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ON THE SECOND ORDER ASYMPTOTIC EFFICIENCY OF
ESTIMATORS OF GAUSSIAN ARMA PROCESSES

By MaAsANOBU TANIGUCHI

Hiroshima University, Japan

In this paper we investigate an optimal property of maximum likelihood
and quasi-maximum likelihood estimators of Gaussian autoregressive moving
average processes by the second order approximation of the sampling distri-
bution. It is shown that appropriate modifications of these estimators for
Gaussian ARMA processes are second order asymptotically efficient if effi-
ciency is measured by the degree of concentration of the sampling distribution
up to second order. This concept of efficiency was introduced by Akahira and
Takeuchi (1981).

1. Introduction. Let {X; ¢t =0, £1, 2, ...} be a Gaussian autoregressive moving
average (ARMA) process with spectral density f3(A) which depends on an unknown
parameter § € R". In this paper we show that appropriately modified maximum likelihood
and quasi-maximum likelihood estimators (MLE and ¢-MLE) of 6 are second order
asymptotically efficient in the sense of Akahira and Takeuchi (1981).

Although there has been much discussion of the “efficiency” of estimators of 6, the
term “efficiency” has often been used only in the sense that an estimator has the same
limiting distribution as that of Gaussian maximum likelihood estimator. Hosoya (1979),
Akahira and Takeuchi (1981), and Takeuchi (1981) deal with higher-order efficiencies for
time series analysis. Hosoya (1979) showed that the maximum likelihood estimator of a
spectral parameter is second order asymptotically efficient in the sense of Rao (1962).
Akahira and Takeuchi (1981) showed that an appropriately modified maximum likelihood
estimator of the coefficient of an autoregressive process of order 1 is second order
asymptotically efficient in the sense of degree of concentration of the sampling distribution
up to second order. This concept of efficiency was introduced by Akahira and Takeuchi
(1981), and these results are reviewed in Section 2. Takeuchi (1981) gives a brief guide to
higher-order efficiency in time series.

2. Second order efficiency. We consider the approach .of Akahira and Takeuchi
(1981) whose argument proceeds as follows. Let X7 = (X3, - -+ , Xr)’ denote a sequence of
random variables forming a stochastic process, and possessing the probability measure
P7(.), where 8 € ©, a subset of the real line. If an estimator 07 satisfies the equation

@.1) limr.oVT | PF{NT(lr — ) <0} — % | =0
then Oris called a second order asymptotically median unbiased (or second order AMU for
short). For this dr, the asymptotic distribution functions F (x) +% G (x) and Fi(x) +

i Gy (x) are defined to be the second order asymptotic distributions of VT (91 - 0)if
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2.2) limp,uVT| PINT(@r — 8) < 2} — Fi(x) ——= Gi(x)| = 0
JT

for all x = 0,

2.3) limpodT | PT(VT@r — 8) < x) — Fi(x) ——= Gs ()| = 0
JT

for all x < 0.

For 6, € O, consider the problem of testing hypothesis H*: 0 = 6, + % (x > 0) against
T
alternative K: 8 = 6,. We define B (x) and vz, (x) as follows:

. 1
(24) sup(AT;eq,,llm SUPT-» ﬁ{PZ:,(AT) - ,B(I,(x) - ? y;ﬂ,(x)} = 0,
T

where @, is the class of sets Ar = {«/7‘ br-0) < x}, with @7 second order AMU. Then we
have for x > 0

Phn/ (A7) = Pl Ji{NT(lr — 0 — x/JT) < 0) = % + o(1/VT).
By (2.2) and (2.4) we have

lim supr.« ﬁ{F&,(x) + L Gi(x) — Ba(x) — i y;y*o(x)} <0 forall x>0.
JT JT

Also consider the problem of the testing hypothesis H™:0 = 6, + xNT (x < 0) against
alternative K: 8 = 6. Then we define B5,(x) and yg (x) as follows:

25) infeaneo, lim infr. ﬁ‘{P%(AT) — Binlx) - — w:(x)} =o.
JT

In the same way as for the case x > 0, by (2.3) and (2.5) we have

.. 1 1
lim infr. «/_T_{Fio(x) +ﬁ Go(x) — Ba(x) —ﬁyg_o(x)} =0 forall x<O.

Thus we make the following definition.

