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MINIMAXITY FOR RANDOMIZED DESIGNS:
SOME GENERAL RESULTS*

By KER-CHAU L1

Purdue University

In many design settings where model violations are present, a “stochastic”
minimaxity for many standard randomization procedures is demonstrated.
This result requires no special analytic properties of the loss function and
estimators. Next, under the squared loss and with the restriction to the use of
linear estimators, a recipe for finding a randomized strategy is given. As a
special case, randomizing an A-optimal design in the standard manner and
using the least squares estimates yields a minimax strategy in most cases.
These results generalize some aspects of Wu (1981).

1. Introduction. The role of randomization in the design of experiments has been
discussed in numerous papers (see the references given in Wu, 1981). As it was summarized
by Wu, the most popular of the arguments favoring the use of randomization are the
following: it provides a solid basis for statistical inference; it ensures impartiality; it is a
source of robustness against model inadequacies. Most of the literature has been addressed
to the first and the second arguments.

While the third argument on the model robustness aspect of randomization has already
been well accepted, Wu (1981) seems to be the first work devoted to giving it a formal
definition and rigorous justification. For some basic design setups in comparative experi-
ments where T treatments are to be assigned to N experiment units, Wu argued that since
the experimenter’s information about the model is never perfect, there is always the
possibility that the “true” model deviates from the assumed model. Thus if G is the
collection of all possible “true” models, he defined the concept of model-robustness with
respect to G in terms of minimizing the maximum possible mean squared error of the
corresponding best linear unbiased estimator (for the assumed model) over G. For the use
of the model-robustness notion in other contexts, see, for example, Box and Draper (1959)
and Huber (1975). Some randomized designs, including the balanced completely random-
ized design (coined by Wu), the randomized complete block design and the randomized
Latin square design, were shown to be model-robust with respect to any G which possesses
an appropriate invariance property in each setting. Furthermore, Wu compared some
randomized designs in terms of maximum squared bias. In this paper, we shall discuss only
the minimax results. Basically we adopt Wu’s general framework on the model-violation
consideration; i.e., G will be invariant in an appropriate sense. But we shall extend the
results to quite general design settings after a careful study of Wu’s ideas.

This paper is composed of two parts. The first part (Section 2) discusses the minimaxity
of some commonly-used randomization procedures. The results obtained here are the
generalization of Wu’s Proposition 1, Theorem 4, and the minimaxity for the randomized
complete block design and BIB designs. In these results, the competing class of designs
was restricted to those having the same treatment replication numbers of each block (the
block design case) and for each row and each column (Latin squares case). We shall make
the same restriction in this section. For example, in the block design case, the block-
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treatment incidence matrix is fixed (but arbitrary). (The optimum choice of a block-
treatment incidence matrix will be considered in Section 3). However, it is easier to convey
these results in terms of a rigorously-defined notion of randomization procedures. Our
definition is based on the observation that when applying any randomization procedure
(in the usual sense, for example, the complete randomization) to a non-randomized design,
the possible realized designs are those with the same treatment replication numbers as
those for the original design. Thus by comparing different randomization procedures only,
we avoid the more complicated problem of choosing an optimal non-randomized design to
be randomized. Roughly speaking, if the class of all possible true models is invariant under
a group H, then the randomization procedure (H-uniform randomization, to be defined
later) generated by the uniform probability measure on H is minimax in the sense that for
any fixed non-randomized design d and estimator §, the maximum risk of applying a
randomization procedure to d and using the corresponding permuted version of the
estimator ¢ is minimized when H-uniform randomization is used. We do not require any
special analytic property of §; thus non-linear estimators (which are sometimes proposed
for guarding against distribution violations) are allowed. The loss function could be
arbitrary, athough some invariant properties should be satisfied to ensure that we are not
estimating any feature of the nuisance parameters such as unit effects, etc.

An important observation leading to our broadened results is that to prove Wu’s
Proposition 1, no explicit expression of the risk functions is needed. The basic idea is the
standard concept that “suitable invariance” implies “minimaxity”, due to the Hunt-Stein
Theorem (see Lehmann, 1971). However, the result of Blackwell and Girshick (1954),
which shows the minimaxity of simple random sampling, is more relevant. This is because
unlike the cases where the Hunt-Stein Theorem usually applies, what our group actually
transforms are the nuisance parameters (unit effects, etc.), not the parameters of interest!
Furthermore, there is one special feature about the manner of evaluating the randomized
decision rules which makes our results different from any earlier results. Recall that in the
standard decision theory, after defining the risk for a non-randomized rule, the risk for a
randomized rule is defined to be the mean of the risks of its possible realized rules.
However, it is quite obvious that instead of the means, several other location measures
such as medians, quantiles, etc., may also be used to assess a randomized rule provided
that the possible mathematical difficulties can be removed. In other words, ideally we
should compare the randomized rules according to the stochastic orderings of their random
(due to randomization) risks. Our minimaxity results in Section 2 are established under
such considerations. Therefore, they provide a very sound basis for using randomization
procedures in guarding against model-violations.

The second part of this paper concerns the choice of a randomized design under the
same model-violation considerations as in Section 2 but without any restriction to the
competing class. However, we do require that the estimators be linear (but not necessarily
the least squares) and the loss function be the squared one. Furthermore, we evaluate the
performance of a randomized rule by defining its risk in the standard way; i.e., by
considering the mean risk only. These restrictions seem to be unavoidable for obtaining
useful results since the usual work on optimal experimental designs (which assumed no
model-violations) is based on these assumptions. Among the three commonly-used design
criteria, (A, D, and E criteria), our results are most closely related to the A-criterion. In
the block design (the two-way heterogeneity design, respectively) settings, we show that
the randomized strategy (i.e., design and estimator) which first chooses an A-optimal
design and then randomizes it in the standard way, i.e., randomizes completely the blocks
and the units within each block (rows and columns, respectively), and uses the usual least
squares estimators, is minimax.

