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ON MEASURING THE CONFORMITY OF A PARAMETER SET TO A
TREND, WITH APPLICATIONS

By Tim RoOBERTSON! AND F. T. WRIGHT?

University of Iowa and University of Missouri-Rolla

Consider the hypothesis H;: 6§, = 6, = - .. = 6, regarding a collection, 8,
62, - -+, 6, of unknown parameters. It is clear that this trend is reflected in
certain possible parameter sets more than in others. A quantification of this
notion of conformity to a trend is studied. Applications of the resulting theory
to several order restricted hypothesis tests are presented.

1. Introduction. Order restricted statistical inference is concerned with procedures
which take into account information relating to the magnitudes of parameters indexing
the population or populations of interest. For example, suppose pi, po, «--, pr are the
means of 2 normal populations and suppose that it is known or suspected that they satisfy

(1.1) H:pzp=-o =

Estimates and test procedures which take this information into account were first studied
in the mid-50’s and a number of names are associated with this work. Much of this theory,
together with the history of these problems, is discussed in Barlow, Bartholomew, Bremner
and Brunk (1972). Throughout this paper it will be convenient to think of a vector such as
= (w1, u2, + -+ , W) as a parameter. In case the parameter, py, is a vector then y, will denote
its ith coordinate.

In hypothesis testing, the objective is to use certain experimental results to either
confirm or reject H; or a similar hypothesis. It seems clear that H; is more likely to be
confirmed when sampling from certain populations than when sampling from others. For
example, if £ = 3 then H, is more likely to be confirmed when p = (4, 2, 0) than when pu
= (2, 2, 2). It seems reasonable to say that (4, 2, 0) conforms more closely to H; than does
(2, 2, 2). A quantification of this notion of conformity to a hypothesis would be a very
useful tool in order restricted inference. For example, in hypothesis testing, “good” test
procedures should have error structures having monotone properties when evaluated at
possible parameters which are comparable under this notion of conformity (cf. Sections 3,
4). In a Bayesian approach, one might search for priors which assign higher probabilities
to parameters conforming more closely to the order restriction.

Consider the relation >>, defined on Euclidean space, R*, by x = (x1, Xz, + -+, xz) >y
= (y1,¥2, +++, ¥) if and only if
(1.2) S —m@) =iy —m(y))i=1,2 -, k=1

where m(x) = k' Y%, x,. It is obvious that > is related to the concept of stochastic
ordering and it is straightforward to verify that >> is both transitive and symmetric. This
relation is not reflexive. However, x > y and y > x imply that x — m(x)e, =y — m(y)ex
where e, = (1, 1, -- -, 1), so that >> is closely related to the partial order >* defined by:
x>»>*yifandonlyif Y -1 2, =Y 1 y:0=1,2, ..., k, with equality for i = k. The partial
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order, >>*, is mentioned in Barlow and Brunk (1972) but not as a measure of conformity.
In an earlier version of this paper we investigated the partial order >>* as a quantification
of the concept of conformity to H; (i.e., x conforms to H; more than does y if and only if
x>>* y). It is not true that x >* y implies that x + ce, >* y (a reasonable property to
require of any such quantification when dealing with location parameters). The suggestion
to replace >>* by > was made by a referee. If we establish equivalence classes by
identifying vectors which differ by a constant then > induces a partial order on these
equivalence classes which essentially is > *.

We are thinking of our parameter, y, as a location parameter and use of > as a measure
of conformity to H; implicitly assumes that the variances of our estimator of u are free of
u. For example, suppose % = 2 and we have samples of size one from two normal populations
having variances one and mean p; and ps. The hypothesis, Hi, is no more or less likely to
be confirmed when (u;, u2) = (1.0001, .0001) then when (u1, p2) = (21, 20). However, if the
populations are Poisson and if (X, X;) are the sample results then when (u1, p2,) = (1.0001,
.0001), X, is essentially degenerate at zero and the probability that X; = X, (confirming
H,) is very near one. On the other hand if (ui, p2) = (21, 20) then P(X; = X;) is
approximately %. In the Poisson problem, >* seems to be a more acceptable measure of
conformity.

Let D be the subset of R* consisting of all those points, x, such that x; = x, = - -+ x,. If
both x and y lie in D then x >* y is equivalent to Schur majorization, which has been used
as a quantification of the notion of dispersion. Thus, if x > y and if x, y € D then, in some
sense, the coordinates of x are more dispersed than those of y. It is reasonably straightfor-
ward (cf. Theorem 2.1) to see that x >* y if and only if y — x is in D*, the Fenchel dual
cone of D (cf. Barlow and Brunk, 1972). The cone D* is the set of all points z € R* such
that the inner product Y%, x;z,, is nonpositive for all x € D.