DEFINITION 1 (Akahira and Takeuchi, 1981). A second order AMU {07} is called
second order asymptotically efficient if for each § € ©

B (x) +Ly§'(x) +0(1/VT) forall x=0
JT

limroPT{VT (0r — 0) < x} =
B7(x) + 1 vi(x) + 0(1/¥T) forall x<0.
JT

The above definition means that if 8% is second order asymptotically efficient, then we
have, for any second order AMU estimator 67,

lim infr VT[PI{—a < VT(@% — 8) < b} — P{{—a < VT(br - 0) <b}]1=0,

for all § € © and @ > 0, b > 0. That is, this second order asymptotic efficiency implies the
highest probability concentration around the true value with respect to the second order
asymptotic distribution. We can regard the bound distribution B87,(x) + v4,(x) NT as an
approximation of the power function of the testing hypothesis H*: 0 = 6, + xNT (x> 0)
against alternative K : 8 = 6, at significance level % + o(1 NT). By the fundamental lemma
of Neyman and Pearson this bound distribution can be given by deriving the asymp-
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totic expansion of the likelihood ratio test which tests the null hypothesis H: 8 = 6, +
x/ ﬁ(x > 0) against the alternative K:0 = 6, at significance level % + o(1/ \/7'). If we
consider the problem of testing hypothesis H™ : § = , + x/5/T (x < 0) against the alternative
K: 0 = 6o, we can give B7,(x) + v7,(x)/~T similarly.

3. Basic theorem, In this section we present a basic theorem which enables us to
evaluate the asymptotic moments of the maximum likelihood estimator.
We introduce 2 and Parma, spaces of functions on [—=, 7] defined by

D= A{f:f\) =Yi—w a(wexp(— iul), a(v) = a(— u), Y- | u || a(w)] < =},
o’ | Y90 aje |?

In this latter expression p and g are positive integers, and A(z) = Yo a2z’ and B(2) =
20 Bjz’ are both bounded away from zero for | z| < 1. Noting Theorem 3.8.3 in Brillinger
(1975), we have the following proposition. '

DarMA = {f:f()\) = (0® >0)}-

ProposiTION 1. (i) If fi, f2 € Da, then fi - fo € Dh.
(ii) If f € Darma, then f—l € DArRMA.
(ili) If f € Darma, then f € D,. o

For the subsequent discussions we introduce the following theorem.

THEOREM 1. Suppose that fi(\), « -« , [:(A) € Da, &1(N), «+ - , &(A) E Darma. We define
Iy eoe , Ty Ay, -+, A, the T X T Toeplitz type matrices, by

Fj = (J’ ei('"“””‘fj(}\) d}\),
A= < f e’ g (\) d>\>,

mn,=1,...,T,j=1,-.,8.If¢Tk), k=1, ..., T, are the eigenvalues of T1AT'TA;"
«oo TLASY then

YoM (k) = 2—;] AQ) < A& - (M) AN+ O(TT).

S|~

ProOF. First, we show that each A; is nonsingular. Since g; € Dsrma, there exist Fi, F
such that 0 < F; < g;(\) < Fy < ».If p; < - . . < prare the eigenvalues of A;, we have 27F}
=< p1 = :++ < pr < 27F; (Grenander and Szegd, 1958, page 64), which implies the
nonsingularity of A;.

Second we show that

3.1) T %r{Mr() -+« Mr(y)) — Mr(1 - -+ ¢)} = O(T™Y),
where Y, - -+ , Y, € Ds, and Mr(y;) is the T X T-Toeplitz type matrix,

MT(‘I"I') = (2_1'”J‘ ei(r_t)}\\l/i(A) d}\), r)t= 1’ ctt T) ]= 11 e )&

Denote m,.(y;) for the (r, t)-th element of Mr(y;). Since y; € D,, it follows that
Y(A) = Yo-—w yi(we ™,
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where
Tl ul | @] <2,j=1, .-, 4
Let Sr =% tr(Mr(41) -+ Mr(§)) and Lr = L tr(Mr(ds, - -+ ¥)).
We have

1
Sr = 7' le;:,l,.. =T Moy, (W1) Mo, (P2) =« « Mipn, ()
= l Yi= Tl ’ Yi(A)efmmA gy L. -1_ ’ Ye(N)eir—mN gy
T s 2 - ' 2m —n ’