These results extend Wu’s Theorem 1 and Theorem 3 which justified randomization as
well as balance from the model-robustness viewpoint for the no-blocking setup. We also
justify the use of least squares estimators in the appropriate randomization procedures. In
using A-optimal designs, we assume (by the loss function) that all treatments are of equal
interest. Recently, there have been considerable research interests on designs for comparing
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test treatments to a control treatment, Bechhofer and Tamhane (1981). In such cases, the
loss function should reflect the relative importance of the control and the test treatments.
In general, if the loss function is of the form (La — a)’ (La — a) where L is a p X T matrix
and a is p X 1 vector estimating La, which was referred to as a linear criterion or L-
criterion (see Kiefer, 1974, Karlin and Studden, 1966, or Fedorov, 1972), then our results
show that to obtain the minimax randomized strategy one only has to first search for the
corresponding optimal designs for the “assumed” (or ideal) model. After finding an optimal
one, then we should randomize it in the standard way and use the standard least squares
estimates. Having seen such results for the one-way and two-way settings, one is easily led
to the conclusion that similar results should hold for the k-way settings. Unfortunately,
this is true only when the complicated model which assumes the existence of all higher
order (up to k-1) interactions among the units is considered. For the usual additivity
model, the minimax randomized design may depend on the actual form of the class G of
possible models if 2 = 3.

Furthermore, our counter-example shows that for certain invariant class G, randomizing
the most symmetric design may sometimes be inferior to randomizing a less symmetric
design. This example illustrates the need for rigorous justification in applying randomiza-
tion in various settings. Like elsewhere, a careless application of Hunt-Stein’s idea or any
related concepts may incur misleading conclusions. But the crucial issue involved here is
not the compactness of the transformation group on the class G (permutation groups are
always finite and hence compact). The issue is how the group works. Usually, the
transformation group used here can be naturally decomposed into some basic subgroups.
(For example, in two-way heterogeneity settings, the transformation group involved is the
product of a row permutation group and a column permutation group). The relation
between the orbits of these subgroups and the block effects, row, column effects, or higher
order interaction effects turns out to be a very important consideration in obtaining the
results. (Such a consideration was implicit in Cheng and Li, 1980). If the orbits of the
subgroups correspond to block or interaction effects then our minimax results hold. (For
example, the orbits of the row permutation group correspond to the column effects and
the orbits of the column permutation group correspond to the row effects). However, for
the & = 3 way settings, the orbits of each subgroup which permute the levels of one factor
will correspond to (k-1)-interaction effects among factors which are not assumed in the
usual additivity models. This explains why we need a complicated model to ensure
minimaxity. Also, as a simple consequence, we obtain other randomization procedures
which are generated by groups of very small orders and are of the same efficiency as the
commonly-used ones when the squared loss function is assumed. Section 4 is devoted to
the proofs.

2. Minimax randomization procedures under general loss functions. Suppose
T treatments are to be assigned to N experimental units. A (non-randomized) design is a
function d from {1, --- , N} to {1, - - - , T'} with the uth unit receiving treatment d(u). Let
D be the class of all designs. In this paper, instead of defining a randomized design as a
probability measure on D, we shall conveniently treat it as a random element with the
nonrandomized designs as possible realizations. Denote the ith treatment effect by «; and
let @ = (ay, ---, ar)’. We now first present a simple example to illustrate the general
results we shall obtain. This example was already considered by Wu.

ExamPLE 1. No blocking. Suppose the yield (or response) y, of the uth unit satisfies
the following additivity assumption:

(2.1) Yu = Od) + 8u t+ €u, u=1-.--,N,

where g, is the uth unit effect and ¢, is the random error with mean 0. In the ideal case we
would assume g, = 0 (or a constant) and the random errors are homogeneous and
uncorrelated. But this certainly is not a good situation for justifying the use of randomi-
zation. In fact, there is always the possibility that the “true” model deviates from the ideal
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one. Let G be the set of all possible g = (g1, ---, &:)’. Let & be the set of all possible
probability measures of € = (&1, + -+, &)’. To reflect the vagueness of the experimenter’s
knowledge, we require that G and & are invariant under the group H of all permutations
on{l,.--,N};ie,gEG=>ng € Gand { € &= n{ € &for all 7 € H, where g = (g1,
<o, &avy)’ and #(§) is the probability measure of 7e when ¢ is the probability measure
of e. We denote the triple (a, g, £) by s, let S be the set of all possible s, and write 7s =
(a, 7g, 7§). Thus we have

(2.2) seES=ns€ Sforall7 € H.

Now we shall define the concept of a randomization procedure rigorously. Recall that
when applying any randomization procedure (e.g., the complete randomization) to a given
non-randomized design d, the possible realized designs will have the same replication
numbers as those for the original design d. Since it is clear to see that H(d) = {nd |7 € H}
is the class of designs with the same replication numbers as d, we define a randomization
progedure to be a a function ® on D such that ®(d) is a random element with possible
realizations in H(d) for any d € D. In particular, the complete randomization is a function
which maps d € D to hd, where h is the random permutation generated by the uniform
distribution on H. Thus we denote the complete randomization by h. We shall demonstrate
a minimax property for h, after discussing the problem of choice of estimators and loss
functions and the problem of evaluating a randomized strategy.

The loss function & considered in this section does not need any special analytic
property. We only require .#to be invariant in the following sense:

(2.3) ZLm(s), a) = L(s, a) for any 7 € H, s € S and any a in the action space <.

This invariance requirement amounts to claiming that what we estimate depends only
on a and in no way on g or £. For instance, we may take #(s, a) = (La — a)’(La — a)
where L is a p X T matrix and a € &/ = R”.