These observations suggest another guantification of conformity, namely x = y if and
only if x — y € D. Note that x > y if onlyif i' Y (x, —y) =m(x—y),i=1,2,

++, k = 1, which is equivalent to i ™' Yo (x, —y) = (k — ) " T (x5 —y), i =1, 2,

-++, & — 1. A vector x — y which has this property will be termed decreasing on the average
and welet DA = {2:i7' Yo, 2, = (k — i)' $%_1112,i=1,2, --+, k — 1}. Note that D C
DA, so we have the following:

REMARK 1.1. If x = y then x > y.

For & = 2 the relations = and >> are equivalent. The reader might find it helpful, at this
point, to contrast the sets {x; x > y} and {x; x >* y} for y fixed and for £ = 2. The former
is the set of all x such that x; — x» = y1 — ¥, and its graph is the half plane to the lower
right of the line passing through the point (y:, y2) and having slope 1. The graph of the
latter is the ray beginning at the point (yi1, y2) and having slope —1.

In Section 2, properties of these relations are discussed. In Section 3 we present two
preservation theorems which say that if a statistic is formed from a function which is
isotonic with respect to a particular relation (> or = in one instance and >>* in another),
if two parameter values are ordered by the relation, then the “larger” parameter value
produces the larger expected value of the statistic. Several examples are considered in
Section 4. In Example 4.1 the preservation theorems developed in Section 3 are used to
argue monotone properties of certain power functions. In addition, those preservation
theorems are used to argue the least favorable status of certain parameter configurations
for tests where the null hypothesis is not simple. In Examples 4.2 and 4.3, testing problems
are considered where one of the hypotheses imposes a relationship using > on two
parameter sets. It is interesting to note that the Chi-bar-squared distributions, which are
used extensively in order restricted hypothesis testing, arise again in this context.

2. Properties. The following theorem is proved in Section 4 of Barlow and Brunk
(1972).
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THEOREM 2.1. Ifx,y, € R* then a necessary and sufficient condition for x > (>>*)y
is that

(2.1) Yi{yn—m(y) —x+mx)}z<0Qk (y.— x)z.<0)
for all z € D.

REMARK. If R* D A # ¢ and if A has a lower bound with respect to > then A has a
greatest lower bound. The same result also holds for >* and in this case the greatest lower
bound is unique.

ProOOF. One greatest lower bound is the vector ¢ = (4, 4, -+, &) whose first 2 — 1
coordinates are the solutions to the equations

G4 -+ 4=1Inf{Y1 (x, —m(x); x € A}, 1=1,2 ..., k-1,

and ¢ = — Y*21 ¢. The proof of the second assertion is similar.

It is convenient, at this point, to introduce some notation. Let || - || denote the norm on
R* defined by || x||> = Y% x2. For each point x € R* let P(x| D) be the point in D which
minimizes 4(z) = ||x — z||°. The point P(x|D) is termed a projection of x onto D and
properties of the operator P(- | D) are discussed in Brunk (1965).

THEOREM 2.2. The point P(x| D) is equal to the greatest lower bound of the set of all
points z in D such that z >* x, that is P(x| D) = inf{z € D; z >* x}. (Note that, as a
consequence, P(x| D) is a greatest lower bound of the set of all points z in D such that z
> x.)

Proor. Let x = P(x|D) = (%1, X2, - - -, Xx) and note (by (2.4) of Brunk (1965)) that x
€ {z € D; z >* x} so that this set is nonempty and if ¥ is a lower bound it must be a
greatest lower bound. Let X1 = -+ =X, > X, 1= ¢+ =X,> -+ > X _ 41 = -+ = X S0
that ¥ has « level sets. Suppose y € D, y >* x and i, + 1 =j < i;41. Then &, = (x, 41 +
<+« +x,_)/(i-+1 — i;) and using well known properties of X, we write:

r+l

J Y = L L+t
X, = 1 X, +— = 1 X
2121 11 Zl 1M (lr+1 — lr) Zl 1+ i1
=|1- ]—r Z;'=1 X, + ]—-r— Zi’:*ll X,
lr+1 = Ur b+1 = U

j_ir L ]—lr 1,
= (1——.) Yitiy, +*2,’I‘1yz

ir+] -l b+1— U

2 ] - ir 2 2 ] - i’
= er=] Y + = - ZLr:Tﬁ-l }'15 2;’:13’; + = 3 Z{=z,+]yz= Z{:Lyz.
a1 — Iy . J—= b
The last inequality is because y; = y» = . . - = y, so that the average of the values of y, over

ir + 1 to j is at least as large as the average over i, + 1 to i,.1. It is well known that Y%, &,
= Y%, x, so that since j is arbitrary, this completes the argument.

CorOLLARY 2.3. If x >* y then P(x|D) >* P(y|D) and if x > y then P(x|D) >
P(y|D).

Proor. The first assertion follows from Theorem 2.2 and the observation that {z € D;
z>* x} C {z € D; z >* y}. As for the second assertion, if x > y then x — m(x)e, >* y
— m(y)e: so that P(x — m(x)ex|D) >* P(y — m(y)ex| D) and P(x|D) — m(x)e, >*
P(y|D) — m(y)er(P(x — m(x)e,| D) = P(x| D) — m(x)ex). The desired result follows since
m(P(x|D)) = m(x).
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DEFINITION. If f: R* — R then we say that fis ISO (ISO*, WISO) if and only if x >
y (x >* y, x = y) implies that f(x) = f(y); i.e., fis isotonic with respect to > (>*, =).