1
= 7,21snl,~--,n,57‘ Yl(nl —ng) +-- W(n/— ni)

. . . > T—K(j, -+, Je1)
= 2—T+1sjl,~--,j/_lsT—1 Yl(Jl) s W—l(]f—l)Yf(—]l — e _]t’—l) X ]lT Jet )

where K (ji, « -, js-1) is chosen suitably and satisfies
| KGy, «+ s Jed)| S ||+ ee + e |-
On the other hand

m=§f¢ﬂ»~MM&
”—'n

= Z—msjl,~-~,jz-.5w Yl(jl) e Y{—l(j{—l)Y((_ j1 — e _jt’—l)-
Thus we have

| St — LT| 52* | Y1) <o YeAl=Jr— - _jt’—l)l
3-2) . . . AR AN
+ 2|j,|,...,[,‘,_,|57‘—1 | Y1(J1) s W(— J1L— oo —jz—1)| IJI l T ll{ : |

where ¥ * = Y. s, [<® = jil,e ol I<T-1-

The first term of the right hand side of (3.2) is bounded by
F T B+ Thrm Bl Dsecs <+ Brer L | [ 123
X ooe X|y;(—j1— —j,_1)|
= 72k=1 ZL—; cee Zﬁ-ﬁ—mETJ‘nlzT Y= ++ s D= | Jo | | 1G] =+ - | ye-10i=1)]
X ¥ | yAJ)| = o(T 7).
The second term of the right hand side of (3.2) is bounded by
%Z—msjn,m,i/-nsw (Ji |+ <o+ [Jea DI =+ [ ¥em1Ue-1)] X TFmon | 72(5) = O(T ).

Thus we have completed the proof of (3.1).
In the third step, we show that

(3.3) %tr{MT(fl)MT(gl)_l oo Mr(fo1)Mr(ge1) " Mz (f.) (Mr(g)™
- Mz (g} =0(T™).
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Put M = Mz(f)Mr(g)~" - -+ Mr(fo1)Mr(gs—1) "Mz (f) {Mr(g:)™" — Mr(g5")}. Then we
have

1 1
—trM=—

7 1 ’ ’
7 o7 T + M) < o | M+ M’ | rank(M + M)

= %, (I M|+ || M |)@xank M + rank M’) < % || M || rank M,
where | M| = the square root of the largest eigenvalue of MM’. (If M is symmetric, | M ||
= the largest eigenvalue of M.) Here we have
I M =< || Mz (AN | Mr(g)™ || -« - | Mr (£ || Mr(g:)™ — Mz (g:")
=< || Mr(A| || Mr(g) 7" || -+« | Mr(fIKI Mr(g)~* || + | Mz (g5}
Since there exist F; and K; such that | f;(A)] = Fj < « and 0 < K; < g;(A), then
| Mr(H)| < F, | Mr(g) ™ | < /K; and || Mr(g)l = 1/K;
(Grenander and Szego, 1958, page 64). Thus || M || is bounded. Now
rank M < rank{Mr(g,)™' — Mr(g:")} = min{2 max(p, q), T'}
(Shaman, 1976) and this implies (3.3). Repeated use of (3.3) shows that

S (M) - Mr()Mr(8)”
— Mr(OMr (") - Mr(f)Mr(gi")} = OT™).
By (3.1) we have ‘

1
Ttr{MT(fl)MT(gl)_l «oo Mr(f)Mr(g)™" — Mr(figi" --- f.g5")) = O(T™),
which completes the proof. 0

4. Second order asymptotic efficiency of the maximum likelihood estimator in
an ARMA model. In this section we shall show that if we appropriately modify the
Gaussian maximum likelihood estimator in an ARMA model, then it is second order
asymptotically efficient in the sense of Definition 1. In the first place we shall give the
bound distributions B8 (x) + (1/VT) v#(x) and Bs(x) + (1/¥T) ys(x) defined in the
previous section. Using the fundamental lemma of Neyman and Pearson these are given
by the likelihood ratio test which tests the null hypothesis H: 0 = 6, + x/ﬁ against the
alternative K: 6 = 6,.

We now set down the following assumptions.

AssuMPTION 1. X, is a Gaussian stationary process with the spectral density fy(\)
€ DarMa, 0 € R, and mean 0.