The choice of estimators should also be invariant under H in the following sense.
Suppose for design d, an estimator 8, which is a function mapping y = (yi, -+-, yn)’ to an
element in .«7, is used. Then we require that for design 7d, the estimator 78(y) = 8§(7'(y))
should also be used. This is a reasonable restriction, similar to that imposed by Blackwell
and Girshick (1954) in justifying simple random sampling, because when there is no model-
violation, the distribution of 7 '(y) under design =d is the same as the distribution of y
under design d. Thus when a randomization procedure ¢ is applied to design d for which
estimator § is used, the realized strategy (i.e., design and estimator) is determined and will
be denoted by ¢(d, 6).

Now we discuss the problem of evaluating a randomized strategy. As usual, the risk of
a non-randomized design and estimator (d, 8) under s € S is defined by r(d, §; s) =
E (s, 6(y)). But we do not assess a randomized strategy merely by its expected risks.
Instead, we consider the class % of real functions f on the class of all probability measures
of R such that f(pp: + (1 — p)yz) < max{ f(u1), f(uz)} for any 0 < p < 1 and any probability
measures u; and p2 on R. We also write f(X) = f(u) if X is a random variable with the
probability measure p. This broad class #includes the mean, median or any quantile (all
given a convenient definition if not unique) functionals of random variables. The following
result is what we shall prove:

Under (2.1)-(2.3), the complete randomization h is minimax in the sense that it

minimizes maxf;es(r(¢(d, 8); s)) over all randomization procedures ¢, for any f € &

and any design d and estimator 4.

The above statement follows from Theorem 2.1 below. We call this a “stochastic”
minimax property for h for the following reasons.

For any ¢ € R and any random variable X, define f;(X) = P(X > t). Observe that for two
random variable X and Y, X is usually said to be stochastically at least as large as Y if
f:(X) = f:(Y) for any ¢ € R. Also, it is clear that #contains any f;. Therefore the minimax
result preserves the genuine spirit of stochastic ordering. When taking f to be the mean
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functional, our “stochastic” minimaxity result is then reduced to a form with the standard
sense of risks for randomized strategies. This standard sense of minimaxity was already
explored by Wu with the use of the squared loss that reflects the experimenter’s equal
interests among all treatment effects (i.e., A-criterion) and the use of the least squares
estimates. But Wu further justified balance for treatment replication numbers. We shall
take up the same task in Section 3 for more complicated designs.

Now, we shall generalize the above notions and results to other design settings such as
block design or higher-way heterogeneity settings. This extension requires only an abstrac-
tion of the framework of Example 1.

Let S be a set of possible “true states” of nature, and H be a permutation group on {1,
+++, N}. Assume that for any # € H and s € S, 7s is well-defined and (2.2) holds.
(Implicitly, = will transform only the nuisance parameter part of s such as unit effects,
etc.) Replace the model assumption (2.1) by the following:

(2.4) for 7€ H,d € D and s € S, the yield y under #s and design 7d has a probability
measure equal to that of 7z where z is the yield under s and design d.

The loss function should satisfy (2.3). The definition of randomization procedures is the
same as before and we take @y to be the class of all randomization procedures. We also
require the choice of estimators to be invariant under H. The randomization procedure h
will be referred to as the H-uniform randomization. We have the following.

THEOREM 2.1. Under (2.2)-(2.4), the H-uniform randomization h is minimax in the
sense that it minimizes max.esf(r(¢(d, 8); s)) over all randomization procedures ¢ €
@y for any f € # d € D and estimator §.

The proof of this theorem will be given in Section 4. We now present two examples to
illustrate the application. These examples were already treated by Wu, but our theorem
strengthens his results.

ExampPLE 2. Block design setup. Suppose the N = Y2_, N, units are arranged into
b blocks with sizes N1, - - - , Np respectively. Consider the model:

(25) yu=¢xd(u,+ﬂb+gu+su, u=1,---,N,

where d is the design, g, is the uth unit effect, ¢, is the random error, 8; is the bth block
effect with unit u in block b. Take H to be the group of all permutations within blocks.
The class G of all possible g and the class & of all possible error distributions £ are assumed
to be invariant under H. Now take s = (a, 8, g, £) where 8 = (B84, - -, 85)’. Observe that
7s = (a, B, ng, 7f); (2.2) and (2.4) are satisfied; (2.3) amounts to claiming that what we
estimate depends only on « or B but not on g or & for any design d, H(d) is the class of
designs possessing the same treatment replication numbers for each block as those of d; h
is the procedure of complete randomization within blocks. Applying Theorem 2.1, we
obtain a stochastic minimax property for h.

When the block sizes are equal, ie., Ny =...= Np, we may consider a larger group H
generated by all permutations within blocks and all block permutations. Observe that if
7 = m - m2 Where m; is a permutation within blocks and 7, is a block permutation, then
7s = (a, m B, ng, nf); (2.3) claims that what we are interested in depends only on « and not
on B, g, or £ the H-uniform randomization h is the procedure of completely randomizing
the blocks and the units within each block. Thus if the model is invariant under H, then
h will be a minimax randomization procedure.

ExampLE 3. Two-way heterogeneity setup. The N = £ ¢, units are now arranged in an
4 X ¢; array. Suppose the model is

(2.6) Yi=@aip + Bitritgiteni=1 -, 4,j=1---,6,
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where B, is the ith row effect and r; is the jth column effect, g;; is the (i, /)th unit effect and
&; is the random error. Take H to be the group generated by all row permutations and
column permutations. Let s = (a, 8, 1, g, £ and #s = (a, m B, mr, 7g, 7€) where 7 =
ai-m2 and ary, 72 are row and column permutations respectively. The H-uniform randomi-
zation h is the procedure of completely randomizing the rows and the columns. Thus our
theorem gives a minimaxity for this procedure. It is interesting to note that under the
squared loss Y., {a; — as — (& — &)} 2 (A-criterion) and by using the least squares estimates
{a:}, Wu showed that randomly permuting the rows (or the columns) of a Latin square is
of the same efficiency as that of permuting both the rows and the columns and treatment
numbers. This greatly simplifies the Fisher-Yates “recipe” of randomization procedure for
Latin squares. However, if not for the Latin square with the A-criterion, the mean
functional, and the least squares estimator, permuting the rows (or the columns) only will
typically be inferior to permuting both rows and columns. Thus, the latter is necessary in
general cases.