Note that by Remark 1.1, if a function is ISO it must also be WISO. We are thinking of
WISO as an acronym for weakly isotonic. Note also, that any function which depends on
X1, X2, + + +, X; only through Z{;l x, is ISO*. The proof of the next theorem is a straightfor-
ward exercise using the definitions of > and >*.

THEOREM 2.4. A function f:R* — R is ISO if and only if it is ISO* and f(x + c - ez)
= f(x) for all x € R* and for each real number c.

THEOREM 2.5. Ifx,y € R* then x> y(x >* y, x = y) if and only if f(x) = f(y) for all
f which are ISO(ISO*, WISO).

Proor. The necessity is obvious. In order to prove sufficiency, use the fact that the
function f(x) = Y =1 (x, — m(x)) is ISO for all i. For >*, use the fact that both of the
functions ¥ !—; x, and =Y %, x; are ISO*. For = use the function x, — x,+1, which is WISO.

For any function f of k-real variables let f; denote the partial derivative (if it exists) of
f with respect to the ith variable. The partial order, >*, is a cone ordering, as discussed in
Marshall, Walkup and Wets (1967). The following result is contained in their work.
However, its proof, for our special case, is so simple that we include it here.

THEOREM 2.6. If the function f: R* — R is differentiable and if f,(x) = fi+1(x) for all
x and for all i = k — 1 then f is ISO*.

PrOOF. Suppose x >>* y. Using the mean value theorem, there exists a point z on the
line segment joining x and y such that
f(y) - f(x) = E:LI (yt - xl)ﬁ(z)'

Our hypothesis implies that the point (fi(2), f2(2), - -+, fx(2)) is in D so that f(y) < f(x)
from Theorem 2.1.

ExaMpLE 2.1. Chacko (1966) (cf. also Robertson, 1978) studied a likelihood ratio test
for testing the equality of a collection of multinomial parameters when the alternative is
restricted by the trend Hi: p1 = p» = - .. = p;. Theorem 2.6 can be used to show that the
power function of this likelihood ratio test is ISO on D. Suppose we have a random sample
of size n and that the resulting success frequencies are X;, X;, - .., X;; i.e., the random
vector (Xi, X5, - -+, X;) has a multinomial distribution with parameters n, p:, p2, - - -, Pr.
For each positive integer m, let A,, be the set of all £-tuples of nonnegative integers whose
sumismandlet B= {(pi,ps, -+, 02); P.=0; 1 < i<k Vi, p =1}.

THEOREM 2.7. Iff(.): A,— R isISO then h(pi,ps, -+, pr) = E{f (X1, Xz, « -+, Xp)}
is ISO on B. ‘

Proor. Fix i and consider the partial derivative,

n — X,
hl(p) =Z"‘5A"f(x)<x1,xz, ...’xk>xlp‘fl ...pf: 1 ...pkk

=Ysear [y, co oy + 1, -~-,yk)n< " )p{‘ R 4
Y1y 2 Yk
Thus,
hl(p) _hj(p) =ZyEA,.—1 {f(yly LR ) + ]-’ "'yyk)

) )

-1
—f(yl, ey + 1, ...’yk)}n<y]n.“ yk>p{l coo pY,
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andifj>ithen (y1, -+, 3.+ 1, -, %) > (y1, -+, + 1, -, y) forally € A4, ,. The
desired result follows.

In testing Ho: p = k™ '.e, against H, — H, (i.e. H, but not H,) the likelihood ratio
statistic is

Ton=—2InA=2Y, x,In%;—2nlnn+2nlnk

where ¥ = (X1, 2, + -+, &z) = P(x| D). Thus, in order to show that the power function of
To1 is ISO on B N D, it suffices to show that the function Y%, x, In &; = Z'Ll %, In x, (cf.
Corollary 3.1 in Brunk, 1965) is ISO* on D. But x >* y implies that X >* ¥ by Corollary
2.3, so that it suffices to show that the function Y%, x, In x, is ISO* on D. Consider a = (x1,
e+ 8, e, xp)and b= (X, o0, %+ 8, -+, x,) wherex ED, x,>x,,i<jand 0 < §
< x, — x,. It suffices to show that Y%, @, In a, = 3%, b, In b,. However, the difference of
these two sums can be written [7*° (1 + In t) dt — ;jf” (1 + In ¢) dt which is nonnegative
by our assumptions.

Thus, in testing H, against H; — H, the likelihood ratio statistic has a power function
which is ISO. In Section 4 the preservation theorems presented in Section 3 will be used
to obtain additional results of this nature.

In the multinomial setting, Lee (1977) developed maximum tests of homogeneity versus
a trend. His Theorem 1 can be readily obtained using the results developed here.