AsSUMPTION 2. The spectral density f3(\) is continuously three times differentiable
with respect to 0, and the derivatives df;/30, 8°f,/36> and 8°f,/36° belong to Dx.

AssSUMPTION 3. If 0, # 0o, then f, # f3, on a set of positive Lebesgue measure.

ASSUMPTION 4.
I(6’)—-l ’ al fo(N) 2d>\>0
" 4n _, a0 o8 Io ’

Suppose that a stretch Xr = (X, - -+, Xr)’ of the series {X,} is available. Let Zr be the
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covariance matrix of Xr. The (m, n)-element of =1 is given by [7, exp{i(m — n)A}f(A)
d\. The likelihood function based on X7 is given by

L) = 27)" 7| 3r [ V2exp(— % X727X1).

Consider the problem of testing the hypothesis H:6 = 6, + x/«/T (x > 0) against the
alternative K : 6 = 6,. Let LR = log{L(6,)/L(6:)}, where 6; = 6, + x/ﬁ‘. If @ = 6,, then we
have

x 92
(41) LR= —? {80 log L(O)} {602 log L(O)}
6o 6o
x5 [8°
6T 7T { 2° log L(O)}% + lower order terms.
Now
log L . 1 L
o8 L) L X2 7S 7K ~ L tr(S7'Sn)
8%log L(8
—'—0(% = —X} 2TISTET ETZT Xr+= XTZTIETET Xr
3 tr(E Ty — SPSr27Sr),
and
d’logL (8
oagT() = 3X ETIETETIZTETIETET Xr

3 . .
- §X’TE;‘2T2;12 27 Xr
3 r -1y =13 -1 1 7 =133 -1
- -2- X2 327 227 Xr + -2- X727 227 Xr

-3 tr{=r' 27— 3 272,27 81 + 2(27' 21)%),

where 37,3 rand 31 are the T'xX T Toeplitz type matrices whose (m, n)th elements are
given by

T

T 9 o 9? 3
Jel""—"’*a—ﬂﬁ,(A)dA,J e“""”“mfa()\)d)\ and J e“'"—"“mﬁ,()\)dx,

-

respectively. Hereafter the detailed calculations, which are omitted because of pressure on
space, can be obtained from the author Using Theorem 1 we can show that
3

(4.2) E4(LR) =— 1(6‘0) +——= {3J(6o) + K(60)} + O(T™),

6T
3

(4.3) Varg,(LR) = x*I(6o) + — J (6o) + O(T™Y),

JT

3
44)  Eo{LR — Eo(LR)} = — xTT K(8) + O(T™),
3

(4.5) E,(LR) = — 1(00) o7 {8J (B) + 2K(60)} + O(T™Y),
(4.6) Vary, (LR) = x%I(6y) + — {J (60) + K(6o)} + O(T™Y),

J_
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3
4.7) Eo{LR — Es(LR)}?*=— X K(6o) + O(T™),

JT
where
I1(0) = L[ 61 (A) 2d)\
=1 . 20 0g fo
J(8) = ——J {aoﬁi()\)} {f,,()\)}“‘d)\+—J {aozfa()\)}{a—i)ﬁ()\)} {f(\)} 2 dA,

1 (" (s :
K(6) =EJ' {a—afe()\)} {fo(\)} 2 aA.

In general if a random variable Yr satisfies

C _
4.8 Ey(Yr)=p+—+ O(T™),
(4.9) Vary(Yr) = v + CTZT +O(T™,
410 Eol{Yr — Eo(Yr)}® = + O(T™),
(4.10) o Y7 o(Y7)} T (T7)

then we have the following Gram-Charlier expansion

T _ a-—pu _ a—u C1 C2 a—u
o= =023 o) ()

2
C3 a—p -1
+ —1:|+0(T™),
603~/T{( v ) }] )

where ®(x) = [*. ¢(u) du and ¢(u) = —J—l—_— e™*/2 If we choose

(4.11)

27

_ x2I(6) B x_ x K(ﬂo) 1

=T o (Bl + 2K (@) + =T+ 0T,
then, using (4.11), we have

PI(LR=a) =%+ O(T™).
Now putting Wr= — {LR — a — x*I(6,)}, we can show that
PL{Wr = 21(6)
(4.12) x* -1
= O(xvVI(6o)) + ———=—= {3J (6o) + 2K (60)}p(xvI(6o)) + O(T").