3. Minimax randomized designs under the squared loss. In Section 2, we justify
several commonly-used randomization procedures from the viewpoint of robustness against
model-violations. However, to which designs should these procedures be actually applied
and what estimators should be used are still not solved. By the knowledge of the classical
optimal designs, we would expect the solution to be dependent on the criterion used. Thus
to successfully attack these problems, in this section we shall merely focus on the situation
where the loss function is a squared one and the mean functional is used to assess
randomized strategies. Moreover, we shall only consider the linear estimators (but not
necessarily the least squares ones). These restrictions are necessary because we need
explicit expressions for the risks of randomized strategies. Confining to these and under
the H-invariant considerations of Section 2, we shall obtain some general results which
reduce the problem of finding a minimax strategy to the classical problem of finding an
optimal design under an ideal model. For the cases where the classical optimal design
theory has provided a solution, say d°, our results then provide a minimax strategy
h(d’, §°), where h is the H-uniform randomization procedure and 6° is the (weighted) least
squares estimators; in other words, H-uniformly randomizing a classical optimal design
(for suitable criterion) and using the (weighted) least squares estimators is a minimax
randomized strategy when the class of possible true models is H-invariant. Specifically, we
consider the following setting.

Suppose T treatments are to be assigned to the N = Y%_; N, units which are classified
into B blocks, where N, is the bth block size. Within block b, the N, = [[%% ¢ units are
arranged according to n(b) factors so that when n(b) = 2 they form an n(b)-dimensional
hyper-rectangle of size £{?x - .. x¢%,, where ¢{? is the number of levels of the ith factor
in block b, and when n(bd) = 1, the N, = ¢ units are assumed to be of the same level. To
avoid trivialities, we assume ¢} o = 2. The uth unit, when it falls in block b, is now labeled

by (i, -.-, ;}b’, oe, i), where 1 < i < ¢£©. Assume that

(3.1) Yu= Old(u) + Bb =+ 271.61) (h”’ P i) + gu + €y,

LN

where B, is the bth block effect and
' BGb,...,...it0)
is the mteractlon effect of all but the jth factor in block & at levels i,
o i, i, - ., i, respectively. Note that all the lower level interactions of factors in
the same block are implicit in this model. The set G of all possible g and the set & of all
possible error distributions are assumed to be invariant under a group H to be specified
below.

For any b and j such that 1 < b < B and 1 =j < n(b), take H/® to be a doubly transitive
group on {1, - -+, £?}; i.e, for any ki, ks, ks, ks € {1, - -, £} such that k; 5 &, and ks 5
k4, there exists some 7’ € G/ such that 7'(k:) = ks and 7’(ks) = k4. For any »’ € H/®,
define a permutation = on {1, ..., N} by letting (1) = u for u & block b, and 7(u) =
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GP, oer, i, 7 G, L}Z’l, cee, i8)) when u= (i, ---, i%))). Let H? be the group of all
such 7 derived from ' € H/®, It is clear that an element in Hf permutes the levels of
factor j in block b and any two H commute. Let H be the group generated by all Hie,

(3.2) H=1& 11 H.

Note that (3.1) is reduced to (2.1) ((2.5); (2.6), respectively) when B = 1 and n(1) = 1
(n(d) =1for 1 < b =< B; B =1 and n(l) = 2, respectively). It is also clear that the H’s
considered in these examples are of the form (3.2).

We are interested in estimating p contrasts among the treatment effects and want to
use a squared loss function and linear estimators only. More explicitly, take s = (a, B, &,
£) where B is the vector of block and interaction effects, and define

(3.3) Z(s, a) = (La— a)'(La — a),

where L is a p X T matrix with zero row sums, and a € & = R?. Also denote a linea.
estimator by a p X N matrix § and a randomized strategy by (d, 8); and recall the definition
of the risk function r. We shall find a minimax randomized strategy that achieves

(3.4) mingsmaxsesEr(d, 8; s).

To make risks finite, we assume that & contains only the probability measure § with
finite second moments. Since only linear estimators are considered, the risks depends on
the covariance matrix V of £ Thus hereafter we replace £by V and let ¥~ be the set of all
possible V’s.

The minimax solution of (3.4) is related to the following classical optimal design
problem. Set g, = 0 in (3.1). Assume that &.’s are uncorrelated, with means 0 and known
(up to a constant) variances o% where b is the label of the block containing unit . Under
such an ideal model and the squared loss (3.3), it is clear that no randomization is
necessary. Also, the best linear unbiased estimator (b.Lu.e.) is the weighted least squares
one. Using the b.L.u.e., we reduce the problem to finding a design which minimizes

trace[ (L, 0){X’ diag(s3")X} (L, 0)'],

where X is the usual design matrix, diag(c5?) is the inverse of the covariance matrix of
&.’s, 0 is the zero matrix, and A~ denotes any generalized inverse of A. These were called
the L- or linear criteria in the optimal design literature. Denote any optimum design under
this criterion by d°. For the case where the o%’s are equal and L is chosen so that (3.3)
becomes L(s, a) = Y j-1 (i — aj — a; + a;)?, the linear criterion is often called the A-
criterion. A-optimal designs have been found in many settings; for example, the balanced
block designs (Kiefer, 1958), some group divisible designs in the block design settings
(Cheng, 1978a), Generalized Youden designs (G. Y. D.) (Kiefer, 1975). When there exists
a control treatment (say, the first treatment is a control), one may want to use an L for
which the loss function (3.3) becomes Z(s, a) = Y7 (& — a1 — a@; + a:)”. Several balanced
treatment incomplete block designs are found to be optimal under this criterion (Notz,
1981).