3. Preservation theorems. The theorems in this section have a number of potential
applications. They can be used, as in Section 4, to argue that the power functions of test
statistics which have been proposed for certain order restricted problems are isotonic with
respect to one of our relations. Also in Section 4 they are used to show the least favorable
status of certain parameter configurations in problems where the null hypothesis does not
completely specify the distribution of the test statistic.

THEOREM 3.1. Suppose { Px; A € A} is a family of probability measures on the Borel
subsets of R*, where A C R*. Assume that if a k-dimensional random vector X has
distribution P then X — \ has distribution @ where Q is independent of \. If f: R* > R
s ISO and if h: A — R is defined by

h(A) = J’ f(x) dPx(x)
Ry

then h(-) is ISO on A.

PrOOF. Assume A > § and that both belong to A. Using two changes of variables we
write

h(X) — h(d) = J' f(x) dPx(x) — J f(x) dPs(x) =J {(Ff(y+X) = f(y+38)}dQ(y),

which is nonnegative since y + A >y + § for all y.

The above result holds for any cone ordering (in particular for >* and =) as defined in
Marshall, Walkup and Wets (1967). More precisely, under the assumption of Theorem 3.1,
if fis isotonic with respect to = (>>*) then so is A(-).

COROLLARY 3.2. Suppose X is a k-dimensional random vector whose distribution, Py,
is parameterized by the vector A = (A, A, - -+, \z), where P, satisfies the hypotheses of
Theorem 3.1. If the random variable T is defined by T = f(X) where f is ISO (ISO*,
WISO) then for any real number a

P\(Tz=a)=P(T=a)

whenever A >\ (A>* A", A = \’).
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Proor. Note that any nondecreasing function of an ISO function is ISO and that (4
is nondecreasing.

An alternative way of stating the conclusion of this corollary is that the distribution of
T under A is stochastically larger than its distribution under A’. If T'is a test statistic for a
test which rejects for large values of T' then this conclusion implies that 7" has an ISO
power function.

In Section 4 we apply Theorem 3.1 and Corollary 3.2 to the normal means problem.
That is 6, is the mean of a normal population with known variance ¢ In problems, like
those involving Poisson populations, where the variance is also a function of 6, >* is a
more appropriate relation for measuring conformity to H,. The proof of the next theorem
is an adaptation of the argument given for Theorem 1.1 in Proschan and Sethuraman
(1977).

THEOREM 3.3. Suppose A is a subset of the real line which is closed under addition
and assume that ¢(-, -) is a nonnegative function on A X R such that ¢(a, x) = 0 for all
a and for all x < 0. In addition, assume that ¢ (-, -) satisfies the semigroup property with
respect to u on the Borel subsets of R (cf. Proschan and Sethuraman, 1977). (We assume
that u is either Lebesgue measure or counting measure on the nonnegative integers.)
Suppose f: R* — R is ISO* and h: A* — R is defined by

h(ay, az, ---,ak)J'J Jf(x) IT5, ¢ (a, x) dp(x) -« du(x),

where the integral is assumed finite. Then h is ISO*.

’

= (ai, a$). Consider

h(a) — h(a’) = f J f(x1, x2)p(ar, x1)p(az, x2) du(x) dp(xz)

PROOF. Assume k£ =2 and a = (a1, az) >* a

—JJf(xl,xz)¢(a{,x1)¢(aé,xz) dp(xr) du(xe).

Using the semigroup property, write ¢(a., x1) = [ ¢(a; — ai, y) -¢(ai, x1 —y) du(y) in the
first integral and ¢ (a3, x2) = [ ¢(ab — az, y)d(az, x2 — y) du(y) in the second integral. Using
a change of variables, the fact that a; — ai = a3 — a» and the special nature of yu, we can
write

h(a)—h(a’)=J¢(a1—a{,y)J’J {fler +y,x) = flx, x+y)}

~p(ai, x1)p(az, x2) du(x) dp(x:) du(y).

Now for y =0, (x1 + 2, x2) >* (x1, x2 + y) and the result follows for £ = 2. We proceed by
induction. Assume % = 3 and (a1, @z, - -+, ax) * (b1, b2, « + -, b). Define ¢ € R* by ¢, = b1,
c=as+a — b,c3=as, -+, c, = ap. Write h(a) — A(b) = h(a) — h(c) + h(c) — h(b) and
consider, separately, the two differences. The first difference can be written,

h(a) — h(c) = JJ' J{J’ Jf(xﬁb(al, x1)¢(az, x2) du(xi) dp(xz)

- f Jf(x)‘i’(cl;xl)(ﬁ(CZ,xZ) dp(x:) d#(xz)} ¢, 1) du(xs) - -+ du(xe).