6I(00) VT

If {07-} is second order AMU, then remembenng (2.4) and the fundamental lemma of
Neyman and Pearson, we have

THEOREM 2.
lim SupT_»mﬁ'<P.%{ﬁ‘(0AT — bo) = x}

(4.13)

— @ (xvI(6o)) — $(xvI(6o)) [

x2
——{3J (6) + 2K (6 =0, f = 0.
p T—(OO)T{ (6o) ( 0)}]) or x
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For x <0, we have

lim infT__,m\/i'<Pg[,{ JT(br - 6)) < x}
(4.14)

2
— @ (xVI@) — ¢(xVI(B [—x— 3J(6) + 2K (6 ])20
(xvVI(6o)) — ¢ (x~I(6o)) GW{ (6o) (60)}
REMARK 1. In the special case of
2
1
) = 5 genTe

i.e., an autoregressive model of order 1, the above bound distribution becomes
®(x/V1 = 63) + d(x/V1 — 03) {Box*(1 — 63)~*2} /T,

which coincides with the result of Akahira and Takeuchi (1981, pages 134-135) under the
Gaussian assumption.
Putting

Ur= ﬁ(éML -0),

20 =—— 2 1og L(#) and

JT 90
Z,(0 [ log L(§) — E & log L(0)
2 ) \/— 602 0g 4 W og ’

we can show the following.

THEOREM 3. Under Assumptions 1, 2, 3 and 4,
Z,(0) Zi(0)Z:(6) 3J(0) + K(6) 2
Ur = + - Z1(0)* + 0,(1/VT).
"TTO) T 10T 2A@)NT v

In the same way as the previous calculations, we can show

(4.15) E,Ur =_—J(m__—K@+ O(I/ﬁ'),
21(0)2VT
(4.16) Vary(Ur) = 1(6)™ + O(T™),
417) Eo(Ur — Eo(Un)y* = —TO +2K6) | 1y,
I(0)*VT

Using (4.11), if we put
o _a . Km) _, . KO -
0X!L = 0ML + 6TI(0ML)2 L+ s 6TI(0}2 + P(T ))

then we obtain

(4.18) PF (VT (@t — 6) < 0} = %2 + o(1/VT),

(éiu, is a second order AMU), and

PI{(NT @3 — 0) < x}

(4.19) 2 1

= ®(xVI(0)) + ——— (3J(8) + 2K(0)}¢(xVI(6)) + O(T™).
6VTI(6)
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Remembering Theorem 2, we can see that (4.19) coincides with the bound distribution.
Thus we have

THEOREM 4. The modified maximum likelihood estimator 03y is second order
asymptotically efficient.

5. Second order asymptotic efficiency of a quasi-maximum likelihood esti-
mator. In the previous section we showed that an appropriately modified Oz is second
order asymptotically efficient. However if T is large the exact theory is intractable in
practice because the likelihood function L (8) needs the inversion procedure of the 7' X T
matrix 7. Thus we often use handy ‘quasi’ likelihoods as approximations. In this section
we shall investigate an optimal property of a quasi-maximum likelihood estimator @ML of
0, which maximizes the quasi-likelihood

¢r(8) = =% X753 {log fs\)) + Ir\) /fo(N))),
with respect to 8, where A; = 27j/T, and
1 .
Ir(A)) = onT |Z;‘r-1 X, e_"'\f|2-

Then we shall show that an appropriately modified éqML is second order asymptotically
efficient in the sense of Akahira and Takeuchi (1981).

We set '
~ _ 1 a/r(0)
(5.1) Z,(0) —'J—i‘—é'é——,
. 1 [ a2 9’
(5.2) Z(0) = ﬁ [W ¢r@) — E"{W é’r(o)}] )
5.3 B0—1ﬂa)\)b)\ A} 2 dA
(5.3) ()—E B a—ofa( o (A) {fo(A)} )
(5.4) by(\) = %r Yoo |n|y(n)e™, whereA(n) = Eg X X n.