The following is a recipe for finding a minimax solution of (3.4): (i) suitably define the
oy’s by some feature of G and ¥: (ii) find an L-optimal design d° (iii) H-uniformly
randomize d° and use the b.Lu.e. 8°.

In short, h(d®, 8°) is minimax. To define o, we need some notation. The cardinal
number of a set (or a group) A is denoted by #A. For each b € {1, .-, B}, let AP =
{yly c {1, ---, n(b)}} and define H: = [[;e, H? for y € A®. For g € R" define g" =
(-1)* Y. He wg/#H 7, where k = #v. Now let gps) be the projection of g € R” on block b,

.e., the uth coordinate of gp;; equals that of g or 0, depending on whether u falls in block
b or not. Then define gp; =Y ea® g},,- Fora N X N matrix V with the uth column vector
Vi, let V{; be the N X N matrix with the uth column vector V) and define V[b]
((V51)") fs1. Finally, define

(3.5) O% =Cp- max(g,v)eGXV{ " g[,,] "2 + trace V[b]}, b= 1, LI B,
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where || - || is the Euclidean norm and
1
¢ =77 Zyen [Ley (G
b
(the product over an empty set is 1).

THEOREM 3.1. Suppose (3.1)-(3.5) hold. If there exists a (g°, V°) € G X ¥ which
simultaneously achieves all the maxima of (3.5), then h(d°, 8°) is @ randomized strategy
which achieves (3.4).

Now we apply this theorem to the settings of the three examples of Section 3. For the
settings of Examples 1 and 3, we only have one block; i.e., B = 1. This greatly simplifies
the matter. We do not have to verify the existence of (g° V°) and the b.lLu.e. is the least
squares estimate. Thus in Example 1, a minimax randomized strategy is to completely
randomize an L-optimal design and to use the least squares estimator. In particular, when
the A-criterion is assumed, the balanced completely randomized design together with the
least squares estimator is a minimax strategy. This slightly strengthens Wu’s Theorem 1
and Theorem 3 which justified balance as well as randomization but the use of the least
squares estimator was assumed. For Example 3, completely randomizing the rows and the
columns of a G.Y.D. (whenever existent) together with the use of the least squares
estimator is a minimax strategy. In general, when k-way setting is assumed and all higher
order interactions are present so that (3.1) holds with B = 1, the minimax randomized
strategy can be found in a similar way. However, for % = 3 if the setting does not include
the interaction effects, then Theorem 3.1 does not apply. This is demonstrated in the
following example.

ExXaMPLE 4. Suppose 8 experimental units are classified by 3 factors. Each factor has
2 levels (high and low). Thus each unit can be labeled by (i, j, k) where , j, k = 1 or 2.
Suppose there are only two treatments. Instead of (3.1), we consider the following simpler
additivity assumption:

(3.6) Yu = 0qw + B+ Bz + Bar + 8u + €u,

where By; is the first factor’s ith level effect, and By, B are defined similarly. This model
is valid when the interaction effects are known to be negligible. The class G of all possible
unit effects and the class ¥ of all possible covariance matrices for the random errors are
again assumed to be invariant under the group H of all the permutations of the factor
levels. Since (3.6) is not of the form (3.1), Theorem 3.1 does not apply. In fact, for the A-
criterion, the associated classical design problem (i.e., finding an A-optimal design for
model (3.6) when g, = 0 and the ¢,’s are uncorrelated with a common variance) has the
following two solutions d; and d;:

d: |A|B B|A d:: |A|B| [A|B
Bl A A|B B|A B|A

where A and B denote the treatment labels; for each design, units in the first and the
second squares are those with the third factor at low level and high level, respectively. If
the conclusion of Theorem 3.1 were true, then we would expect that randomly permuting
the factor levels for d; and d» (and using least squares estimators) would yield the same
maximum risks for any H-invariant G and ¥ because they should be both minimax.
However, the following two special G’s disprove this assertion:

o o |( B0 B )- (.
]

0 01 1/0
. 1 0] 1 01
(i) GZ‘{(O 10)’(10

e =l =)
(=3 R =}
(=1 R =31
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Both G; and G; are H-invariant. To simplify the computation, assume that the random
errors vanish. Consider the case G = G;. It is easy to find that the maximum mean squared
error for the strategy of H-uniformly randomizing d;(respectively dz) and using the least
squares estimator is equal to 0 (respectively 1). Thus d; performs better than d; when G
= G,. However, similar observation leads to the opposite conclusion (i.e., d: is better than
d;) when G = G.. Intuitively, d; should always be more desirable than d; since it possesses
better symmetry properties. However, the above discussion shows that this intuition may
sometimes be misleading. This also demonstrates the importance of Wu’s rigorous treat-
ment on the justification of the role of randomization from the model-robustness viewpoint
although it seems to have been well accepted.

For the k-way (k = 3) settings without interaction effects, Cheng (1978b, 1980) showed
that the Youden hyperrectangles (Y.H.R.) are A-optimal. (The two designs d;, d; in
Example 4 are both Y.H.R.’s). However, due to the above consideration, H-uniformly
randomizing a Y.H.R. does not necessarily provide a minimax strategy. Moreover, the
actual minimax strategy may depend on the actual form of G. This then creates many
difficulties in finding a solution and we have no satisfactory answer yet.