The quantity inside the brackets is nonnegative by the case £ = 2 since (ai, az) > (c1, ¢2)
and since, with x3, x4, - - -, x; held fixed, the function f (-, -, x3, x4, - - -, xz) is ISO* on R
The second difference, 2(c) — A(b) is handled similarly using the induction hypothesis, the
fact that (cs, 3, «++, cx) >} (bs, bs, - -+, be) and the fact that with x, held fixed f(xi, -,
<, +++, +) is ISO* on R*.
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CoROLLARY 3.4. Suppose X is a k-dimensional random vector whose distribution,
P, is parameterized by the vector A = (A1, Az, - -+, A\x), where P is absolutely continuous
with respect to the product measure, uxux -+ xpu and has density [[%=1 ¢(\,, x;) where
¢(+, ) and pu satisfy the hypotheses of Theorem 3.3. If the random variable T is defined
by T = f(X) where f is ISO* then for any real number a

P\(T = a) = Py (T= a)

whenever A >* \’.
4. Applications.

ExAaMPLE 4.1. (Some results concerning tests of trend.) Suppose we have independent
random samples from each of % populations indexed by the parameters 6., s, - - -, 6,. We
wish to use our experimental results to test the hypothesis

Hy: 0 =0,=-..=0,
against the alternative H, — Hj (i.e., H; but not Hy) where
H1:012022 e 20k.

A number of statistics have been proposed for this test.

One collection which has been extensively explored is based on the differences 6, — 6’
with ¢ <j where 8, is an estimate of 6; (cf. Section 4.2 in Barlow et al. (1972)). For example,
we might reject Hy in favor of H; — H, for large values of the test statistic

ISR (0 —6) =Y (k- 2i + 1)d,.

This test statistic is a special case of more general contrasts based upon functions A(y) =

e, .0, where ¢, Cs, ++-, x are prespecified constants. If §; is the mean of a random
sample of size n from a normal population having mean 6;; i = 1, 2, - - -, &, then the joint
distribution of (6’1, 6’2, .. Hk) satisfies the hypotheses of Theorem 3 1 Thus, if we can

show that the function h( ) preserves one of our order relations then so does the function
4(0) = E,y (Y%, ¢:0,) and so does the power function of Y%, ¢,6;.

The function A(y) = Y%, c.y; is ISO* if and only if $%, ¢,(y: — y/) = 0 whenevery — y’
€ D*. Since the dual of D* is D, this implies that the vector ¢ must be in D. Using Theorem
2.4, the function A(-) is ISO if and only if ¢ € D and Y%, ¢, = 0. The requirement that
%1 ¢; = 0 also insures that the distribution of the test statistic is determined under H, in
the normal means problems. In order for the function A(-) to be WISO we must have Z?:l
ci(y. — ¥i) = 0 whenever y — y’ € D. This is equivalent to requiring that —c € D*. Another
way of stating these observations is to say that A(-) is ISO* (ISO, WISO) if and only if ¢
= 0(c=*0, c>>* 0). (The relation =* is defined by x =* y iff x = y and m(x) = m(y)). We
note that the coefficients ¢; = 2k — i + 1 have all three of these properties

Another fairly appealing contrast statistic is based upon the function Y51 (y; — yiv1) =
(y1 — y&). The coefficient vector ¢ = (1, 0, 0, --- , 0, —1) has all of the above properties.

A contrast statistic which maximizes the minimum power was studied by Abelson and
Tukey and is discussed in Section 4.2 of Barlow et al. (1972). It is obtained by taking ¢, =
[e—)1"* - [G—-1)(k—i+1)]"%i=1,2, ..., k. This vector c also has all three of the
above mentioned properties.

Assume that 6, is the mean of a Poisson population and that 6; = X, is the mean of a
sample of size n from that population; i = 1, 2, .., k. The random variable né, has a
Poisson distribution and its probability function satisfies the hypothesis lmposed on
¢( ) 1n Theorem 3.3. Thus for any of the above mentioned contrasts, E, {h(n01, n02,

nﬂk)} nEo{h(, b5, - - , 6,)} is ISO* and the power function of the statistic h(b,,
6’ , 0r) is ISO*.
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A second class of test procedures which have been extensively explored in the literature
is based upon an 4 distance between estimates satisfying the alternative hypotheses.
Specifically, if 6, is an unrestricted estimate of 6, then m(é) might be a reasonable estimate
of the common value of 6, under H, (in fact, m(@) is the projection of 6 onto the collection
of points x in R* satisfying Ho). The point § = P(f|D) satisfies H; and would be a
reasonable estimate of 6 which satisfies this restriction. A test could be based upon the
statistic T'= Y4, {6; — m(6)}>

THEOREM 4.1. Ify = P(y|D) for each y € R* then the function, t(-), defined on R*
by

ty) =Y (7 —m(y)}?
is ISO.

Proor. Since P(y + c-ex|D) = P(y|D) + c-e for ¢ € R, we need only show that
t(-) is ISO*. Suppose x >>* y. For any z € D we have, by Theorem 2.1, Y%, (y; — &)z =
Sk (3 — x)2 + D (i — %)z, < 0 since x < &. Thus y — ¥ € D* and using Section 4.3
of Barlow and Brunk (1972) we obtain Y'*_; y7 =< Y% &7. This yields the desired result
since ¢(x) = Y%, 7 — 27 '(3 %, x)% and x >* y implies that %, x, = Y., y..