Putting Vr = «/T(éqML — 6), we can show

THEOREM 5. Under Assumptions 1, 2, 3 and 4,
_Z:(9 + 2,(0)2,(9) _3J(O) + K@©® AL o,,(i) )
JT

Ve =
"TTO) T ey VT 2@ T

Using fundamental properties of the periodogram (see Brillinger, 1969, 1975) it is not
difficult to show that

55) EVee BO _J(0)+K(0)+O(i)’
IONT 2(10)NT JT
(5.6) Vary(Vr) = {(I(6)} " + o(-j—i‘) ,
3J(6) + 2K (6) 1
5.7 Eo{(Vr— Ey(Vr)Y=——""""""T 4 o[—]).
(5.7) o(Vr = Eo(Ve) i o( ﬁ)
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Using (4.11), if we put

. . B(éqML) K(éqML) a B(0) K(o) 1
58) 6wz =0 < 5 =t T)
(5.8)  Odur. = Oqarr + TI(Ogar) M 6T {I(0,m1)%} foe + T16) * 6TI{I(O)Y* Op( )

T

then we obtain
PF(NT (@2 — 6) < 0) = % + 0(1/VT),

ie., Q,ML is second order AMU, and
2
PI{NT @k — 0) < x} = DxVI0)) +———— {3J(8) + 2K (6)}6(xVI(B)) + <i) ,
o (TG 6VTI(0) \Vr

which coincides with the bound distribution of Theorem 2. Thus we have

THEOREM 6. The modified quasi-maximum likelihood estimator 9;ML is second
order asymptotically efficient in the sense of Akahira and Takeuchi.

6. Calculations of I(6), J(0), K(9) and B(). In this section we shall calculate I(6),
J(6), K(6) and B(#) for various rational spectra. This enables us to present the second
order AMU for these spectra. Of course we can evaluate the asymptotic bias for various
estimators.

Case 1. Consider the ARMA(p, q) spectral density
o® | T30 aje? |
27 | Y0 Bie™|*

Suppose that o? is unknown (i.e., § = 6°), and that ao, - - -, ag, Bo, * - -, B are known. Then
it is easy to show

foA) =

1 1 1

I(02)=2T4, K(o®) == J(0®) = —=.

¢®’ o
Let 6% be the exact maximum likelihood estimator of 6% Then we can see that

A R K(63m) 2\.
2 = 6% +———=| 1+ — )6}
oML = 63 + 6T{I(6ML)}2 ( 3T) oML

is second order median unbiased and efficient. Remembering (4.15) we have
Eo63 = o® + o(T™).
Cask 2. Consider the following ARMA (p, q) spectral density

gi [T8-1 (1 — de™ (1 — Yre )
2 [12., (1 — pre™) (1 — pre™)’

(6.1) fo@) =

where {1, -+, ¥q, p1, -+ +, pp are real numbers such that || <1,/=1, .-+, q, |p/| <1,j
=1, .-, p. Suppose that y,, is an unknown parameter (i.e., § = {»), and that ps, -, pp,
Y1, o, Ym—1, Ym+1, * * +, Yg are known parameters. Then it is easy to show
s (A) —2°+ 2Ymz — 1
af 1- iPmZ)(Z - \I/m) ’

{AhY " = (

where z = e®. In this case

1 (=2% + 2Ymz — 1)°
2 ) =i J.. 0=’ — )%
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(6.3) K@m)

1 (=22 + 2Ynz—1)°
C2m L=1 T2~z

To evaluate the above integrals we present the residue theorem (e.g., Hille, 1959).

THEOREM 7. Suppose that F(2) is holomorphic inside and on a “scroc” C, save for
a finite number of isolated singularities, a,, - - -, a,, none of which lie on C. Then

f F(2) dz = 2mi ¥j-1 Res(j),
c

where Res(j) is the residue of F(2) at a;. Also if a; is a pole of order s, then the required
residue is given by

. 1 ds—l
ReS(]) =(S_—1—)! {EF (2 —_ aj)sF(ZZ}

Using this theorem we have I(y) = 1/(1 — ¥2) and K(Ym) = —6¢m/(1 — ¥2)2 Let $m
be the exact maximum likelihood estimator of y,,. Then we can see that
B = (1-7:)9
m,ML = T 'm, ML
is second order median unbiased and efficient. Similarly we can show

IWm) = 4Ym/(1 —Y2)% and Egpmumr = ¥m + ¥m/T + o(T™Y).