We turn to the block design settings of Example 2. The H here contains all permutations
within each block. It is clear that

o 1
81 = 8ol — N, (Euebxockb gu) 15

where 1 is the vector of ones, ¢, = 1/(Ny — 1), and with V = (vuw) € ¥,

N 1
trace Vi = Zueblockb Vuu = 35 Zu,u'eblockb Vuw.

Ns
Thus for any specified G, it is not hard to actually compute o}. But the conclusion of
Theorem 3.1 may or may not be true, depending on whether the ¢%’s are achieved by a
common (g°, V°) or not. If we take, for instance,

G=G.={g:|gllsk)},G=G:={g:|8u.| < k for each u},
or
G = G; = {g|for each b, Y uevlocko &« =0 and | g.| < k, for u € block b},

where % and the &,’s are constants, then the ¢%’s can be achieved by a g°. Thus a minimax
solution can be found by the general recipe given before. In particular, consider the case
where block sizes are equal, ¥ contains only the identity matrix, and A-criterion is desired.
If the o%’s are equal (for instance G = Gi, G = G2, or G = G with equal k,’s), then
randomizing the units within each block of an A-optimal block design (e.g. a B.B.D.) is
minimax. Note that in such cases we do not need to randomize the blocks. However, if we
take, for instance,

G = Gy=U%}_: {g| |8«| =k for u € block b and g, = 0 elsewhere},

then for different blocks their o%’s are achieved by different g’s. For such a case, only
randomizing the units within each block is not minimax. The common sense suggests that
one should randomize both the blocks and the units within each block. But to justify this,
we need to consider a larger transformation group H® which contains both the original
group H and a group H, that permutes the blocks. This enlarged group H® cannot be
represented as the form of (3.2) because H, and H do not commute. Therefore we need a
different theorem to handle this case. The following development is mostly motivated by
this consideration. ‘

Suppose that Ny = Nz = :-- = Np,n(l) =n(2) = -.- =n(B) =n,and £’ = £P= ...
=8 =¢,j=1,2, ..., n. Take a transitive group H, on {1, .-, B}; i.e., for any %1, k>
€ {1, ..., B}, there exists some 7’ € H such that #'(k;) = k.. For any =’ € H¢, define a
permutation 7 on {1, - -+, N} by #(i{?, .-+, i) = (i{"®, ..., i{"®); clearly, 7 is a block
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permutation. Let H, be the group of all such 7’s. Now define H® to be a group generated
by the H of (3.2) and H.. Denote the H’-uniform randomization by h°.

THEOREM 3.2. Suppose (3.1) and (3.3) hold. If G and ¥ are invariant under H®, then
h°%d°’, 8°) achieves (3.4) where d° is an L-optimal design (defined before) with ¢3 = - - -
= 0%, and 8° is the least squares estimator.

Applying this theorem to the block design setups of Example 2 with equal block sizes,
we see that applying the standard randomization procedure to an A-optimal design and
using the least squares estimator is minimax. Moreover, it suggests a simpler randomization
procedure; i.e., instead of completely randomly permuting the blocks we may just randomly
rotate the blocks. This is because we may take H. to be a cyclic group. This simplified
procedure is not only easier to implement but also enjoys at least as many robustness
properties as the standard one when the squared loss is concerned. To see this, we simply
observe that if a (G, ¥') is invariant under the group of all block permutations and the
permutations within each block, then it is also invariant under a smaller group that
contains only a cyclic group of block permutations and any permutations within each
block. Similar argument also applies to the cases covered by Theorem 3.1 and we conclude
that randomization procedure generated by a doubly transitive group is as good as the
complete randomization. But in general a doubly transitive group with a simple form and
a small order is not easy to obtain. For some particularly simple cases (e.g., a product of
two cyclic groups may sometimes be doubly transitive), see Burnside (1911).

4. Proofs. To save space, some of the proofs are only outlined. For details, see Li
(1981).

Proor oF THEOREM 2.1. It is clear that we need only to show that for any f € & and
S € S,
(4.1) ming,max,enf(r(¢(d, 8); 7s)) = max,euf(rh(d, 8); 7s)).

Observe that for any = € H, r(nd, n8; nsy) = r(d, §; so); this is due to the invariance
properties of the model (2.4), the estimator and the loss function (2.3). Define a real
function / on H by I(7) = r(nd, n8; so). Then,

r(e(d, 8); mso) = r(z”'¢(d, 8); s0) = L(m™"p).
We may write (4.1) as min,max ,exf(l(7d)) = max,euxf(l(7h)); equivalently,
4.2) min,e ,max,enf(l(mp)) = max,enf(I(m)),

where o is the uniform distribution on H, .# is the class of all probability measures on H,
and /(my) is the distribution of I(w¢)) when ¢ has probability measure p.
Obviously, for any g,

1 1
;I—IZ;,EH au=po and ’#TIZwGH L(mu) = L(uo).

Hence for any u € # and f € %, f(I(w)) < max,ecqf(I(7y)) by the definition of Z.
Therefore (4.2) holds since zpo = po for any 7 € H. 0

Proor oF THEOREM 3.1. To proceed, a sequence of lemmas will be presented first.
LEMMA 4.1. Under (3.1)-(3.3), we have
(4.3) min 4 5 max.esEr(d, 8; s) = max,esminq,s Er(h(d, §); s).

Roughly speaking, this lemma suggests that in order to find a randomized strategy
achieving (3.4) we may first choose a suitable non-randomized strategy (d, 8); then we
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apply the H-uniform randomization on the design d, and use the estimator accordingly.
We now proceed to evaluate Er(h(d, 8); s). Write Y = ( Y1, o+, yn) and aqg = (aqq), « -,
aan))’; let 2 be EY under @ = 0 and g = 0 (£ depends only on 8 ); for any g ERY, define
€ = Y.en mg/#H,; for any symmetric matrix V, define

= 1
V= ZH Y -er m(V) where 7(V) = (Wm15yam)) for V = (vy).