Thus, the theory developed in Section 3 can be applied to statistics based upon the
function £(-). If the population indexed by 6, is normal with mean 6; and known variance
o® and if 8, is the sample mean of a sample of size n from that population then T, = t(é)
is a likelihood ratio statistic. The distribution of To; under Hp is known (cf. Barlow et al.,
1972) and the joint distribution of 91, 92, ceey, 6, satisfies the hypothesis of Theorem 3.1.
Thus the power function of T, is ISO as a function of §. As with contrast statistics, similar
conclusions can be drawn about a statistic based upon #(-) under other distributional
assumptions on the populations.

A third statistic which has been proposed for testing H, against H; — Hp is the number,
L, of distinct values among 0., 02, eee, O Let £( y) be the number of distinct coordinates
in the point P(y|D). If £ = 3, y’ (2 1, —3) and y = (7, —4, —3) then y > y’ while ¢ (y)
= 2 and ¢(y’) = 3. This, of course, does not directly imply that the power functions of
statistics based upon ¢ (-) are not ISO. However, if 8 is a vector of location parameters and
if the population variances are very small then we could conclude that power functions of
statistics based upon #(-) are not ISO.

Robertson and Wegman (1978) cons1der the problem of testing H, as a null hypothesis.
Consider the test statistic Tz = || 6 — 6)? which is the square of the distance between the
unrestricted estimate § and the restricted estimate 8. Define the function tw(-):R*—> R
by tiz(y) = |y — P(y|D)|* A consequence of Theorem 2.1 in Robertson and Wegman
(1978) is that t12(+) is antitonic with respect to the partial order <. It follows from the
theory in Section 3 that, under the proper assumptions on the populations, § < §’ implies
that Ea(Tm) = E()'(le) and P()(T]g = t) = Pg'(le = t) for all ¢.

Now if §’ = (01, 65, - - - , 6%) has the property that 7 = 2= ... = 6}, then 6 = 8’ for all
0 € D. It follows that homogeneity (i.e., Ho) is least favorable for T, within H (Theorem
2.2 in Robertson and Wegman, 1978). Thus if the distribution of T under H, is known
then conservative rejection regions can be constructed. In the normal means problem, T,
has a Chi-bar-squared distribution under H,.

As far as we can determine, the next two examples have not been explored in the
literature. They are two additional restricted inference problems where the Chi-bar-
squared distribution arises.

ExaMPLE 4.2. Assume that we have random samples of size n from each of £ normal
populations with means u;, pi, -+ , ptx and common variance ¢ (known). Suppose 7 is
known, is a possibility for p and that we wish to use our experimental results to test the
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null hypothesis H; specifying that p > 7. Of course, one interpretation of this hypothesis
is that p is more isotonic than is 7. If 7 is a constant vector then, according to the discussion
proceeding Remark 1.1 we are testing the hypothesis that p is decreasing on the average.
Using the techniques developed here we could also test the hypothesis of homogeneity
against the alternative that u is decreasing on the average. The null hypothesis, Hj, is not
simple, in the sense that it does not completely specify the distribution of the likelihood
ratio test statistic. However, the theory in Section 3 can be used to show that Hy:p = 7is
a least favorable configuration within H; and that the distribution of our test statistic is
completely specified under H, and turns out to be a Chi-bar-squared distribution. Details
of this analysis follow.

Assume that i = (i, fis, - - - , fx) is the vector of sample means. The first problem is to
derive an estimate of u which satisfies our null hypothesis. The maximum likelihood
estimate, ji, minimizes ¢ (y) = %1 (i, — v.)? subject to y satisfying H,. This restriction can
be written in terms of D*, the Fenchel dual of D. Specifically, H;: 7 — p — m(r — u) € D*.
Now, the hypothesis, H;, is independent of m(r) in the sense that H, is equivalent to p >
T + c- e, for any real number c. Assume, temporarily, that m(r) = m(ji) and let 0 =7 — v.
In terms of § and m(@), ¢ (-) can be written

o (0 = (ro— )} =2 ({6, — m(0)) — (n. — @]
+2m(0) 1 [{8, — m(8)} — (. — fu)] + km(8)™

The second term is zero since m(r) = m(fi). If we choose § = P(r — i| D*) = (1 — i) — P(r
— [i| D) (cf. Section 4.3 of Barlow and Brunk, 1972) then m(6) = 0 so that the third term
is clearly minimized. The first term is minimized by the definition of P(. | D*). Thus, if
m(t) = m(ji) then

(4.1) fi=7—P(r—(|D* =j+P(r—ji|D).

In general, if m(7) # m(i) then we find, using (4.1), that the maximum likelihood estimate
is given by

(4.2) p=1—m(r—j)er— P(r—i|D*) =i —m(r — i)er + P(r — i| D).

