/mis

L,JEs,
i<j
and consider a competing A-based estimator T given by
Tg)\ = Tg,, + h,

where A is given by Table 1.

TAaBLE 1.
Sample s Estimator A
{1,2,3)} 2 2 2e ., 2¢ 2
- (n y2)* + " (1 —ys) + " (y2 —3)
1,24 2
{ ) ——bf(yl—yz)2+§(yn—y4)2+%(yz—y4)2
1,3,4 2
( ) ——E(yl—ya)z——s—(yl—y4)2+—€—(.}’3—y4)2
c c c
{2,3,4)

2
- Ef (y2—y3)° — 5 (y2—y4) — 3 (ys—y4)%

Letting n = w1 — ws, £ = wy — w3 and T = w; — w,, we obtain Var,,(Tg,\) - Varp(fIA'a,,) = Ay*
+ BE 4 Crt + Dt + En’r + Fng® + GEr + Itr® + Huyr® + Jn’8? + Kn’r® + L& + Mn*ér
+ Nné*r + Onér® where the coefficients A, - ., O are functions of a, b, ¢, d and &. This
homogeneous fourth degree polynomial in 7, £, 7 can be shown to have zero as its maximal
value (attained at the origin) when

a =0.75, b = 0.15, ¢ = 0.07, d = 0.03, ¢ = 0.01;
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in such a case, Ts is then superior to Ta,,, and T4, is not admissible. In this particular
example, T%, is everywhere nonnegative. Further details of the proof are available on
request.
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