LeEMMA 4.2. For any (d, §),
Er(h(d, 8); s) = | La — 8(aa + B + g)||* + traced((g — g)(g — 8) + V)&,
where s = (a, B8, g, V).

To avoid having an infinite maximum risk, it is necessary for the estimator to satisfy an
unbiasedness condition when g = 0. This will be made explicit by the notion of orbits. The
orbit of an element u under a group X is the set {=(«) | 7 € K} and is denoted by K (u). For
any subset A C {1, - - -, N}, define 1, to be the vector in R” with the ith coordinate equal
to 1 or 0 depending on whether i € A or not. Thus for n(d) = 2, 1 <j=n() and u =
(&1, «++, inw), 1,2, i the expectation of Y when B{?’ ., ... =1 and all other parameter

values are 0. Similarly, forn(d) =1, 1 Hw 1S the expectation of Y when 8; = 1 and all other
parameter values are 0. Let

W= {a|a€R", a'l, =0,ucblockb, - b=1-...,Bandj=1,..., n(b)}.
LEMMA 4.3. A necessary condition for max.esEr(h(d, 8); s) to be finite is that each
column vector of 8’ belongs to W and day = La for all « € RT.

Let U be the class of any non-randomized strategies (d, §) such that & satisfies the
necessary condition in Lemma 4.3. Without loss of generality, we may restrict the
randomized strategies to have supports on U. The following lemma will be used to simplify
Er(h(d, §), s). Recall some notations from Section 3.

LeEMMA 44. For any a € W, g € R”, and any symmetric N X N matrix V, we have

(4.4) a'g=0,

(4.5) a'(g—g(g— g'a=agga,
(4.6) a'gg a= Yol gmll® - | am®,
and

4.7 a’'Va =YY%, ¢, trace Vi - || ap |2

We now combine these lemmas to complete the proof of Theorem 3.1.
First, by Lemmas 4.2, 4.3 and 4.4, we obtain

(4.8) Er(h(d, 8); s) = Y51 cs(|| &1 ]|* + trace Vipy) - trace 8is(Ser)

where i3 is a p X N, matrix with each row vector equal to the component of the

corresponding row vector of § on the block b.
Next, by Lemma 4.1, (4.8) and the assumptions of Theorem 3.1, we have

minq,smaxesEr(d, §; s) = maxesmings) Erth(d, 8); s)
= maxesming,nev Yo-1 co(|| &z ||* + trace Viy) - trace@s87)
= minwsev Yo-1 co(|| &l || + trace Vi) - trace(dz07s)

= min,sev Yo-1 03 trace(8s;87s).
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By the definition of (d°, 8°), we see that the above minimum is achieved by d° 8°.On
the other hand, for any s € S,

Er(h(d’, 8°); s) = Y51 o3 trace(8{sd¢h).
Therefore, maxsesEr(h(d’, 8°); s) = minq,smax.esEr(d, 8; s) and Theorem 3.1 is proved.
It remains to establish Lemmas 4.1-4.4.
ProoF oF LEMMA 4.1. For any s* € S and any (d, 8), if d has probability measure g,

1
max,esEr(d, 8; s) = max,enErd, 8; n7's*) = yad Y.en Erd, 8;77's*)

= Yo pd) « Yoen r(nd, 7d; s*)/#H
= Yaas p(d) - Er(h(d, 8); s*) = minw,s Erth(d, §); s*).
It follows that mingsmax.es Er(d, 8; s) = min,s Er(h(d, 8); s*) for any s* € S. Hence
the lemma holds.
ProoF oF LEMMA 4.2. By (3.1), (3.3), we have
Er(h(d, 8); s) = Er(d,8;h™'s)
=E[|La— & - (as + & + h7'g) || + trace{sh™(V)&'}]
=|La—36-(aa+ B + Eh‘lg; |I? + trace{s Cov(h‘lg)ﬁ’} + trace(6V9’)
=||La—38- (aa+ B+ g)|” + trace{d(g — 8) (g — )9} + trace(6Vé’).0

ProOF OF LEMMA 4.3. In view of Lemma 4.2, the proof becomes straightforward. (I

PrOOF OF LEMMA 4.4. Observe that
(4.9) 7g =g forany « € H.

Take 7 to be any permutation in H} and we see that g is a constant for any coordinate in
H}(u) where u € block b. By the definition of W, we see that (4.4) holds.
Next, to verify (4.5), it suffices to showa’gg’a =0 = a’gg’a. Now,

= 1 ' = ’ 1 I= ’
a'gga= %0 Yrcna'ng(ng)'a = ZH Yr.cua'g(wg)'a =0,
where the second equality holds by (4.9) and the last equality is due to (4.4). A similar
argument completes the proof of (4.5).

Next, we need some lemmas to prove (4.6) and (4.7).

LEMMA 4.5. Foranya € W, a'gg'a= YE 1 atpgruigiaas-

This lemma suggests that we may assume B = 1 in proving (4.6) without any loss of
generality. Thus we delete the block label b from all the notations hereafter (e.g., H; = H?,
g = g[b], n(b) =n, HI; = Hy, etc.)

LEMMA 4.6. Fory#Q, (8)"=0.

LEMMA 4.7. Foranya € W, a'gga= a'ggFa.

In view of Lemma 4.6 and Lemma 4.7, to establish (4.6), we may assume g'=0fory
# & and show that a’gg’a = c| g||?|| a||> where ¢ = ¥, [[;&,(¢4 — 1)™'/N. Thus, fixing u
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€ [1, ---, N}, denoting the uth column of gg’ by w = (wi, -+, wn)’ and writing a =
(ai, - -+, an)’, it suffices to show that
(4.10) wa=c| g|’a.
To proceed, define U, = H,(u) — Uje,H,-(; (u) for y #* &. Evidently,
(4.11) lyup = Zwey lgw — 1o,
and
(4.12) U,NU,=3 forany y#vy'.