Clearly, i = P(ji|A) where A = {z; z > 7}. Moreover, from Theorem 2.3 of Brunk
(1965), the projection operator, P (- | A), is continuous so that since fi is a strongly consistent
estimator of u then so is .

Returning to our testing problem, consider the likelihood ratio statistic Th2 = Y*.1(fL
— [i,)? for testing H; against ~ H,. Using (4.2), T2 = Y 5. {m(r — i) — P(r — ji| D).}% Let
b, = (. — a),i=1,2 +-., k and let 6, = E6) = (r, — w). Using Corollary 3.2 and
Theorem 4.1, we see that if p << p’ (ie. § >* ') then P,(T 2 =t) = P, (T2 = t). Now 7
< p for all u satisfying H; so that, for such u, P,(Ti2 = t) < P,(T2 = t). Thus, in testing
H, as a null hypothesis the subhypothesis Hy: u = 7 is least favorable and if the distribution
of T can be determined under H, then critical regions for testing H; can be constructed.

The distribution, under Hy, of (n/0%) T} i§, from Theorem 3.1 in Barlow et. al. (1972),
a Chi-bar-squared. The following theorem summarizes these observations.

THEOREM 4.2. Suppose we have a random sample of size n from each of k normal
populations having means pi, gz, - - - , W and common variance o2 (known). Let T\ be the
likelihood ratio statistic, described above, for testing Hy: u > 7 against all alternatives.
Then

supuem, Pi(Tie=t) = P (T2 = t) = Z?=1P(K, E)P(xi-1=t)

for all real t, where P(¢, k) is given by the recursion formula in Corollary B on page 145
of Barlow et. al. (1972).
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A similar analysis can be used for the likelihood ratio test of the null hypothesis that
p >>* 7. The maximum likelihood estimate of u under this restriction is g* = i + P(r —
fi] D) and the test statistic is T% = Y%t(fl; — g¥)%. Again H, is the least favorable
subhypothesis and under Hj the likelihood ratio statistic has a Chi-bar-squared distribu-
tion. Specifically, under Hy, the likelihood ratio statistic has tail probabilities of the form
SALP(4 k) P(xE=0).

The statistic

Tor = Yiai(ri — 1) =Y {(r. — ) = P(r — | D) + m(r — p))?

is a likelihood ratio statistic for testing u = 7 against u > 7 and u # r. The variable
(n/0®) Ty can be written as the sum of two independent random variables, one having a
standard Chi-squared distribution and the other having a Chi-bar-squared distribution. It
follows that, under Hy, (n/0?%) To; has a Chi-bar-squared distribution and in particular

P{(n/o®) T =t} = Z§=1P(f, R)P(xi-re1 = t).

If one wishes to test p = 7 against p >>* 7 with p # 7, then T8 = Y5 {(r; — f — P(r —
i| D)}? is a likelihood ratio statistic and if p = 7

P{(n/o") T =t} = Y1 P(4 k) P(xh-r= t).

It should be noted that the hypothesis that v < p is another way of writing u — 7 € D
and so testing this hypothesis is the same as testing a trend.

ExAMPLE 4.3. Suppose we have a random sample of size n from each of 2% normal
populations, each having variance o? (known) and with means M1y M2y » v oy [k, V1, V2, » oo, Vi
Let the corresponding sample means be %1, &, - -+, X, 31, Y2, + - -, x. We consider testing
the null hypothesis Hi: p > ». As in Example 4.2, H; does not completely specify the
distribution of our likelihood ratio statistic. However, Hy:pu = » is least favorable and, under
H,, the distribution of our statistic is a Chi-bar-squared. Details are given in the next few
paragraphs.

The first problem is to find the maximum likelihood estimates which satisfy H;. These
estimates minimize L (g, ») = Y%, {( — %)% + (» — 7;)%) subject to Hi.

THEOREM 4.3. If (1, ¥) are the maximum likelihood estimates subject to H; then
L+ vi=%+5,.

Proor. Consider the ith term in L(-, -) and suppose (p:, w:) # (%, y:). Let g(e) = (w,
+&— )"+ (v, + e — 3.,)% Consider g'(-) and note that if g’(0) 0 then there exists an ¢
# 0 such that L(ui, o, ««+, faet, i + & vro, ey V1, Poy ooy Dt & oo, vg) < L(p, v).
Moreover, if (u, v) satisfies H; so does this new point. Thus at (u, v), g(0) = 0 for each
term and the desired result follows.

Thus 7, = X, — i, + y; and our problem reduces to finding ji. Specifically, we wish to find
@ which minimizes

Ap) =23k (% — w)?
subject to the restrictions
T — m(w} = ¥ja (8% + 7)) — %m(x + 7)),

or equivalently y > %(x + ). This is the problem solved in the first part of Example 4.2
and it follows from (4.2) that
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fi=%(Z+3) — %m(y— &) — P(4(y— %) | D*)

43) = & — %m(y — ) + P(4(7 — ©)| D)
v=Wx+y) + %m(y —x) + P(%(y — x)|D*)

=7+ %m(y— %) — P(4(7 - D)| D).