CaseE 3. We also deal with the rational spectral density (6.1). We assume that p,, is an
unknown parameter (i.e., 0 = p,), and that y1, -+, ¥y, p1, ***, Pm—1, Pm+1, ***, Pp are
known parameters. Then we have

6pm —20m
(1-p7)*’ (1—pn)*

Let pm mz be the exact maximum likelihood estimator of p,,. Then we can see that

(1421
PmML T Pm,ML

is second order median unbiased and efficient. Also we have

1
I(Pm) =1___g, K(Pm) = J(pm) =

El’ﬁnl.ML = Pm — 2Pm/T + O(T_l)-

Henceforth we shall consider the quasi-maximum likelihood estimation. Since the
evaluation of B(#) for general rational spectral density such as (6.1) is very complicated,
we shall confine ourselves to ARMA(1, 1) spectra. Hereafter we shall consider the following
ARMA(1, 1) spectral density.

0,2 I 1-— ‘l/eD\ |2

(6.4) (A = oy m,

where || <1, |p| <1, # p. Then we can show that

_H—dp)p—y) .,
(1-p%
o® (1 —yp)(p —¢) 2{(z* + 1) — 4pz + p*(2* + 1)}

Ll e T (1= p2)’(z = p)?

y(n)

, n=1,
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CasE 4. Suppose that ¢ is an unknown parameter (i.e., § = 0?), and that  and p are
known parameters. We can show
(o —¥)°
o%(1 —p*)(1 —y¢?)"

B(¢?) =

Let 62z be the quasi-maximum likelihood estimator of 62 Then
2 (o — ‘1’)2 A2

6.5 525 = $20rr + —— 21y — el ¥
( ) oq;lL OgML 3T OgML T (1 — p2)(1 — 4/2) O gML
is second order asymptotically median unbiased and efficient. By (5.5), we have
R 2 — 2 2
Eoy6iu = o + ——-(—Pw—o+ o(T™).

T (1-p*)(1 -y

Case 5. In the model (6.4), suppose that p is an unknown parameter (i.e., § = p), and
that ¢” and y are known parameters. Then it is not difficult’to show

_ (o—¢)Q—20y + )
A-pHA-p)1 -y
Let pgar be the quasi-maximum likelihood estimator of p. Then

R R 1 (Bopr — )1 — 200 - ¥ +947%) | 1,
6.6 s = Powr, + = A +=
(6.6) PaML = PgMmL T 0= parz - 9) (1= 09 TPqML

B(p)

is second order asymptotically median unbiased and efficient. By (5.5) we have

L =9 —20y+y>) 2 -
(6.7) Egpgur = p T = p) 1 = v5) T + o(T™).
Consider the case y = 0 (i.e., our model is an autoregressive model of order 1), then (6.6)
and (6.7) become

N 2\ . A 3 _
pomr = (1 +7,) Pamr, Egpgmr = p — ?p +o(T™),

respectively. By the way, in the case of ¢ = 0, we can see that gg is asymptotically
equivalent to the Yule-Walker estimator;

Q5 X Xi1) /(T XT),
neglecting the terms of order O, (o), which do not disturb our asymptotic theory.

CaSE 6. In the model (6.4), suppose that ¥ is an unknown parameter (i.e., § = ), and
that ¢® and p are unknown parameters. It is not so hard to show

(Y — p)(1 + % — 24p — p® + 3¢%p® — 2¢°p)
(1 =921 —p)(1 —p?) ’

Let {zaz be the quasi-maximum likelihood estimator of Y. Then

(6.8) | B@y) =

a N 1.
(6.9)  Yimr = Yomr — T VoML
+ 1 Warr — p)(L + 2arr — 2anar - p — p2 + 320 - 02 — 203001 - p)
T (1 = 2m) (1 = Ygur - p) (1— p?)
is second order median unbiased and efficient. Consider the case p = 0 (i.e., our model is

a moving average model of order 1), then (6.8) and (6.9) become

A+ o a1 2
(1_ ‘1/2)2 ’ ‘PqML = ¢qML + T (1 — ‘ngL) ’

BW) =
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respectively. Also, in the case of p = 0, we have

A 1 28
Egpgmr = ¢ — T‘H—‘P—qﬂ)' +o(T™).
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