The following lemma is crucial to get (4.10).

LEMMA 48. For any u', u” € U,, we have w, = wy,. This constant equals
(~1*N7 | g2 TLey (4 — 1), where k = #y. In particular, we have w, = N7 | g|*.

Write A, = (— 1)”N_1 lgll? e (4 — 1)7". By (4.12) and Lemma 4.8, we get w'a =
Zy;eg}\ylua + N7'| g ||%a.. Hence it suffices to show that 1y.a = (—1)*a., where k& = #y.
This will be proved by mathematical induction. When y = {1} by the definition of W, 0
=1lhwa =1ya + aa,. Thus our assertion is true for £ = 1. Suppose it is true for #y = k.
Forj & v, by (4 11) and the induction hypothesis we have

1yupa = Ywev, g a—1ya=0-1ya= (-1)*"'a,

Therefore (4.10) is established and so is (4.6).
Turning now to (4.7), let V*/? be any square root of V. Denote the uth column vector

of V2 by e,. By (4.6), we have
aVa=a' Y\ ee.a=Y\ a'eeia=Yi1 Yo ol &’ - apprare:

Thus, it suffices to show that trace Vs = Yol; || 8611 % Let A, be the N X N matrix such
that A,g = &) for any g. Now we have

YN0 | &ugsr |2 = trace YA Eupire = trace Yu-1 Ase,e,A’, = trace AtVA's
= trace VinA'’ = trace A,(V{%) = trace Vi
Hence (4.7) is established. The proof of Lemma 4.4 is complete. [

ProOF OF LEMMA 4.5. An argument similar to that used in proving (4.4) leads to the
conclusion that for any u, u’ in different blocks b, b’, the (u, u’)th cell of gg’ equals the
(u, 7(&’))th cell, for any # € H?, j =1, -+, n(b’). In view of this and by the definition of
W, Lemma 4.5 follows. 0]

PROOF OF LEMMA 4.6. This can be verified by using mathematical induction and
observing the following two facts:

(4.13) (g +g) =g/+g forany g, g€ERY;
(4.14) @V =g if jé&y,
= —g’ if jey.O
ProOF OF LEMMA 4.7. Write § = g + Y, g and compare both sides of the equation
to be established in Lemma 4.7. It suffices to show that a’zg” = 0 for any = € H, any
v # & and any a € W. Since W is invariant under H, we may only show a’g” = 0 for any

a € W. Now, this assertion can be verified by using mathematical induction, (4.14), and
the definition of W.O
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Proor oF LEMMA 4.8. Since each H, is doubly transitive, it is clear that for any u’ and
u” € Uy (which implies u 7 u’ and u # u”) there exists a = such that 7u = u, 7u’ = u”.
Now, since gg' = wgg'n, we get w, = w,~ by comparing the (z, u’)th cells of these two
matrices. Thus the first statement is proved for #y = 1. For general y, the proof is similar.
We now compute the constant for each U, by mathematical induction.

First, the diagonal elements of gg’ are the same due to the transitivity of the group

"_, H;. This constant is easily verified to be N™' || g |%, by considering the trace of gg’.
Hence we have shown w, = N7' || g

Next,let z = (zy, - - -, 2,)’ = hg. Clearly, Ezz' =gg’ and w, = Ez,z, . By the assumption
that g = 0, it follows that Y,ew znw = 0. Thus —2zi = Yyeu, 2u2w. Taking
the expectations on both sides, we obtain —w, = Zu’evm wy = (4 — 1)wy. Hence wy =
~(4—=1)7". N7'. | gl? as desired.

Next, suppose that our lemma is true for some y. We shall find the desired constant for
yU {j} where j & y. For any u’ € U,u;;, there exist some m; € H, and some 7, € H; such
that m1(u) € U, and mm(u) = u’. Now, g} = 0 implies Y,c Zmw = 0 and thus we get
2u2m ) = —27,51-11_(1) 2uZqn,w), Where £ is the identity permutation. Observe that 7 (u)
€ U, for any = € H; — { # } and take the expectations on both sides of the last equality.
It follows that w, w) = —(¢; — 1)w.,. Hence

e = —(4 = 1) waw = DN g2 [liewin (46— D7

where the last equality is due to the induction hypothesis. The proof for Lemma 4.8 is now
complete. 0 '

Proor oF THEOREM 3.2. Define
1 1

gO = m 21,51{0 T8 and VO = —#—Hﬁ ZWEHO W(V)
By arguments similar to those in the proof of Lemmas 4.1-4.3, we see that
(4.15) Er(h° (d, 8); 5) = || 38" ||> + trace[5{(g — g°)(g — &°)’ + V}°0'],

for (d, 8) such that the maximum risk is finite. Write M = (g — g°)(g — g°)’ + V. We claim
that for any a € W,

(4.16) ag’=0
and
(4.17) aMa=A|a|?

for a constant A depending on M but not on a.
First, observe that
1

g = #H. YneH, TE.

Then (4.16) follows easily from (4.4). Next,

a’Ma = #}{ Yren, &7M7 'a (where 7 is treated as a matrix)
1 ‘ ~ _
=ZH Seer. Yo-1 ¢ trace M - || (77 'a)n || (by (4.7))

1
= Y2, cs trace My - (—# 3 Yrer || ap-onl| 2)

= ZbB=1 cp trace IVI[I,] . (B_l " a "2)
= (B_l 21?=1 cp trace M[b]) . " a "2 =A. " a "2:
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where the fourth equality is due to the transitivity of H:. Thus (4.17) holds. From
(4.15)-(4.17), we get

Er(h°(d, 8); s) = A(s)trace(88’),

where A(s) is some positive constant depending on s. The rest of the proof is similar to that
of Theorem 3.1.
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