Now, returning to our testing problem, if A ;. is the likelihood ratio for testing H; against
~H; then T;; = =2 In Ay, = (2n/0% Y&, {%m(y — X) — P(%(y¥ — x)| D)}° The random
variables %(y, — %) i =1, 2, - . -, k are independent and % (¥, — %) ~ N (%(», — w.), 6*/2n).
Thus, as in Example 4.2, T'; has a Chi-bar-squared distribution under Hy: p = » and H, is
least favorable within H;, using Corollary 3.2. Conservative critical regions can be con-
structed and in fact

supg, P(Tie=t) = 2’;=1 P4 k)P(x3-1=t).

Similar analyses yield Chi-bar-squared distributions when testing Hy, against H; — H,,
when testing u >>* » as a null hypothesis and in testing homogeneity against the alternative
w>>*p,

5. Comments. Besides the various measures of conformity discussed here, there are
several other approaches that might be considered. For instance, one could base a measure
on the distance from a point to H;. However, for p € H; this distance would be zero and,
clearly, some points in H; possess a greater degree of conformity than others. D. J.
Bartholomew suggested basing a measure of conformity to H; on Pearson’s product
moment correlation coefficient between a point u and a fixed “typical” point in H;. Since
it is believed that the Chi-bar-squared test of homogeneity versus H; is, for fixed A%(p) =
Y& {u — m(u)}?, most powerful at linear w’s with negative slopes, one might choose —d as
the typical element with d = (1, 2, .-, k). It is interesting to note that for fixed A this
measure is “finer” than <, that is if A(p) = A(p”) and p << p/, then p_q4,, < p—4,,. However,
if two points differ by a positive scale factor, this difference in scale is not detectable by
this measure of conformity, but clearly for u a nonconstant element of H;, 2u possesses a
greater degree of conformity than u does. In particular, for fixed variances the power of the
Chi-bar-squared test should be greater at 2u than at u. It is easy to show that for such p
and ¢ = 1, u < cu. Also, the measure << seems more natural in the multinomial setting.

As was noted earlier, <, <*, <, <* are special cases of cone orderings (cf. Marshall,
Walkup and Wets, 1967). It is clear that one can establish general versions of Theorems
2.1, 2.4, 2.5, 2.6 and 3.1 for such orderings. While Theorem 2.2 does not hold for arbitrary
cone orderings, it would be interesting to know what properties of the cone are needed for
the conclusion of Theorem 2.2 to hold.

The assumptions of a common known variance and equal sample sizes can be relaxed
in some of the distribution theory in Section 4. We define weighted versions of the
orderings << and < *. Specifically, suppose w1, wz, - - -, wk are positive weights and define:
x>, y(x>%y) if and only if Y- wi{x; — m(x)} = N m(y)} (a1 2w = Ty
yw,) forj=1,2, ..., kwith equality for j = k; m(x) = Y% w.x, /Y %1 w,; f: Re— Ris IS0,
(ISO%) provided f is isotonic with respect to <,.(<}); (x, y), = Zfll Xy || x)|2 = (x, %).;
P, (x| D) is the projection of x onto D with respect to the norm |||, and D** = {z € R;:
(x, 2), =0 Vx € D}. The characterization result, Theorem 2.1, becomes x >>, y(x > *y) if
and only if y — m(y) — x + m(x) ED*" (y — x ED*") and the results of Section 2 are valid
for these weighted orderings. The analogue of Theorem 2.6 says that f, (x) /w, = f,+1(x) /w41
for all x and for : = 1, 2, - -+, & — 1 implies that fis ISOJ. Theorem 3.1 and Corollary 3.2
are valid in this general setting.

In Example 4.1, if 6, is the mean of a normal population with variance o? and if 8, is the
mean of a sample of size n, from that population and if w, = n;/o? fori =1, 2, - - -, k then
h (as defined in that example) is ISO,(ISO%) and the power function of the associated test
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is ISO,,, (ISOZ) provided —c/w € D** (¢/w € D) where c/w = (c1/w1, C2/wa, +++, Ck/we).

The likelihood ratio statistic for testing Ho 0=0,= ... =6, vs. H — H,, where Hi: 6
=60=...=0is Tu=Y" {0, —m@),§=P (0|D) If one modifies the proof of
Theorem 4.1 appropriately then it is seen that the power function of the likelihood ratio
test is ISO,,.

In the same example, the likelihood ratio test statistic for testing Hy vs. ~H is T2 =

kL w {9 - P, (0| D),)?. The corresponding function is antitonic with respect to < and the
least favorable status for H, within H; can be obtained.

Similarly, the distribution theory in Examples 4.2 and 4.3 can be obtained for the
normal means problem without assuming equal weights. One complication in these results
is that the coefficients, P (¢, k), in the Chi-bar-squared distribution now depend on w;, ws,
.-+, wz and can be difficult to compute (cf. Robertson and Wright, 1980).
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